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Abstract

The Nyquist plot is a crucial tool in the analysis and design of linear time-invariant (LTI)
and linear shift-invariant (LSI) control systems such as in the relative stability analysis, gain
margin, phase margin and robust stability analysis. In the Nyquist plot plane, certain positions
must be determined, such as the real axis crossings. These positions are sometimes hidden or
ambiguous because of the large span in the magnitude of the Nyquist plot over the entire
frequency range. As a result, the Nyquist sketch is introduced as a guide to manually draw the
Nyquist plot regarding the qualitative graphical representations such as high frequency
asymptote, low frequency asymptote (DC gain point), real and imaginary axis crossings. For
LTI control systems or continuous-time control systems, the Nyquist sketch is demonstrated in
several studies. However, for LSI control systems or discrete-time control systems, few
references mention the Nyquist sketch and only in a vague manner. This study delineates
extensively the sketch of the Nyquist plot or the Nyquist sketch for discrete-time control
systems extending to the sampled-data control systems when the loop pulse transfer function
possesses some real poles and/or zeros outside the unit circle in the z-plane.

Keywords: Nyquist contour; Nyquist sketch; Nyquist plot; relative stability; unit circle;
stability of discrete-time systems; Nyquist stability criterion

Nomenclature T Sampling period in
seconds.
GH (z) The loop pulse
transfer function. R(2) The z-transform of
the input sequence
G,(s) Transfer function of to the system.
a continuous-time
plant. C(z) The z-transform of
the output sequence
H(s) Transfer function of of the system.
a sensor in the
feedback path. P(z)=1+GH(2) The characteristic

equation of the
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discrete-time
control system.

@) The digital angular
frequency (rad/s).

reR A real variable.

A miniature-valued
real variable.

ceR

A miniature-valued
real variable.

A constant value
greater than zero
but less than
infinity.

finite

IM[GH (q)] The imaginary part

of GH(q)

The real part of
GH ()

Re[GH ()]

IM[GH (x+ jy)] The imaginary part

of GH(x+ jy)

Re[GH (x + jy)] The real part of

GH (x+ jy)

The angle of the
GH(q) vector in

the GH (z) -plane

Z(GH())

The quantity a little

greater than 27
such that

27" =27 =0"

27" =(27)

67

0 The quantity a little
less than O such
that0—0~ =0"

The unit vector
aligned with the
miniature negative
angle.

1. Introduction

With the publication of
“Regeneration Theory” by H.Nyquist [1],
who used the term "Regeneration" as
synonymous with “feedback”, the general
stability problem was found to be solved by
the well-known Nyquist stability criterion
that he established as well. The Nyquist
stability criterion has been used to examine
the relative stability of continuous-time
control systems [2], [3]. With the graphical
tool called “Nyquist plot”, the relative
stability analysis of systems involving time
delays is obviously comprehensible. Its
effectiveness depends upon the correct shape
of the Nyquist plot of the loop transfer

function. With the introduction of
microprocessors and  microcontrollers,
continuous-time  control  systems have

evolved into the mixture of the continuous-
time plants and the discrete-time controllers
bridged by the sampling process. The new
control systems are called the sampled-data
control systems. Researchers facilitated the
analysis and design of the sampled-data
control systems by converting them into the
discrete-time control systems. The analysis
and design of discrete-time control systems
in frequency domains is done in the z-plane.
The relative stability property of the discrete-
time control system still relies on the Nyquist
stability criterion considering the unit circle
in the z-plane as the reference boundary for
constructing the Nyquist contour prior to the
Nyquist plot as the mapping result. In [4], the
Nyquist contour is defined as the unit circle
with the imposed constraint of the equal
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order of both the numerator and denominator
constituting the characteristic equation as a
rational function of the complex variable z.
Then the number of zeros (poles of system)
outside the unit circle of the characteristic
equation are inferred from the ones inside the
unit circle with additional information by
using the Principle of Argument theorem.
However, there are some situations in which
the imposed constraint is invalid, yielding an
incorrect result from the relative stability
test. In order to overcome the problem, some
researchers [5], [6], [7], [8], [9] and [10]
redefined the Nyquist contour surrounding
the entire area of the z-plane excluding the
unit circle(enclosing the exterior of the unit
circle) without the aforementioned constraint
but with some segments traversing on the
real axis of the z-plane outside the unit circle.
These segments make the Nyquist contour

exclude real poles and zeroes of GH(z)

outside the unit circle leading to the relative
stability test error.  Although there are
software packages that assist in plotting, all
the input data must be numerical values and
it is very hard to quantitatively explain the
infinite quantities. It always happens that the
obtained Nyquist plot is unreadable when the
system possesses poles on the real axis
outside the unit circle in the z-plane due to
the large span in the magnitude of the polar
plot over the entire frequency range.
Accordingly, this study  delineates
extensively the sketch of the Nyquist plot or
the Nyquist sketch for discrete-time control
systems extending to the sampled-data
control systems considering poles and
zeroes, especially when some of the real
poles and/or zeros of GH (z) are outside the

unit circle in the z-plane.

2. Nyquist Contours and Qualitative
Graphical Representations

Figure 1. shows a basic sampled-data
control system consisting of a continuous-

G(s)

C(s)

- GL(s)

H(s)

Figure 1. A basic sampled-data control
system.

time plant G, (S) with a zero-order hold,
l_ efST

leading it. G(S) is defined as:

1-—

G(s) = z G, (s) @)

The error signal R(S)—C(s) is
sampled by a sampler with the sampling
period of T s. The feedback path represents
the sensor transfer function H(S)

Converting this system to a discrete-time
control system results in the pulse transfer

function relating the input R(z) to output
C(2)as:

C@__6O
R(z) 1+GH(z) 2)
The characteristic equation

P(z)=1+GH(z) describes the behaviors
including the relative stability of this system.
For the relative stability analysis, the system
becomes unstable when there is at least one
pole (one zero of P(z)) of the system outside
the unit circle in the z-plane. The Nyquist
stability criterion implies the number of zeros
of P(z) from the number of encirclements of
the Nyquist plot of the loop pulse transfer
function GH(z) around point GH(z)=-1in
the GH(z) plane. The Nyquist plot can be
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considered as the graphical result of the
mapping by the complex function GH(z)
from the Nyquist contour in the z-plane to the
Nyquist plot in the GH(z) -plane. The scope
of this paper considers GH(z) as a rational
polynomial pulse transfer function able to be
expressed in three different forms as follows:
e Polynomial form:
b,z" +b, 2" +...+bz+b,
"(a,z" +a, 2" +...+az+a,)
......................... (3)
e Zero-pole-gain form:
GH(2) =k h(z—zl)(z—zz)...(z—zm)
2" (z-p)(z-p,)...(z-p,)
......................... 4)

e Time-constant form:

Q-ry 2 )A-7027"). (A=727)
"Q-rpzYl-1527Y)...A-7,52 ")

GH(z) =

GH(z2)=r

......................... (5)

This study proposes to construct the
Nyquist contour in such a way that it
surrounds the entire area of the z-plane
excluding the unit circle (enclosing the
exterior of the unit circle), embraces all the

real poles and zeros of GH(z) outside the
unit circle in the z-plane and complies with
the frequency response plot of this system by
the Bode plot z=¢"

IGH (2)| =[GH ()|

ZGH(z) = £GH(e**)and 0<Q <27 or

- <Q< 7 rad/sample (Q is the digital
angular frequency). The marvelous segment
of the contour proposed by this study is the
segment parallel to the real axis of the z-
plane but raised above this real axis by a tiny
amount of & .

where

2.1 Nyquist contour when no
poles of GH (z) on the unit circle or on

positive real axis at z=1 in the z- plane

69

Consider the situation when no poles
of GH(z) are on the unit circle or on the
positive real axis at z =1 in the z-plane. For
illustration, a real pole, Z=pP; and a real

zero, Z =1, are given. The Nyquist contour

can be drawn as in Figure 2. The contour
comprises 4 segments, namely

Im(z)
z-plane

Figure 2. Nyquist contour when no pole of
GH (z) on the unit circle or on positive real

axis from z =1in the z-plane.

2.1.1 C, segment:

This segment is a straight line, a
short distance (&) above the real axis of the
z-plane , traversing from z —>oo+ j&

(point d, e) to z =1+ je (pointal, cl). It is
characterized by

1 .
Z1=—"—+je

..................... 6

r+1 ©)
Where -1<r<0 and
e—>0(=0") When r=-1 |,

Z =0+ J€& and it is represented by point e
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in Figure 2. By the zero-pole-gain form of
GH(z),
) :{0 rad ; k>0
+7 rad; k<0

......................... )
For most physical systems, k>0 and
therefore
When m< (h+n)and k>0,
GH(2) =GH (e)
"
z_ejék
z"z"
~0"—jBg ;f—>0(=07)
.................. (8)
When m > (h+n)and k >0,
GH (z) = GH (e)
~ z" ik
"z"
—o+jB f—>0(8=0")
.................. 9)
When m = (h+n)and k >0,
GH(2) = GH (¢)
2"
~ ejék
z"z"
-1
.................. (10)

When r=0, z=1+j&g or z=1 it is

represented by point @,. By the polynomial

form of GH(2) ,
GH(2) = GH (a,) ~ b, +b, +...+b +b
a,+a,,+...+a,+4a,

(11)

2.1.1.1 Z(GH(Z)) on the intervals
over the real poles and zeros of GH (z)

On the C, segment, Z(GH(Z))

does not depend on the complex conjugate
pole pairs or zero pairs because of the angle
cancellation for each pair. Now, considering

when =2+ je ,

lz-z,|= zi*+jg—zi‘: O*+jg‘
~0
.................. (12)
Az-12,)= 20" + je)~0'rad
.................. (13)
When 2=2,+ j¢ ,
lz-z|=|z; + je - 7;|=|0+ j¢|
~0
.................. (14)
Az-12,)= 20+ je)~Zrad
.................. (15)
When 2=1; + j¢ ,
|z—zi|=‘zi‘+jg—zi‘=‘0‘+jg‘
~0
.................. (16)
Az-2)=20 +je)~ 7z rad
.................. (17)

Graphical representation of
Z(0" + je)=0" rad can be depicted as
in Figure (3). From Eq. (12), Eg. (13), Eq.
(14), Eq. (15), Eqg. (16), and Eqg. (17), it
means that when travelling on C, segment,
ZGH(z) is changed by an amount of

%rad at the position directly over each

zero or pole of GH (2) on the real axis of the
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z-plane. |GH (2)| =0 atthe position exactly

over each zero, whereas ‘GH(Z)‘—MO at

the position exactly over each pole. Just after
passing the position directly over each zero

or pole, ZGH (z) is changed by an amount
of x rad with the same |GH (Z)| as at the

position directly over each zero or pole.
Consecutively, in the Nyquist sketch,

‘GH (Z)‘ is changed abruptly at the position
of Z over either the pole or the zero and
preserved at that magnitude until ZGH ()

is changed by a greater amount of % rad

from that position.

Im(GH (2))

Figure 3. Graphical
Z(0"+je)=0" rad.

representation of

2.11.2 |GH(z)| on the intervals
over the real poles and zeros of GH (z)
Moving on the C, segment results

in the variation of ‘GH (Z)‘ as follows:
e Moving from point e to a position
directly over a zero: ‘GH(Z)‘ is

variedas 0 — finite > 0
e Moving from point e to a position

directly over a pole: ‘GH(Z)‘ is

varied as 0 — finite > o

e Moving from a position directly over
a zero to a position directly over a

71

pole: |GH (Z)| is
0 — finite >

e Moving from a position directly over
a zero to a position directly over a

Zero: ‘GH (Z)‘ is

0 — finite >0

e Moving from a position directly over
a pole to a position directly over a

zero: ‘GH(Z)‘ is
oo — finite > 0

e Moving from a position directly over
a pole to a position directly over a

pole: |GH(z)| s
oo — finite > o

varied as

varied as

varied as

varied as

2.1.2 C,, segment:

This segment is a straight line, a
short distance (&) above the real axis of the
z-plane , traversing from z =1+ je (point

a,)to z=1 +je, (z=¢'") (or pointa

on the unit circle) in Figure 2. It is
characterized by
Z=1-r+je ... (18)

Where 0<r<0". When r=0, z=1+ j¢
(point @) and no pole or zero of GH(z) is
at z=1, GH(a) is as of Eq.(11). When
r=0", z=1 + j& (point @) and no pole

or zero of GH(z) isat z=1, GH(a) is
as of Eq.(11).

2.1.3 C, segment:
This segment is characterized by
Z=e" where

19
0<Q<(27) (49
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When Q—0(Q=0%), Z—>1(z=¢'") it is
represented by point a in Figure 2.
GH(2) =GH(a)

€% -z)E" -z,)...e"° -z,)

el —pye® —p,)...e" - p,)
b, +b,, +...+Db +b,
a,+a,,+...+a +a,

(20)

T

i
When _7%, z=e? = j it is represented
2

by point g. By the polynomial form of
GH(z),

GH(z)=GH(q)
b, j"+b, ™" +...+bj+h,
B i"@,j"+a, "t . A+ ay)
=Re[GH ()] + j Im[GH ()]

.................. (21)
4 Im[GH (q)]
Z(GH(q)) = tan Y| L2
(GH(@)=tan [Re[emq)]j
.................. (22)
GH(@)  =+/(Re[GH(@)I} + (IM[GH(a)]}
.................. (23)

When Q=7, z=-1(z=¢") itisrepresented
by point b. By the polynomial form of
GH(z2),

GH(z) =GH (b)
_()"by + ()™ by, +...~b, +by
(-D"a, +(-D)"ta,, +...—a, +a,

When Q- (2z) , z-Yz=e™) it is
represented by point c.

GH (2) =GH (c)
) z)e ) - 2,)
ej(h(zﬂ)*)(ei(h*) - pl)(e"(z’f) -p,)
L

e =p.)
N b, +b,,+...+b, +Db,
a,+a,, +...+a, +a,

(25)

From Eq. (20), Eq. (21), Eq. (22), Eq. (23),
Eg. (24) and Eq. (25), it is obvious that the
C, segment in the z-plane is mapped to a
curve in the GH (z) plane starting from point
GH (a) on the real axis of the GH(z) plane

and moves in the direction(CCW or CW
depending upon the number of zeros and
poles of GH (z) surrounded by this segment

in the z-plane) such that the next quadrant in
the GH(z) plane is identified by ~GH(q) .

This curve continues to move to point GH (b)
on the real axis of the GH (z) plane and ends
at point GH (c) which is very close to point
GH(a). In the GH(z) plane, it is possible to

locate the real axis crossings and imaginary
axis crossings from this curve by letting

Z=X+]Jy (26)

Owing to the C, segment being the unit

circle arc, any point Z on C, must comply
with the following relation:

X +y*=1 (27)
By the zero-pole-gain form of GH (2),

GH(z) =
(X+Jy—2)(X+ jy—2,)...(X+ jy—2,)

(X+ Jy)" (X+ jy— p)(X+ jy—p,)...(x+ jy—p,)
=Re[GH(x+ jy)]+ jIM[GH(x+ jy)] (28)
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The real axis crossings are obtained
from the coordinates (x,y) satisfying the two

following equations:

IMGH(x+ jy)]=0 (29)
X*+y?=1 (30)

With the calculated (X, Y) from Eq.

(29) and Eqg. (30), the real axis crossings in
the GH(z) plane are expressed as the

coordinate (GH (x + jy), 0).

The imaginary axis crossings are
obtained from the coordinates (x,y)

satisfying the two following equations:

Re[GH(x + jy)]=0 (31)
X +y°=1 (32)

With the calculated (X, Y) from Eq.
(31) and Eq. (32), the imaginary axis
crossings in the GH (z) plane are expressed as

the coordinate (0, GH (X + jy)).

2.1.4 C,, segment:

This segment is a straight line, a
short distance (&) above the real axis of the
z-plane, traversing from

z=1 +je&, (z=¢1") (or point ¢) to
z=1+ je (point C, ) in Figure 2. It is
characterized by

z=1+r+je (33)

Where 0" <r<0. When r=0",
z=1 + j& (point C) and no pole or zero of
GH(z) is at z=1, GH(c) is as of
Eq.(25). When r =0, z=1+ je (point C;)
and no pole or zero of GH(z) is at z =1,
GH(c,) is as of Eq.(25).

73

2.1.5 C; segment:
This segment is characterized by

z=1+r+ je Where

34
0<r<owand &£—0(s=0") (34)

When r=0, z->1Uz=1+ j&)
and it is represented by point ¢ in Fig. 2.
GH(c) is as of Eq.(25). When r—>oo ,
Z—>w+ je it is represented by point d.
GH (d) is the same as GH (e) of Eq. (8),
Eg. (9), and Eg. (10), respectively. This
means that C,, segment is mapped by
GH(z) as a point as the one mapped by C,,
segment and C; segment is mapped by
GH (z) into the GH (z) -plane with reversed

direction from the one mapped by C,
segment.

2.1.6 C, segment:
This segment is characterized by

z=re (35)

Where r - and 0” <Q<(27) .

When =0, z=re !° itis represented by
point d in Fig. 2. By the zero-pole-gain form
of GH(2),

When m< (h+n)and k>0,

GH (z) = GH (d)
o I gitelmoy+(noy+(noy )
rhrn
5 0e i(£[k=(mo) +(ho) +(n0) )

— 0e'”
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When m > (h+n)and k >0,

GH (z) =GH(d)
. Em o i(<lk-(moy +(noy +(n0) )
rr"
_y oppl (Zlk-(mo) +(n0) +(n0) )

s oo i07) = opile’)

.................. (37)
When m = (h+n)and k>0,
GH(z)=GH(d)
o o i(<lk-(moy +(no) +(n0) )
~ r.hr.n
_y el _ g0
.................. (38)

When Q=(27z) , z= re i) it s
represented by point e. By the zero-pole-gain
form of GH(2) ,

When m< (h+n)and k>0,

GH (2) = GH (e)

" o j(£[k-(2mz) +(2hz) +(2nz) )

~
~

rhrn

_y elt<l-(zma) +(2ne) +(2nn) )

—0-jp :p—>0(5=0)

.................. (39)
When m > (h+n)and k>0,
GH(z) =GH{(e)
~ rr ej@4k{2mﬂT+QhﬂT+anf»
=~ hen
rr
N Ooei(é(kf(Zmlr)'+(2h7z)'+(2n7r)‘))
o+ jp ;B—>0(8=0")
.................. (40)

When m = (h+n)and k>0,

GH(z) = GH (e)

m

r
~——¢

rhrn
_y el _ g0

j(2[k—(2mz) +(2hz) +(2nz) )

It can be noticed that when m = (h+n)and
k>0,

ZGH (e)— ZGH (d)

=—(2mz)+(2hz)+(2nx)
......................... (42)
In contrast, when m=(h+n)and k>0,
Z/GH(e)— «ZGH(d)
=0
......................... (43)

It can be noticed that ZGH (e) of

C, segment is different from the one of C,
segment because the meaning of point e on
the C, segment is the position of the locus
encircling the origin of the z-plane, whereas
the meaning of point e on the C, segment is
the position of a point on the straight line in
the z-plane. Considering a practical physical
system(causal system), m<(h+n) and
k >0, this means that C4 segment in the z-

plane is mapped to the miniature circular arc
centering at the origin of the GH(z) plane

starting encircling around the origin of the
GH(z) plane from point GH(d) with the

angle of Orad ( k=0 rad ) and
continuing to rotate CCW for an additional
angle of (2mz + 2hz +2n7z) rad {jll the

arc stops at point GH (e) with the angle of
(k= (2mz) +(2hz) +(@2nz) ) s
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Moreover, let the system have a pole, P; and

a zero, Z, located as in Figure 2. The

Nyquist plot in this section can be illustrated
as in Figure 4.

GH(f")

*m

l Re(GH (2)
e

Figure 4. Nyquist plot of GH(z) when no
pole of GH(z) on the unit circle or on
positive real axis at z =1in the z-plane, such
apole p, and zero z_ located as in Figure 2.

for k >0and m<(h+n).

By definingC,, C,,, C;and C,,

la

segments in these manners, only the C2
segment plays a major role in the
encirclement of GH(z) around point
GH(z)=-1 in the GH(z) plane. GH(b) and
GH(a) Or GH(c) are used to predict the
encirclement of GH(z) around point
GH(z)=-1 in the GH(z) plane with the
direction of rotation indicated by GH (q).

2.2 Nyquist Stability Criterion

After the Nyquist sketch from
Section 2.1 is completed, the number of
CCW  encirclements  around  point
GH(z) = -1 in the GH(z) plane is countable
as N (i.e.,, —N for CW encirclements). The
loop gain GH (z) has the known P open loop

75

poles with the unknown Z zeros of P(z)
inside the Nyquist contour or outside the unit
circle in the z-plane. The rotation direction of
the contour in Figure 2, when situated inside
the contour, is in CW direction. By the
Principle of Argument theorem,

N=P-Z (44)

And therefore,

Z=P-N (45)

Eq. (45) is used to determine the
number of zeros of P(z) inside the contour
or outside the unit circle in the z-plane. The
LSI control system (discrete-time control
system) is unstable if

Z>0 (46)

or

N =P (47)
Eqg. (47) is used to determine the relative
stability property of the discrete-time control
system.

3. Numerical Example

3.1 Example 1.

Considering a sample-data control
system in Figure 1. with unity feedback
H(s) =1, let
1.0
-15

G(2) = .

Pole of G(2)isat: z=1.5

C(2) _
R(z)

G(z) 1
1+G(z) z-05

The characteristic equation, P(z)
can be expressed as
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z-05

P(z)=1+G(z) =

Zeroof P(2)isat: z=0.5

The Nyquist contour can be
demonstrated as in Figure 2. The contour
consists of 6 segments, namely

C, segment: referring to Eq. (6),

z:i+jg where —1<r <0 and
r+1

&—>0(¢=0") . According to Eq. (8)

G(e)~0" - jB
Traversing on this segment to the
point directly over the pole at Z=1.5. This
point is expressed as Z=1.5+ j&

G5+ je)—> ooé(— 7;]
Continuing to point Z=1.5" + j&
G5 +j&) >ws(-7)

Continuing to point Z=1.0+ j&

G(LO+ je) ~ 2.0

1-15
C,, segment: referring to Eq. (18),
Zz=1-r+ je where 0<r<0" and

e —>0(e=0") .Atpoint z=1.0+ je

GO+ je)~ =-2.0
( ) 1-15
Atpoint Z=1.0" + j&
GO0 + je) = =-2.0
G0 +ie =g

C, segment: referring to Eq. (19),
2 =0 where 0<Q< (27)" . At point
7 =il

G(e"("*)

L _ 20
1-15
J

)%
At point z :ej[gj =

1 15—

G(j) =
=3 V152 +1

j—1.5:
) -1
1

At point z=eg

G(-1) = 0.4

“1-15

At point Z = ej<2”+),

s 1
G e‘(z”) ~ =
( ) 1-15

C,, segment is analyzed as C,,

-2.0

segment , whereas the mapping by the C,
segment is reversed to the one by the C,
segment. G(d) of the C, segment is the
same as G(€) of theC, segment.
C, segment: referring to Eqg. (35),
z=re ' where r - o and
0 <A< (27r)_. From Eq. (36),

G(d) = G(re 10y =5 0e i)
From Eq. (39),

G(e) = G(re 127 )y 5 gelles )

£G(e)—2G(d) =(27x)
This means that there is an
encirclement by 27z rad of a miniature

circle around the origin of the G(z) plane
starting from point G(d) and continuing to

point G(€) . The Nyquist sketch of this
example can be illustrated as in Figure 5.
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J(l 5 + Jg) Im(GH (2)

\ /\/a

Re(GH (2))

@ Re(GH () \G (15+ jé
\G (e),

G(d)

Figure 5. Nyquist plot of ;) _ 10 |
7-15

From Figure 5, N =1and from G(z), P =1
, therefore,
Z=P-N=1-1=0

As a result, this system is stable due
to the nonexistence of closed-loop poles

(zeros of 1+ G(2)) outside the unit circle in
the z-plane complying with the calculation
for the zero of P(z) at z=0.5.

3.2 Example 2.
Considering a sample-data control
system in Fig. 1 with unity feedback
H(s) =1, let
z2-2)(z-2.
6()-— (2-2(2-25)

(z-1.5)(z-4.5)(z-3%2))

Poles of G(z) areat: z=1.5, 4.5, 3F2]j
Zeros of G(Z) areat: z=2, 2.5

The polynomial form of G(z) is

G(2)
B z?-45z+5

z*-127% +55.75 z* -118.5 2 +87.75
The characteristic equation, P(z) can be
expressed as

144

P(2) =1+G(2)
_2'-127° +56.75 22 -123 2 +92.75
2*-127° +55.757* -1185 2 +87.75

Zeros of P(2)areat:
z=15252, 4.2430, 3.1159 +2.1502j

The Nyquist contour can be
demonstrated as in Figure 2. The contour
consists of 6 segments, namely

C, segment: referring to Eq. (6),
z =i+ je where =1<r <0 and
r+1
&—>0(¢=0") . According to Eq. (8)
Ge)~0" - jp

Traversing on this segment to the
point directly over the pole at Z=4.5. This
point is expressed as Z=4.5+ j&

G(45+ je) > ooz(— 72[)

Continuing to point Z=4.5" + j&
G(4.5 + je) > wt(-7)

Continuing to point z=2.5+ j&

)-o43)

Continuing to point Z=2.5" + j&

G(25+ je)—> 04(—7[ +

G(25 + je) > 04(— % + ’2’] =0-(0)

Continuing to point z=2+ je&

G2+ je) > oz(o + ’;j = 04[’3

Continuing to point Z=2"+ j&
G(2™ + je) > 04(x)=04(x)

Continuing to point z=1.5+ je&
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G5+ je) > 004(7; - ’;) = ooz(’;j

Continuing to point Z=1.5" + j¢

G5 + je) > 004(72’ - Zj = 0./(0)

Continuing to point Z=1.0+ j&

G.0+ je)

- 12-45 +5
T1°-12(1%) +55.75 (12) -118.5 +87.75
~ 0.1071

C,, segment: referring to Eq. (18),
z=1-r+ je where 0<r<0" and
e—>0(=0") .Atpoint z=1.0+ je

G(L0+ je)

N 12-45 +5
T1'-12(1°) +55.75 (1) -118.5 +87.75
~0.1071

Atpoint Z=1.0" + j&

GO + je)

~ 12-45 +5

T 14-12 (1%) +55.75 (1) -118.5 +87.75
~0.1071

C, segment: referring to Eq. (19),
2 =0 where 0<Q< (27)" . At point
7 =gl

Gl
N 1*-45 +5

1*-12 (1°) +55.75 (1?) -118.5 +87.75
~0.1071

At point Z :ej[g) =],

G(J))
j?-45j+5

' -12j +55.75 j? -118.5 j+87.75

~ 4-45]j

1-55.75+87.75-12 ) —118.5]

_ 4-45]

 33-130.5j

= 0.0492 +0.0223 |

At point z=ei") =1,
G(-1)

(-1)?-45(-1) +5

T ((1)*-12(-1)° +55.75 (-1)% -1185 (-1) +87.75
=0.0382

At point Z = ej<2”+),
G(eler )
N 1*-45 +5
1*-12 (1) +55.75 (1°) -118.5 +87.75
~0.1071

C,, segment is analyzed as C,,
segment , whereas the mapping by the C,
segment is reversed to the one by the C,
segment. G(d) of the C, segment is the
same as G(€) of the C, segment.

C, segment: referring to Eq. (35),
z=re " where r — o0 and
0" <Q<(27). From Eq. (36),

G(d) = G(re 1)y = 0e i)
From Eq. (39),

G(e) = G(re 1))

, oellor Her ) _ ggiler)

ZG(e) —2G(d) = (4rx)
This means that there is an
encirclement by 4z rad of a miniature

circle around the origin of the G(z) plane
starting from point G(d) and continuing to
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point G(e) . The Nyquist sketch of this
example can be illustrated as in Figure 6.
From Figure 6, N=0 and from
G(z2), P =4, therefore,

Z=P-N=4-0=4

As a result, this system is unstable
due to the existence of closed-loop poles
(zeros of

1+ G(2)) outside the unit circle in the z-

plane complying with the calculation for the
zeros of P(z) atz =1.5252, 4.2430

, 3.1159 +2.1502 .

G5+ je

G(45 + je)

R

e G(4.5+ je)
G(d)

Figure 5. Nyquist plot of
G(2) = (z-2)(z—-2.5) _
(z-1.5)(z-4.5)(z—-3£2))

4. Conclusion

On the ground of the Nyquist
contours proposed by many literatures, real
poles and zeros of the loop pulse transfer

function, GH (Z), outside the unit circle in

the z-plane are always excluded, leading to
the wrong result of the relative stability test
by the Nyquist stability criterion; however,
this study proposes a new Nyquist contour
that can incorporate those real poles and
zeros. In addition, the encirclement around

79

the point GH(z) =-1 of the mapping by

GH(z) is influenced mainly by the C,

segment which is the unit circle in the z-
plane. The relative stability analysis results
by this contour are confirmed by two
examples in Section 3 that can handle the
case of complex conjugate poles and zeros
outside the unit circle in the z-plane as well.
Nevertheless, the study scope focuses on the
case of real poles and zeros of the loop pulse

transfer function, GH (z) , outside the unit

circle. Future work will include coverage of
the complex conjugate poles and zeros on the
unitcircle and real poles and/or zerosat z =1
in the z-plane.
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