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Abstract

We proposed in this paper a robust graphical PID controller design technique for
trajectory tracking of rigid SCARASs carrying loads with time-varying mass and mass moment
of inertia. Because of the time-varying loads and coupled nonlinearities in error dynamics of
the tracking control system, the system matrix and the input matrix of the corresponding
linearized model about the equilibrium point at the origin were time-varying. EXisting robust
PID controller design techniques formulated without handling this difficulty were then
theoretically lacking. Our controller design technique yielded a 3D graph that could be
employed to generate a PID control law that guaranteed input-to-state stability of the resulting
control system by using the Lyapunov stability theorem. Simulation results were provided to
confirm this. We compared our results with those obtained from using an existing sliding-mode
control technique, and constructively drew out relevant characteristics that could be useful for
the application of interest.
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1. Introduction

Applications of robots are now
common for many types of industries because
they can offer several distinct advantages over
conventionally dedicated machines. One of
these is the flexibility of their trajectory
tracking capability, which may be employed
for a large variety of tasks such as arc welding
in the metal manufacturing industry and paint
spraying in the automotive industry.
Controller design for trajectory tracking of a
robot with multiple revolute joints is

theoretically challenging because, in general,
the robot in itself is a strongly coupled
nonlinear system. On top of this, trajectory
tracking adds coupled  time-varying
characteristics to the system. Despite of these
difficulties, linear PID controllers are widely
adopted for robotic applications in many
industries because of their simplicity,
availability, and satisfactory results they could
produce [1]. Linear models used in a large
number of existing robust PID controller
design techniques may be obtained by
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linearizing the corresponding nonlinear model
about an operating point [2], by neglecting
nonlinear coupled dynamics of the robot and
considering only linear dynamics of the joint
actuators [3], or by computing torque to
cancel out nonlinear terms in the equation of
motion [4].  Usually, all the uncertain
parameters associated with these linear
models are assumed to be constants. Then, the
controllers may be obtained simultaneously
for all joints, or independently for each joint.
Stability and tracking performance are usually
investigated by doing numerical simulations.
In practices, successes of these approaches are
widely recognized by the industry for set point
regulation. For trajectory tracking of a robot
with multiple revolute joints, such linear
models could not accurately represent
dynamics of the system even in small
neighborhoods about the operating point of
interest. Accordingly, stability and
performance of the resulting PID controllers
could be inconsistent when trajectories
change significantly. Theoretically, this is not
surprising given that the robot trajectory
control system is indeed a highly coupled
nonlinear time-varying system operating in a
generally large workspace. New sets of
parameters are usually needed for the PID
controllers to achieve satisfactory level of
performance in this situation. However, it
usually takes considerable time to find a set of
controller parameters that yields satisfactory
tracking performance [1].

For robotic trajectory tracking, a
variety of sliding-mode control techniques
have been explored in many researches. This
is primarily because the associated principle
allows strong robustness for the resulting
control systems [5-10]. However, for robotic
systems with multiple revolute joints, the
associated control laws usually comprise of
multiple complicated switching terms. It is
well known that these terms could produce
chattering on control input and excite hidden
dynamics. Also, it could appear in typical
experiments that these are associated with
considerable amount of heat in amplifiers.
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Subsequently, various improvements and
partial solutions to these undesirable
characteristics have been reported [5, 9-10,
12-13]. Yet, it is not always clear when we
could expect tracking  performance
enhancement from these complex techniques.
Indeed, joint tracking errors resulting from a
PID control system could be smaller than
those from sliding-mode control systems in
certain situations [1].

In contrast to existing robust PID
controller design techniques discussed
previously, ours allows consistency of
stability and performance for trajectory
tracking in large workspaces. This starts by
not neglecting relevant time-varying terms
after linearization so that our model represents
the tracking dynamics in small neighborhoods
about the operating point of interest better
than a linear model with all constant
parameters does. Our linear state feedback
control law could also be favorable to existing
switching control laws because it is smooth, is
relatively simple to obtain, and is easy to
implement.

This paper examines in Section 2 the
situation in which a nonlinear model of a rigid
SCARA (Selective Compliance Assembly
Robot Arm) is set for trajectory tracking using
joint errors and joint velocities as feedback
states. When the resulting model is linearized
about the equilibrium point at the origin, time-
varying terms appear in both the system
matrix and the input matrix. These terms
appear because of the time-varying nature of
reference trajectories and loading variations.
Their magnitudes could be large even in small
neighborhoods about the origin, and thus they
should not be neglected if modeling accuracy
is required. Accordingly, we admit this linear
time-varying model for our PID controller
design. Our controller design is a graphical
approach. We develop in Section 3, a 3D
graph of a particular real computational result
versus two real controller design parameters.
A stabilizing controller is found when the
graph is negative at some point. Stability of
the resulting tracking control system is then
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theoretically guaranteed. Section 4 contains a
numerical example in which we verify
stability and examine tracking performance of
the resulting control system. These results are
compared with those from a sliding-mode
control approach.  From this, desirable
properties of our PID controller are finally
evident. The paper is concluded in Section 5.

2. Mathematical Models

Important dimensions and variables
of a typical SCARA carrying a loading object
are shown in Figure 1. The corresponding
dynamics is well known, and we present here
for convenience of the readers a mathematical
model of a typical SCARA operating in the
horizontal plane XY:

Mg+C=T,+Ty @

where  the  vectors

T
q=[Q1 QZ] ,
T T
Te=[Ta Teo] , and Ty=[Ty Tg] are
joint angle, control torque, and external
disturbing torque respectively.
Although robot dynamics in Eq. (1) is

well understood, we provide here for
convenience of the readers all the elements of

M e %?? and CeR??:

+2L1(myLep +mply)cos(dy) + 1 +15 +1p,

M12 = mzL%z +mpL22 + |2 + Ip

+Ly(malep +mply)cos(ay) = My,
Cy =-Ly(myLep +myl;y)(20,4, +G3)sin(ay),

C, =Ly (myLe, +mpLy,)gfsin(ay)

Ta, Ta

f 1 T, Ta
G1
g /
1
L1

<

Figure 1. Typical Dimensions of a SCARA
with Loading Object m,(t).

Note that m; and I;, 1 =1, and 2 are

mass and polar mass moment of inertia of link
i respectively. It was shown in [12] that robot
parameters could be determined very
accurately and the computed torque technique
could yield satisfactory tracking performance.
With advances in  measurement and
computational techniques available now, it is
then reasonable to expect that relevant robot
parameters could be determined very
accurately. Accordingly, the controller need
not be very robust to these parameter
uncertainties. However, it is unavoidable in
many practices that the robot is to carry a
relatively large tool or loading object of time-
varying mass and mass moment of inertia.
We then consider in this paper the case in
which the tip of link 2 is attached with a
loading object of time-varying mass mpy(t)
and polar mass moment of inertia 1,(t) . Itcan
be shown that we can write 1, =c,m, where
¢, € N+ depends on the shape of the object.
For a homogeneous cylinder of mass m, and
radius 1, , ofg and
cp, =(1/2)rz. Without loss of generality, we
assume that the shape of the object is fixed and

we have I, =(1/2)m
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¢, isaconstant because the time-varying case
for ¢, may be handled in the same fashion as

we do for my.

To facilitate our analysis, we rewrite Eq. (1)
to obtain:

2a,a45in(q,)(Gy +d2)°
+a3g2sin(20,) + 2a,(Tey +Tgy)
—2(ay +2a3c0s(d,)) (T + Ty»)

TR (W cos(2ay) - 2803,
2a,a351n(0,)(d; + )
+a3sin(2q,)(247 + 26,4, +63)
+2a;a55in(q z)qf
+2(a, +23c08(02))(Tey + )
—2(ay +a, +2a3c05(0,))(Teo + Tyo)

2= a2(1+cos(2q,)) - 2a,a,
where parameters a;, i = 1, 2, and 3 depend

on link lengths and mass properties of the
robot as:

al = mlL%l + (m2 + mp)L% + |1'
_ 2 2

ay =MyLy +mpls +1; + 1,
az =Ly(m,Le, +mp|—2)

We now define joint error variables
e; =r,—q; , where r, is the joint reference

signal. Then substitute q; =r,—e; and the

corresponding first two derivatives in the
above two equations to obtain tracking error
dynamics of the robot in vector-matrix form:

e="1(e;, &, 5,5, 1, my) +9(8;, 1, my)(Te +Tg) (2)

where e=[e, e,]',and f=[f, f,]' arethe

error vector and a nonlinear vector,
respectively. It can be shown that the origin
is an equilibrium point of Eq. (2) when all the
torques and derivatives of all the joint
reference signals are zero. A linear
approximation of Eq. (2) about the origin is
given by:
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2 . .
T
j:]_ 6eJ Gej

3)
2 _ 2

+2 GijTg + fi + 2 GijTy
= =

where i =1and 2, j =1 and 2, and all the
partial derivatives, f;, and g; are evaluated at
the origin. Note that Eg. (3) is a valid
approximation of Eq. (2) when the control
torques are capable of containing the
trajectory of interest in small neighborhoods
about the origin. In set point regulation
problems, r, is a constant and all derivatives

of r, with respect to time are then zero. It

follows that all the partial derivatives, f, ,and
Gjj in Eqg. (3) are constants, and thus the
problem of stabilizing Eq. (3) is significantly
simplified. When r, is a function of time as in
trajectory tracking problems, these terms are
also functions of time. Accordingly, Eq. (3) is
a time-varying system. In this paper, it is the
problem of stabilizing this time-varying
system for which we propose our controller.

We now define six state variables for
our PID control system asx; =[edt,
X2 Ejezdt, X35e1, X4 Eez, X5 Eél, and
Xg =€,. Combining these definitions with
Eq. (3), we can write the model:

X =[A+AA@M)X+[B+AB(M)u+w(t) (4)

where x eR" with n = 6 is the state vector,
the system matrix Ae®R™" is known, the
input matrix BeR™with m = 2 is known,
u=[Ty Tcz]T is the control input vector, and
the bounded time-varying perturbation vector
w(t) e %" contains all f; and G;Ty. The
symbol A denotes time-varying matrices
resulting from the time-varying reference
signals. For the SCARA of interest, time-
varying elements of AA are (5, 4), (5, 5), (5,
6), (6, 4), (6, 5), and (6, 6), while those of AB
are (5, 1), (5, 2), (6, 1), and (6, 2). Totally, we
have N = 10 time-varying elements. All of
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them are associated with known upper and
lower bounds that depend on the joint
reference signals and their first two time
derivatives. The control inputs vector, the
perturbation vector, and all the time-varying
elements are assumed to be uniformly
globally Lipschitz.

3. Controller Design

Our PID controller employs the linear
state-feedback control law u=-Kx, where
Ke®R™" js a constant gain matrix. When K
and all the associated bounds for the time-
varying elements are known, and the
perturbation vector w(t) is removed from Eq.

(4), we can always write:
X = Ax+ X [h; (1) EjIx (5)

where A=A-BK is Hurwitz, EjeR™N s
known, and h;()e®R is a time-varying

function with known strict upper bound
hy; >h; and strict lower bound hy <h;. We

say that such K is “feasible”. In this paper, a
feasible K is a stabilizing solution if it
guarantees uniform global exponential
stability of the equilibrium point at the origin
of Eq. (5).

To obtain a stabilizing solution for K,
we use a 3D graph. Domain of the graph is a
two dimensional space of two controller
design parameters, namely p and . We use
these two parameters to obtain K, and then the
corresponding symmetric matrix Z e ™" .
The matrix Z is obtained from the following
Theorem 1, which is an extension for multiple
input cases of that in [11]. The eigenvalues of
Z, denoted by A(2), areall real. The 3D graph
is obtained by plotting the two parameters
against the maximum real eigenvalue of Z. A
stabilizing solution for K is found at point

(p", m") when max (A\(Z(p", n"))) <0.
Theorem 1 If the dynamical system in Eq. (5)

is uniformly globally Lipschitz with A being
Hurwitz and max(A(2))<0 , then the

equilibrium point at the origin is uniformly

globally exponentially stable. The matrix

Z=7T e R®™" is obtained by:

1) Specified Q > 0 and A to compute P from
the Lyapunov equation —Q = (1/2)[PA + ATP]
2) Compute Aj=A+3} hE; and

O=PA; +A]P.

3) Compute vj: ¥; =[PE;+ EJ-TP]= lPJT.

4) Compute vj:

—TT —di
A.i,j —T\Pj‘PjTLl,j —dlag[k\i,jl Kq,jn] .

where Ty, =[Va;, ‘ ‘ Vuls Vg1 oo Vil IS
the set of n orthogonal unit (orthonormal)
eigenvectors of ¥;, and Dojr oo hpn} is the

corresponding set of n real eigenvalues of ¥,

5) Set all negative elements of Aq,j to zero to
get A§,0j vj.

i >0 _ >0TT
6) Compute vj, P7 —T\I,jA;J_T\Pj.

7) Compute Z=®+3[(hy —hy )\PJ%O] .

Proof We consider the quadratic Lyapunov
function V(x)=(1/2)xTPx in whichp=pPT
>0. Now, put the matrix Q=QT > 0 into the
Lyapunov equation—-Q = (1/2)[PA+ATP], and
solve for P. Because A is Hurwitz, the
existence of P, such that all the eigenvalues of
P are positive real, is guaranteed [9]. We
assert that VV(X) is positive definite, decresent,

and radially unbounded. It has the following
property I:

(%) min(L(P))|X[* < V(x) < (%j max(L(P)) x|
We write forh;(t), j = 1, 2, .., N that

h](t):hll+h](t)_hll:hIJ+IJ(t)' where
I](t): hJ(t)—h|J Since h" <hj(t)<huj' it
follows thatO<I;(t)<hy—h;  Vj. Now,

substituting hy;+1;(t) for h;(t) in Eq. (5)
yields:

X =A|X+Z}\‘:1Ij(t)ij

38
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where A, is defined previously.

Because V(x) does not depend
explicitly on t, the time derivative of V(x)
along trajectory of the above equation is given
by V(x,t)=(8Vv/ex)x . This can be arranged
in the following form:

V(x,t) = (%] xTdx + (%j Z}\lzllj(t)xT‘{’jX

where ® and ‘¥; are defined previously.
Since ‘PJT =¥; Vvj, ¥j has a set of n real
,k\},jn} and the

corresponding set of n
eigenvectors {vq,jl, ,vq,jn} .

linear transformation x = Tsz , We now write

eigenvalues {xq,j],

orthonormal
Using the

xT¥jx = zT[T\;j‘P T Jz= ZTA\PJ.Z where T\{,j
and A\Pj are defined previously. Then set all

negative elements of Ay; to zeros to obtain
Aﬁfj’. Because zT[A?P(} 1z=0, it follows that

zT[Ag(J?]z > 7T Az =xT¥x . Accordingly, we
have:

ZT[A%} lz= xT [T‘Ij} ]T [A‘ZPOJ ][T\Iﬁ Ix = XT‘PJ-ZOX

20 _ rr-11T1 A20 1771
where ¥ ‘[TTj] [A\yj][T\yj]- Because the
i i -1 _TT
matrix Tq,j is orthogonal, Tle_T\PJ_ and

Because [¥ J?O]T

w30 =[ij][A§5}][T$j]-
=% and (h, —hy) >1;(x) >0, it follows that
IJ(t)[XTlPJX] < (huj —h|j)[XT\PJ$OX] VX and Vt .

This inequality implies that:
: 1 1
V(x, 1) < EXT(DX +EZE:1((huj —hp[xT¥7x])

By letting Z=®+3 1 [(hy—h;)¥3°], we
have shown that WV(xt)<@/2)xTzx . If
max(1(Z)) < 0, then the following property Il
is true vx and Vt:

39

Vix) < _@|max(x(2))lllxll2

Because V(x) is positive definite, decresent,
and radially unbounded, Properties | and Il
indicate that the equilibrium point at the origin
of Eqg. (5) is uniformly globally exponentially
stable [9]. This completes the proof.

In practical applications of a SCARA,
we expect the existence of the perturbation
vector w(t) that has been removed previously
to facilitate derivation of Theorem 1. With
this, we do not expect all trajectories to
converge uniformly and exponentially to the
origin. Rather, it is reasonable that they
converge into a neighborhood about the
origin, and the size of this neighborhood
depends on the magnitude of perturbation.
This is a type of stability known as input-to-
state stability [9]. It turns out that this is our
case as shown in Corollary 1:

Corollary 1 If Theorem 1 is satisfied, then the
origin of the system in Eq. (4) is input-to-state
stable.

Proof Following the proof of Theorem 1, we
have along the trajectory of Eqg. (4) that

V(x,1) = (%) XT(I)x+(%JZE\‘_11](t)XT‘P X
oV
(5 Jwoy
Then, V(x,t)< (1/2)xTZx +(@V/ox)w(t). Now,

we let w(t) be strictly bounded by ¢ %+ and
notice that oV/ox=xTP . Thus,

V(x,t) < (%)xTZx +max(M(P)) x|

where max(L(P)) >0 because P=PT >0. If
we have that max(1(2)) <0, then:

V(x,t) < —(%j|max(x(2))|||x||2 +max(A(P)) x|

For any given bound ¢ on w(t), this implies
the existence of the corresponding region

QeR" in which x is radially sufficiently
large such that V(x,t)<0 in Q Vt. Because
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V(x) is positive definite, decresent, and
radially unbounded, this implies that all the
trajectories converge to the region R"-Q
about the origin from all initial conditions in
Q Vvt. Input-to-state stability is asserted, and
the proof is completed.

We now give a compact procedure for
generating K from two controller design
parameters p and m, and the 3D plot of
max(1L(Z)) versus these parameters. The
resulting K is guaranteed to be feasible, and is
special inthat it is a good candidate for forcing
V(x,t) to be negative definite without relying

on the exact expression of h;(t) [11]. The

procedure may be concluded in the
followings:

1) Define a two dimensional domain of p >0
and n=>1, and select a grid size for this
domain. For each coordinate of (p,n),

execute the following steps 2) — 5)
2) Solve for P from

-21=PA+ATP-2pPBBTP

The existence of a unique positive definite
symmetric solution P is guaranteed.

3) Compute K=mpBTP, A=A-BK, and
then Q =—(@1/2)[PA+ATP]. The matrix A is
guaranteed to be Hurwitz.

4) Use (A, Q) obtained in step 3) to compute
Z by executing steps 2) — 7) in Theorem 1.

5) Plot max(A(Z)) versus p and .

Generating this 3D graph of
max(1(Z)) versus p and n can be automated in
a PC relatively easily. Using MATLAB, the
maximum processing time for all cases we
investigated was less than 5 seconds on a PC
with a Pentium D CPU.

4. A Numerical Example

Numerical simulations of SCARAS
Numerical simulations of SCARAs operating
in various situations with different sets of
robot parameters can be founded in the
literature. Here, we examine the simulation
example in [7] because it describes a practical

situation with sufficient details for us to do
comparable simulations. In addition, the
associated robot parameters are reasonable in
our opinion. These are m; = 2.61 kg, m; =
345kg, L1=03m, L =0.178m, L, =0.2
m, I1 = 0.198 kg.m?, and I, = 0.184 kg.m?.
Although not included in [7], we add to this
manipulator at the tip of link 2 as in Fig. 1 a
loading object of time-varying mass:

mp (t) = 0.3m, (sin(t) + 1) <0.6m;
The corresponding object shaping parameter
issetto ¢, =0.005, which could be interpreted
as a cylinder of radius r, =0.1 m.

From the above data, the relevant matrices in
Eq. (4) are given by:

04><2 : I4><4 04><2
I B i e - T o
0202 1 02 1 Ans Box2

O4><2 : I4><4 I O4><2
AA =| oo s | AB = | T
02,2 : 02 1 A2 _ABzxz

where the constant matrices are

~ [-0.30 —0.28 —0.42]
| 256 —4.26 249

g 218 1.74
| 174 -898/

and the time-varying matrices are AA” and
AB". For all the ten (i, j) time-varying
elements of these matrices, all the associated
lower bounds h, are zero while the upper
bounds h, are given in Tables.1 - 2. Notice
that some uncertainty bounds are significantly
larger than their corresponding nominal
values.

Using the above  modeling
specifications, we follow the procedure given
in Section 3 to plot a 3D graph of max
MZ(p,m)) versus p and n asin Figure 2. The
figure shows that there are infinitely many
coordinates  (p,n) for which  max

AMZ(p,m)) <0. We simply select that

40



Vol.21, No.2, April-June 2016

Thammasat International Journal of Science and Technology

coordinate (p",m") = (3, 90), which yields

max(M(Z(p",m’))) =—0.04. Our investigation
strongly suggests that other coordinates of
these two controller design parameters could
yield better tracking performance but we do
not pursue them because this can demonstrate
our controller design procedure already.

Tablel. Upper bounds on the (i, j) elements of

AA” (lower bounds are all zero).

(1,0 (1, 1)](1,2)](1,3)](2,1)[(2,2)|(2, 3)
hy [1.75]2.38|2.00|3.18|4.70 | 3.23

Table2. Upper bounds on the (i, j) elements of
AB" (lower bounds are all zero).

(,) |[1,)[(1,2](2,1)](22
h, | 097 | 1.92 | 1.92 | 5.08
(P max(M(2)))

max(MZ)) . |
LT T =(3,90,-0.04)

20,77

100 1

Figure 2. A 3D graph of maxA(Z(p,m)) versus
design parameters p and n, with the selected

pair (p",n") = (3, 90) marked by a sphere.

The corresponding feedback gain
matrix K is now obtained as:

K — -156 -109 -294 -55 -173 24
~1109 -156 149 -260 28 -150

We substitute the control torque vector
T, =—Kx and the disturbing torque vector T,
in the nonlinear model of Eq. (1), and run
numerical simulations. From [7], the joint
reference trajectories arer(t) =sin(t), and

41

r,(t)= cos(t), with joint initial conditions
¢;(0)=15 rad, ¢,(0)=-15 rad, and
4,(0)=d,(0)=0 rad/s. Both joints are
subjected to square-wave external disturbing
torques Ty and Ty, of magnitude +5 N.m

and period =/5 s. Our simulation results are
given in Figure 3, while those from [7] are
provided in Figure 4-5 for convenience of the
readers.

n

[=]

'
o

-
= =]

'
o

L
=
(=1

Joint Control Torques (N.m) Joint Tracking Emors (rad)

Time (sec)

Figure 3. (Upper) Joint tracking errors
e;(t) =x5(t) (dash-dot: rad), e,(t)=x,(t)
(solid: rad), disturbing torque Ty and Ty,
(sq. wave: N.m), and time-varying mass
m,(t) (sinusoidal:x2 kg) (Lower) Control
torque T, (dash-dot: N.m), and T, (solid:
N.m).

We note that the signs of the joint
tracking errors and the corresponding control
torques in ours are the opposite of those in [7]
by definitions. Because our case is associated
with the time-varying mass m(t) at the tip of

link 2, while [7] is not, comparisons should be
made carefully. When compared to the
simulation results in [7], our joint tracking
errors have smaller rise time but with larger
overshoot. From both papers, convergence of
the trajectories into small neighborhoods
about the origin is obvious, and various
characteristics of the control torques are
similar. After a transient period of 6 seconds,
our joint errors and control torques are
bounded by £0.02 rad and 7.5 N.m
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respectively. The latter set of data is not given
explicitly in [7], but one could estimate it
roughly from the simulations provided in
Figure 4-5. All the simulations indicate that
both techniques could yield very satisfactory
tracking performance.

5Hh
4 H
s 37
©
= 2t
@
=] 1 F
U‘:l |
E 0K e B A a
=
T 2
5 3
—4 H
-5 pUdbobuduoducusdLcuairiuorouvudoy
0o 2 4 6 8 10 12 14 16 18 20
Time (sec)

Figure 4. Joint tracking errors e (t) (dash-
dot: rad), e,(t) (solid: rad), and disturbing
torque Ty and Ty, (Sg. wave: N.m), with
m, () =0 [7].

Recall that the above simulations are
associated with large initial conditions of
e, =-15 rad, e, =25 rad, é =1 rad/s, and
é, =0 rad/s. The corresponding magnitude

of the control torques in ours and [7] are then
large during an initially short period of time.
This does not occur in practical operation, in
which the robot is set to start at small values
of ¢;(0) and ¢;(0) to avoid amplifier
saturation and unnecessary stress to the robot.

Joint Control Torques (N.m)

0o 2 - 6 8 10 12 14 16 18 20
Time (sec)

Figure 5. Control torque T (dash-dot: N.m),
and T, (solid: N.m), with m,(t) =0 [7].

=
o =
S

Joint Tracking Emors (rad)
[=]

=1
=
~om

-
m oo

'
o

L
=]

Joint Control Torques (N.m)
[=]

8 10

(=}
Mo
o

Time (zec)

Figure 6. (Upper) Joint tracking errors
e, (t) =x5(t) (dash-dot: rad), e,(t)=x4(t)
(solid: rad), disturbing torque Ty and Ty,
(sg. wave: x0.01 N.m), and time-varying mass
m, (t) (sinusoidal:=0.04 kg) (Lower) Control

torque T, (dash-dot: N.m), and T, (solid:
N.m).

To examine such a practical case, we
set e =005 rad, e,=0.05 rad, and

&, =6, =0 rad/s. In this case, our simulations

reveal that the initial control torques are
bounded by +14.5 N.m. Then they decreases
very quickly to stay within 7.5 N.m as
shown in Figure 6. Tracking errors are
bounded by +0.02 rad after 6 seconds as in the
previous case. The bounds on the control
torques are quite reasonable, given that the
joints are subjected to external disturbing
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torques Ty of +5 N.m.  When the upper
bound of m,(t) reduces, our additional

simulations (not shown here) indicate that the
bounds on control torques reduce accordingly.

5. Conclusion

This paper presents an innovative

graphical technique for designing a linear PID
controller with applications to trajectory
tracking of SCARAs. In the beginning, we
propose the use of a linear model that fully
accounts for time-varying elements in the
system matrix and the input matrix that appear
when linearizing the robot nonlinear model
about the equilibrium point at the origin. This
effectively extends the region in state space
for which our model can closely approximate
the original dynamics of the robot of interest.
We use the Lyapunov stability theorem to
develop Theorem 1 and Corollary 1.
Together, they constitute a criterion for
determining convergence of all trajectories
belonging to our model into a neighborhood
about the origin, with an estimate for the size
of this neighborhood included. We use this
criterion to plot a 3D graph whose domain is
a space of two real controller design
parameters. This graph yields a stabilizing
controller when the range of the graph, which
is always real, is negative at some point.
Our PID controller for SCARA trajectory
tracking is theoretically justified, is relatively
simple to obtain, and is easy to implement.
These nice characteristics thus allow its
applications in a large variety of situations.
When considering tracking performance, it
appears from the literature that ours is very
satisfactory. In addition, our linear control
law always guarantees the desirable property
of smoothness for control inputs, especially
when compared to those obtained by
incorporating switching schemes. It is then
reasonable to expect that our controller neither
excites hidden dynamics of the robots, nor
causes undesirable heat due to finite switching
time of robot amplifiers.
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Now, we are investigating additional useful
features and areas of potential applications
associated with our graphical approach. In
particular, we are determining if a useful
concept of relative stability could be
introduced for linear systems subjected to
nonlinear time-varying uncertainties in a
practical manner. We are also examining the
situation in which our approach could be
preferable to a numerical optimization
approach such as LMI (Linear Matrix
Inequality).
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