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Abstract 

We proposed in this paper a robust graphical PID controller design technique for 

trajectory tracking of rigid SCARAs carrying loads with time-varying mass and mass moment 

of inertia.  Because of the time-varying loads and coupled nonlinearities in error dynamics of 

the tracking control system, the system matrix and the input matrix of the corresponding 

linearized model about the equilibrium point at the origin were time-varying.  Existing robust 

PID controller design techniques formulated without handling this difficulty were then 

theoretically lacking.  Our controller design technique yielded a 3D graph that could be 

employed to generate a PID control law that guaranteed input-to-state stability of the resulting 

control system by using the Lyapunov stability theorem.  Simulation results were provided to 

confirm this.  We compared our results with those obtained from using an existing sliding-mode 

control technique, and constructively drew out relevant characteristics that could be useful for 

the application of interest.       
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1. Introduction

Applications of robots are now 

common for many types of industries because 

they can offer several distinct advantages over 

conventionally dedicated machines.  One of 

these is the flexibility of their trajectory 

tracking capability, which may be employed 

for a large variety of tasks such as arc welding 

in the metal manufacturing industry and paint 

spraying in the automotive industry.  

Controller design for trajectory tracking of a 

robot with multiple revolute joints is  

theoretically challenging because, in general, 

the robot in itself is a strongly coupled 

nonlinear system.  On top of this, trajectory 

tracking adds coupled time-varying 

characteristics to the system.  Despite of these 

difficulties, linear PID controllers are widely 

adopted for robotic applications in many 

industries because of their simplicity, 

availability, and satisfactory results they could 

produce [1].  Linear models used in a large 

number of existing robust PID controller 

design techniques may be obtained by 
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linearizing the corresponding nonlinear model 

about an operating point [2], by neglecting 

nonlinear coupled dynamics of the robot and 

considering only linear dynamics of the joint 

actuators [3], or by computing torque to 

cancel out nonlinear terms in the equation of 

motion [4].  Usually, all the uncertain 

parameters associated with these linear 

models are assumed to be constants.  Then, the 

controllers may be obtained simultaneously 

for all joints, or independently for each joint.  

Stability and tracking performance are usually 

investigated by doing numerical simulations. 

In practices, successes of these approaches are 

widely recognized by the industry for set point 

regulation.  For trajectory tracking of a robot 

with multiple revolute joints, such linear 

models could not accurately represent 

dynamics of the system even in small 

neighborhoods about the operating point of 

interest.  Accordingly, stability and 

performance of the resulting PID controllers 

could be inconsistent when trajectories 

change significantly. Theoretically, this is not 

surprising given that the robot trajectory 

control system is indeed a highly coupled 

nonlinear time-varying system operating in a 

generally large workspace.  New sets of 

parameters are usually needed for the PID 

controllers to achieve satisfactory level of 

performance in this situation.  However, it 

usually takes considerable time to find a set of 

controller parameters that yields satisfactory 

tracking performance [1].     

For robotic trajectory tracking, a 

variety of sliding-mode control techniques 

have been explored in many researches.  This 

is primarily because the associated principle 

allows strong robustness for the resulting 

control systems [5-10].  However, for robotic 

systems with multiple revolute joints, the 

associated control laws usually comprise of 

multiple complicated switching terms.  It is 

well known that these terms could produce 

chattering on control input and excite hidden 

dynamics.  Also, it could appear in typical 

experiments that these are associated with 

considerable amount of heat in amplifiers.  

Subsequently, various improvements and 

partial solutions to these undesirable 

characteristics have been reported [5, 9-10, 

12-13].  Yet, it is not always clear when we 

could expect tracking performance 

enhancement from these complex techniques.  

Indeed, joint tracking errors resulting from a 

PID control system could be smaller than 

those from sliding-mode control systems in 

certain situations [1].     

In contrast to existing robust PID 

controller design techniques discussed 

previously, ours allows consistency of 

stability and performance for trajectory 

tracking in large workspaces.  This starts by 

not neglecting relevant time-varying terms 

after linearization so that our model represents 

the tracking dynamics in small neighborhoods 

about the operating point of interest better 

than a linear model with all constant 

parameters does.  Our linear state feedback 

control law could also be favorable to existing 

switching control laws because it is smooth, is 

relatively simple to obtain, and is easy to 

implement.   

This paper examines in Section 2 the 

situation in which a nonlinear model of a rigid 

SCARA (Selective Compliance Assembly 

Robot Arm) is set for trajectory tracking using 

joint errors and joint velocities as feedback 

states.  When the resulting model is linearized 

about the equilibrium point at the origin, time-

varying terms appear in both the system 

matrix and the input matrix.  These terms 

appear because of the time-varying nature of 

reference trajectories and loading variations.  

Their magnitudes could be large even in small 

neighborhoods about the origin, and thus they 

should not be neglected if modeling accuracy 

is required.  Accordingly, we admit this linear 

time-varying model for our PID controller 

design.  Our controller design is a graphical 

approach.  We develop in Section 3, a 3D 

graph of a particular real computational result 

versus two real controller design parameters. 

A stabilizing controller is found when the 

graph is negative at some point.  Stability of 

the resulting tracking control system is then 
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theoretically guaranteed.  Section 4 contains a 

numerical example in which we verify 

stability and examine tracking performance of 

the resulting control system.  These results are 

compared with those from a sliding-mode 

control approach.  From this, desirable 

properties of our PID controller are finally 

evident.  The paper is concluded in Section 5. 

2. Mathematical Models 

Important dimensions and variables 

of a typical SCARA carrying a loading object 

are shown in Figure 1.  The corresponding 

dynamics is well known, and we present here 

for convenience of the readers a mathematical 

model of a typical SCARA operating in the 

horizontal plane XY: 

 c dMq C T T    (1) 

where the vectors  
T

1 2q q q , 

 
T

c c1 c2T T T , and  
T

d d1 d2T T T are 

joint angle, control torque, and external 

disturbing torque respectively. 

Although robot dynamics in Eq. (1) is 

well understood, we provide here for 

convenience of the readers all the elements of 
2 2M   and 2 1C  : 

 
2 2 2 2 2

11 1 2 pc1 1 c2 1 2

1 2 c2 p 2 2 1 2 p

M m L m (L L ) m (L L )

2L (m L m L )cos(q ) I I I ,

    

    
 

 
2 2

12 2 p 2 pc2 2

1 2 c2 p 2 2 21

M m L m L I I

         L (m L m L )cos(q ) M ,

   

  
 

 2 2
22 2 p 2 pc2 2M m L m L I I ,      

 2
1 1 2 c2 1 2 22p 2C L (m L (2q q q )sin(q ),m L )      

 
2

2 1 2 c2 p 2 21C L (m L m L )q sin(q ) 
 

 

Figure 1. Typical Dimensions of a SCARA 

with Loading Object pm (t) . 

Note that im  and iI , i = 1, and 2 are 

mass and polar mass moment of inertia of link 

i respectively.  It was shown in [12] that robot 

parameters could be determined very 

accurately and the computed torque technique 

could yield satisfactory tracking performance.   

With advances in measurement and 

computational techniques available now, it is 

then reasonable to expect that relevant robot 

parameters could be determined very 

accurately.  Accordingly, the controller need 

not be very robust to these parameter 

uncertainties.  However, it is unavoidable in 

many practices that the robot is to carry a 

relatively large tool or loading object of time-

varying mass and mass moment of inertia.  

We then consider in this paper the case in 

which the tip of link 2 is attached with a 

loading object of time-varying mass pm (t)  

and polar mass moment of inertia pI (t) .  It can 

be shown that we can write p p pI c m  where 

pc  depends on the shape of the object.  

For a homogeneous cylinder of mass pm and 

radius pr , we have 2
p p pI (1/ 2)m r  and 

2
p pc (1/ 2)r .  Without loss of generality, we 

assume that the shape of the object is fixed and 
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pc  is a constant because the time-varying case 

for pc  may be handled in the same fashion as 

we do for pm .  

To facilitate our analysis, we rewrite Eq. (1) 

to obtain: 

 

2
2 3 2 1 2

2 2
3 1 2 2 c1 d1

2 3 2 c2 d2

1 2
3 2 1 2

2a a sin(q )(q q )

a q sin(2q ) 2a (T T )

2(a a cos(q ))(T T )

q
a (1 cos(2q )) 2a a

 
 
   
   
  

 
  

 

2
2 3 2 1 2

2 2 2
3 2 1 1 2 2

2
1 3 2 1

2 3 2 c1 d1

1 2 3 2 c2 d2

2 2
3 2 1 2

2a a sin(q )(q q )

a sin(2q )(2q 2q q q )

2a a sin(q )q

2(a a cos(q ))(T T )

2(a a 2a cos(q ))(T T )

q
a (1 cos(2q )) 2a a

 
 

   
 
 

   
     
 


   

where parameters ia , i = 1, 2, and 3 depend 

on link lengths and mass properties of the 

robot as: 

 
2 2

1 1 c1 2 p 1 1a m L (m m )L I ,   
 

 
2 2

2 2 c2 p 2 2 pa m L m L I I ,   
 

 3 1 2 c2 p 2a L (m L m L ) 
 

We now define joint error variables 

i i ie r q  , where ir  is the joint reference 

signal.  Then substitute i i iq r e   and the 

corresponding first two derivatives in the 

above two equations to obtain tracking error 

dynamics of the robot in vector-matrix form: 

i i i i i p i i p c de f (e ,e , r , r , r ,m ) g(e ,r ,m )(T T )    (2) 

where  
T

1 2e e e , and  
T

1 2f f f  are the 

error vector and a nonlinear vector, 

respectively.  It can be shown that the origin 

is an equilibrium point of Eq. (2) when all the 

torques and derivatives of all the joint 

reference signals are zero.  A linear 

approximation of Eq. (2) about the origin is 

given by: 

 

2
i i

i j j
j 1 j j

2 2

ij cj i ij dj
j 1 j 1

f f
e e e

e e

g T f g T



 

  
   

   

   

 (3)  

where i = 1 and 2, j = 1 and 2, and all the 

partial derivatives, if , and ijg  are evaluated at 

the origin.  Note that Eq. (3) is a valid 

approximation of Eq. (2) when the control 

torques are capable of containing the 

trajectory of interest in small neighborhoods 

about the origin.  In set point regulation 

problems, ir  is a constant and all derivatives 

of ir  with respect to time are then zero.  It 

follows that all the partial derivatives, if , and 

ijg  in Eq. (3) are constants, and thus the 

problem of stabilizing Eq. (3) is significantly 

simplified. When ir is a function of time as in 

trajectory tracking problems, these terms are 

also functions of time. Accordingly, Eq. (3) is 

a time-varying system.  In this paper, it is the 

problem of stabilizing this time-varying 

system for which we propose our controller.      

 We now define six state variables for 

our PID control system as 1 1x e dt  ,  

2 2x e dt  , 3 1x e , 4 2x e , 5 1x e , and 

6 2x e .  Combining these definitions with 

Eq. (3), we can write the model: 

 x [A A(t)]x [B B(t)]u w(t)        (4) 

where nx  with n = 6 is the state vector, 

the system matrix n nA   is known, the 

input matrix n mB  with m = 2 is known, 

 
T

c1 c2u T T  is the control input vector, and 

the bounded time-varying perturbation vector 
nw(t)  contains all if  and ij djg T .   The 

symbol   denotes time-varying matrices 

resulting from the time-varying reference 

signals.  For the SCARA of interest, time-

varying elements of A are (5, 4), (5, 5), (5, 

6), (6, 4), (6, 5), and (6, 6), while those of B 

are (5, 1), (5, 2), (6, 1), and (6, 2).  Totally, we 

have N = 10 time-varying elements.  All of 



Thammasat International Journal of Science and Technology                                                       Vol.21, No.2, April-June 2016 

 38 

them are associated with known upper and 

lower bounds that depend on the joint 

reference signals and their first two time 

derivatives.  The control inputs vector, the 

perturbation vector, and all the time-varying 

elements are assumed to be uniformly 

globally Lipschitz.   

3. Controller Design  

Our PID controller employs the linear 

state-feedback control law u Kx  , where 
m nK   is a constant gain matrix.  When K 

and all the associated bounds for the time-

varying elements are known, and the 

perturbation vector w(t)  is removed from Eq. 

(4), we can always write:  

              N
j jj 1x Ax [h (t) E ]x                  (5) 

where A A BK   is Hurwitz, n n
jE   is 

known, and jh (t)  is a time-varying 

function with known strict upper bound 

uj jh h  and strict lower bound lj jh h . We 

say that such K is “feasible”.  In this paper, a 

feasible K is a stabilizing solution if it 

guarantees uniform global exponential 

stability of the equilibrium point at the origin 

of Eq. (5).   

 To obtain a stabilizing solution for K, 

we use a 3D graph.  Domain of the graph is a 

two dimensional space of two controller 

design parameters, namely  and .  We use 

these two parameters to obtain K, and then the 

corresponding symmetric matrix n nZ  .   

The matrix Z is obtained from the following 

Theorem 1, which is an extension for multiple 

input cases of that in [11].  The eigenvalues of 

Z, denoted by (Z) , are all real.  The 3D graph 

is obtained by plotting the two parameters 

against the maximum real eigenvalue of Z.   A 

stabilizing solution for K is found at point 

( ,  )    when max ( (Z( ,  ))) 0     .  

Theorem 1 If the dynamical system in Eq. (5) 

is uniformly globally Lipschitz with A  being 

Hurwitz and max( (Z)) 0  , then the 

equilibrium point at the origin is uniformly 

globally exponentially stable.  The matrix 
T n nZ Z    is obtained by: 

1) Specified Q > 0 and A  to compute P from 

the Lyapunov equation TQ (1/ 2)[PA A P]    

2) Compute N
l lj jj 1A A h E   and 

T
l lΦ PA A P  . 

3) Compute j : T T
j j j j[PE E P]     .  

4) Compute j :  

  T
Ψ j Ψ Ψ 1 Ψ nΨj j j jj

Λ T Ψ T diag[ ]    .  

where Ψ Ψ 1 Ψ nj j j
T [v v ] ,  Ψ 1j

{v , Ψ nj
..., v }  is 

the set of n orthogonal unit (orthonormal) 

eigenvectors of jΨ , and Ψ 1j
{ , Ψ nj

..., }  is the 

corresponding set of n real eigenvalues of  jΨ

. 

5) Set all negative elements of Ψ j
Λ  to zero to 

get 0
Ψ j

Λ  j . 

6) Compute j , 0 0 T
Ψj Ψ Ψj j j

Ψ T Λ T  . 

7) Compute r 0
uj ljj 1 jZ Φ [(h h )Ψ ]

   . 

Proof We consider the quadratic Lyapunov 

function TV(x) = (1/2)x Px  in which TP P  

0 .  Now, put the matrix TQ Q > 0 into the 

Lyapunov equation TQ (1/ 2)[PA A P]   , and 

solve for P.  Because A  is Hurwitz, the 

existence of P, such that all the eigenvalues of 

P are positive real, is guaranteed [9].  We 

assert that V(x) is positive definite, decresent, 

and radially unbounded.  It has the following 

property I:  

 
2 21 1

min( (P)) x V(x) max( (P)) x
2 2

   
      

   

We write for jh (t) , j = 1, 2, ..., N that 

j lj j lj lj jh (t) h h (t) h h l (t)     , where 

jl (t)   j ljh (t) h . Since lj j ujh h (t) h  , it 

follows that j uj lj0 l (t) h h    j . Now, 

substituting lj jh l (t)  for jh (t)  in Eq. (5) 

yields: 

 
N

l j jj 1x A x l (t)E x 
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where lA  is defined previously. 

Because V(x) does not depend 

explicitly on t, the time derivative of V(x) 

along trajectory of the above equation is given 

by V(x, t) ( V/ x)x   .   This can be arranged 

in the following form: 

 T1
V(x, t) x Φx

2

 
  
 

N T
j 1 j j

1
l (t)x Ψ x

2


 
 

 
 

where Φ  and jΨ  are defined previously.  

Since T
jΨ  jΨ  j , jΨ  has a set of n real 

eigenvalues Ψ 1 Ψ nj j
{ , , }   and the 

corresponding set of n orthonormal 

eigenvectors Ψ 1 Ψ nj j
{v , , v } .  Using the 

linear transformation Ψ j
x T z , we now write  

TT T T
j j Ψ ΨΨ j jj

x Ψ x z [T Ψ T ]z z Λ z   where Ψ j
T  

and  Ψ j
Λ  are defined previously.  Then set all 

negative elements of ΨjΛ  to zeros to obtain 

0
ΨjΛ .  Because 0T

Ψj
z [Λ ]z 0  , it follows that 

0T
Ψjz [Λ ]z  T T

Ψj jz Λ z x Ψ x .  Accordingly, we 

have:  

 00 0T T 1 T 1 T
jΨ Ψ Ψ Ψj j j j

z [Λ ]z x [T ] [Λ ][T ]x x Ψ x
     

where 0 01 1T
j Ψ Ψ Ψj j j

Ψ [T ] [Λ ][T ]
   .  Because the 

matrix Ψ j
T  is orthogonal, 1 T

Ψ Ψj j
T T  and 

0 0 T
Ψj Ψ Ψj j j

Ψ [T ][Λ ][T ]  . Because 
0 T

j[Ψ ]


0
jΨ


  and uj lj j(h h ) l (x) 0   , it follows that 

0T T
j j uj lj jl (t)[x Ψ x] (h h )[x Ψ x]   x  and t .  

This inequality implies that:  

 

r 0T T
uj ljj 1 j

1 1
V(x, t) x Φx ((h h )[x Ψ x])

2 2


  
 

By letting r 0
uj ljj 1 jZ Φ [(h h )Ψ ]

   , we 

have shown that TV(x,t) (1/2)x Zx . If 

max( (Z)) 0  , then the following property II 

is true x  and t : 

 
21

V(x,t) max( (Z)) x
2

 
   

 
 

Because V(x) is positive definite, decresent, 

and radially unbounded, Properties I and II 

indicate that the equilibrium point at the origin 

of Eq. (5) is uniformly globally exponentially 

stable [9].  This completes the proof.  

In practical applications of a SCARA, 

we expect the existence of the perturbation 

vector w(t) that has been removed previously 

to facilitate derivation of Theorem 1.  With 

this, we do not expect all trajectories to 

converge uniformly and exponentially to the 

origin.  Rather, it is reasonable that they 

converge into a neighborhood about the 

origin, and the size of this neighborhood 

depends on the magnitude of perturbation.  

This is a type of stability known as input-to-

state stability [9].  It turns out that this is our 

case as shown in Corollary 1:  

Corollary 1 If Theorem 1 is satisfied, then the 

origin of the system in Eq. (4) is input-to-state 

stable. 

Proof Following the proof of Theorem 1, we 

have along the trajectory of Eq. (4) that  

 

NT T
j 1 j j

1 1
V(x, t) = x Φx l (t)x Ψ x

2 2

V
+ w(t)

x


   

    
   

 
 
 

 

Then, V(x,t) T(1/2)x Zx +( V/ x)w(t)  .  Now, 

we let  w(t)  be strictly bounded by   and 

notice that TV/ x=x P  . Thus, 

 T1
V(x, t) x Zx max( (P)) x

2

 
    
 

 

where max( (P)) 0   because TP P 0  .  If 

we have that max( (Z)) 0  , then:  

 21
V(x, t) max( (Z)) x max( (P)) x

2

 
      

 
 

For any given bound   on w(t) , this implies 

the existence of the corresponding region 
n  in which x is radially sufficiently 

large such that V(x,t) < 0 in  t  .  Because 
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V(x) is positive definite, decresent, and 

radially unbounded, this implies that all the 

trajectories converge to the region n   

about the origin from all initial conditions in 

 t  .  Input-to-state stability is asserted, and 

the proof is completed.  

We now give a compact procedure for 

generating K from two controller design 

parameters  and , and the 3D plot of 

max( (Z))  versus these parameters.  The 

resulting K is guaranteed to be feasible, and is 

special in that it is a good candidate for forcing 

V(x, t)  to be negative definite without relying 

on the exact expression of  jh (t)  [11].  The 

procedure may be concluded in the 

followings: 

1) Define a two dimensional domain of ρ 0  

and η 1 , and select a grid size for this 

domain.  For each coordinate of (ρ, ) ,  

execute the following steps 2) – 5)  

2) Solve for P from  

 
T T2I PA A P 2 PBB P    

   

The existence of a unique positive definite 

symmetric solution P is guaranteed. 

3) Compute TK ηρB P , A A BK  , and 

then TQ (1/ 2)[PA A P]   .  The matrix A  is 

guaranteed to be Hurwitz. 

4) Use ( A , Q) obtained in step 3) to compute 

Z by executing steps 2) – 7) in Theorem 1.   

5) Plot max( (Z))  versus  and . 

Generating this 3D graph of 

max( (Z))  versus  and  can be automated in 

a PC relatively easily.  Using MATLAB, the 

maximum processing time for all cases we 

investigated was less than 5 seconds on a PC 

with a Pentium D CPU. 

4. A Numerical Example 

  Numerical simulations of SCARAs  

Numerical simulations of SCARAs operating 

in various situations with different sets of 

robot parameters can be founded in the 

literature.  Here, we examine the simulation 

example in [7] because it describes a practical 

situation with sufficient details for us to do 

comparable simulations.  In addition, the 

associated robot parameters are reasonable in 

our opinion.  These are m1 = 2.61 kg, m2 = 

3.45 kg, L1 = 0.3 m, Lc1 = 0.178 m, Lc2 = 0.2 

m, I1 = 0.198 kg.m2, and I2 = 0.184 kg.m2.  

Although not included in [7], we add to this 

manipulator at the tip of link 2 as in Fig. 1 a 

loading object of time-varying mass: 

  p 2 2m (t) 0.3m (sin(t) + 1) 0.6m   

The corresponding object shaping parameter 

is set to pc 0.005 , which could be interpreted 

as a cylinder of radius pr 0.1  m.   

From the above data, the relevant matrices in 

Eq. (4) are given by:  

4 2 4 4

*
2 2 2 1 2 3

0 I
A

0 0 A

 

  

 
  
  

 , 
4 2

*
2 2

0
B

B





 
  
  

 

4 2 4 4

*
2 2 2 1 2 3

0 I
A

0 0 A

 

  

 
   

  

, 
4 2

*
2 2

0
B

B





 
   

  

 

where the constant matrices are 

 * 0.30 0.28 0.42
A ,

2.56 4.26 2.49

   
     

   

 * 2.18 1.74
B ,

1.74 8.98

 
   

 

and the time-varying matrices are  *A  and 
*B .  For all the ten (i, j) time-varying 

elements of these matrices, all the associated 

lower bounds lh  are zero while the upper 

bounds uh  are given in Tables.1 - 2.  Notice 

that some uncertainty bounds are significantly 

larger than their corresponding nominal 

values.  

Using the above modeling 

specifications, we follow the procedure given 

in Section 3 to plot a 3D graph of max

(Z( , ))    versus    and   as in Figure 2. The 

figure shows that there are infinitely many 

coordinates ( , )   for which max

(Z( , )) 0    .  We simply select that 
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coordinate * *( , )   = (3, 90), which yields 

* *max( (Z( , ))) 0.04     .  Our investigation 

strongly suggests that other coordinates of 

these two controller design parameters could 

yield better tracking performance but we do 

not pursue them because this can demonstrate 

our controller design procedure already.   

 
Table1. Upper bounds on the (i, j) elements of 

*A  (lower bounds are all zero).   

(i, j) (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3) 

uh  1.75 2.38 2.00 3.18 4.70 3.23 

 
Table2. Upper bounds on the (i, j) elements of 

*B  (lower bounds are all zero).    

(i, j) (1, 1) (1, 2) (2, 1) (2, 2) 

uh  0.97 1.92 1.92 5.08 

  

 

Figure 2. A 3D graph of max (Z( , ))    versus 

design parameters  and  , with the selected 

pair * *( , ) (3,  90)    marked by a sphere. 

The corresponding feedback gain 

matrix K is now obtained as:      

 156 10.9 294 5.5 173 2.4
K

10.9 156 14.9 260 28 150
     

    
 

We substitute the control torque vector 

cT Kx   and the disturbing torque vector dT  

in the nonlinear model of Eq. (1), and run 

numerical simulations.  From [7], the joint 

reference trajectories are 1r (t) sin(t) , and 

2r (t)   cos(t) , with joint initial conditions 

1q (0) 1.5  rad, 2q (0) 1.5   rad, and 

1 2q (0) q (0) 0   rad/s.  Both joints are 

subjected to square-wave external disturbing 

torques d1T  and d2T  of magnitude 5  N.m 

and period / 5  s.  Our simulation results are 

given in Figure 3, while those from [7] are 

provided in Figure 4-5 for convenience of the 

readers.   

 

 
Figure 3. (Upper) Joint tracking errors 

1 3e (t) x (t)  (dash-dot: rad), 2 4e (t) x (t)  

(solid: rad), disturbing torque d1T  and d2T  

(sq. wave: N.m), and time-varying mass 

pm (t)  (sinusoidal: 2  kg) (Lower) Control 

torque c1T  (dash-dot: N.m), and c2T  (solid: 

N.m). 

 

We note that the signs of the joint 

tracking errors and the corresponding control 

torques in ours are the opposite of those in [7] 

by definitions.  Because our case is associated 

with the time-varying mass pm (t)  at the tip of 

link 2, while [7] is not, comparisons should be 

made carefully. When compared to the 

simulation results in [7], our joint tracking 

errors have smaller rise time but with larger 

overshoot.  From both papers, convergence of 

the trajectories into small neighborhoods 

about the origin is obvious, and various 

characteristics of the control torques are 

similar.  After a transient period of 6 seconds, 

our joint errors and control torques are 

bounded by 0.02  rad and 7.5  N.m 
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respectively.  The latter set of data is not given 

explicitly in [7], but one could estimate it 

roughly from the simulations provided in 

Figure 4-5.  All the simulations indicate that 

both techniques could yield very satisfactory 

tracking performance.   

 

 
Figure 4. Joint tracking errors 1e (t)  (dash-

dot: rad), 2e (t)  (solid: rad), and disturbing 

torque d1T  and d2T  (sq. wave: N.m), with 

pm (t) 0  [7].  

 

Recall that the above simulations are 

associated with large initial conditions of 

1e 1.5   rad, 2e 2.5  rad, 1e 1  rad/s, and 

2e 0  rad/s.  The corresponding magnitude 

of the control torques in ours and [7] are then 

large during an initially short period of time.  

This does not occur in practical operation, in 

which the robot is set to start at small values 

of ie (0)  and ie (0)  to avoid amplifier 

saturation and unnecessary stress to the robot. 

   

 
Figure 5. Control torque c1T  (dash-dot: N.m),              

and c2T  (solid: N.m), with pm (t) 0  [7]. 

   

 
Figure 6. (Upper) Joint tracking errors 

1 3e (t) x (t)  (dash-dot: rad), 2 4e (t) x (t)  

(solid: rad),   disturbing torque d1T  and d2T  

(sq. wave: 0.01 N.m), and time-varying mass 

pm (t)  (sinusoidal: 0.04  kg) (Lower) Control 

torque c1T  (dash-dot: N.m), and c2T  (solid: 

N.m). 

 
  To examine such a practical case, we 

set  1e 0.05  rad, 2e 0.05  rad, and 

1 2e e 0   rad/s.  In this case, our simulations 

reveal that the initial control torques are 

bounded by 14.5  N.m.  Then they decreases 

very quickly to stay within 7.5  N.m as 

shown in Figure 6.  Tracking errors are 

bounded by 0.02  rad after 6 seconds as in the 

previous case.  The bounds on the control 

torques are quite reasonable, given that the 

joints are subjected to external disturbing 
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torques diT  of 5  N.m.    When the upper 

bound of pm (t)  reduces, our additional 

simulations (not shown here) indicate that the 

bounds on control torques reduce accordingly. 

5. Conclusion 

  This paper presents an innovative 

graphical technique for designing a linear PID 

controller with applications to trajectory 

tracking of SCARAs.  In the beginning, we 

propose the use of a linear model that fully 

accounts for time-varying elements in the 

system matrix and the input matrix that appear 

when linearizing the robot nonlinear model 

about the equilibrium point at the origin.  This 

effectively extends the region in state space 

for which our model can closely approximate 

the original dynamics of the robot of interest.  

We use the Lyapunov stability theorem to 

develop Theorem 1 and Corollary 1.  

Together, they constitute a criterion for 

determining convergence of all trajectories 

belonging to our model into a neighborhood 

about the origin, with an estimate for the size 

of this neighborhood included.  We use this 

criterion to plot a 3D graph whose domain is 

a space of two real controller design 

parameters.  This graph yields a stabilizing 

controller when the range of the graph, which 

is always real, is negative at some point.        

Our PID controller for SCARA trajectory 

tracking is theoretically justified, is relatively 

simple to obtain, and is easy to implement.  

These nice characteristics thus allow its 

applications in a large variety of situations.  

When considering tracking performance, it 

appears from the literature that ours is very 

satisfactory.  In addition, our linear control 

law always guarantees the desirable property 

of smoothness for control inputs, especially 

when compared to those obtained by 

incorporating switching schemes.  It is then 

reasonable to expect that our controller neither 

excites hidden dynamics of the robots, nor 

causes undesirable heat due to finite switching 

time of robot amplifiers.  

Now, we are investigating additional useful 

features and areas of potential applications 

associated with our graphical approach.  In 

particular, we are determining if a useful 

concept of relative stability could be 

introduced for linear systems subjected to 

nonlinear time-varying uncertainties in a 

practical manner.  We are also examining the 

situation in which our approach could be 

preferable to a numerical optimization 

approach such as LMI (Linear Matrix 

Inequality). 
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