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Abstract 
The Nyquist plot is a crucial tool in the analysis and design of linear time-invariant (LTI) 

and linear shift-invariant (LSI) control systems such as in the relative stability analysis, gain 

margin, phase margin and robust stability analysis. In the Nyquist plot plane, certain positions 

must be determined, such as the real axis crossings. These positions are sometimes hidden or 

ambiguous because of the large span in the magnitude of the Nyquist plot over the entire 

frequency range. As a result, the Nyquist sketch is introduced as a guide to manually draw the 

Nyquist plot regarding the qualitative graphical representations such as high frequency 

asymptote, low frequency asymptote (DC gain point), real and imaginary axis crossings. For 

LTI control systems or continuous-time control systems, the Nyquist sketch is demonstrated in 

several studies. However, for LSI control systems or discrete-time control systems, few 

references mention the Nyquist sketch and only in a vague manner. This study delineates 

extensively the sketch of the Nyquist plot or the Nyquist sketch for discrete-time control 

systems extending to the sampled-data control systems when the loop pulse transfer function 

possesses some real poles and/or zeros outside the unit circle in the z-plane. 

Keywords:  Nyquist contour; Nyquist sketch; Nyquist plot; relative stability; unit circle; 

stability of discrete-time systems; Nyquist stability criterion  

Nomenclature 

)(zGH  The loop pulse 

transfer function. 

)(sG p
 Transfer function of 

a continuous-time 

plant. 

)(sH  Transfer function of 

a sensor in the 

feedback path. 

T Sampling period in 

seconds. 

)(zR The z-transform of 

the input sequence 

to the system. 

)(zC  The z-transform of 

the output sequence 

of the system. 

)(1)( zGHzP   The characteristic 

equation of the 
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discrete-time 

control system. 

   The digital angular 

frequency (rad/s). 

Rr    A real variable. 

R   A miniature-valued 

real variable.  

R  A miniature-valued  

real variable.  

finite   A constant value 

greater than zero 

but less than 

infinity. 

)](Im[ qGH  The imaginary part 

of )(qGH  

)](Re[ qGH  The real part of 

)(qGH   

)](Im[ jyxGH   The imaginary part 

of )( jyxGH   

)](Re[ jyxGH   The real part of 

)( jyxGH    

 )(qGH  The angle of the   

)(qGH  vector in 

the )(zGH -plane 

    22  The quantity a little 

greater than 2
such that

  022   

0  The quantity a little 

less than 0 such 

that
  000  

     000 jjj eee  
The unit vector 

aligned with the 

miniature negative 

angle.  

 

 1. Introduction 
With the publication of 

“Regeneration Theory” by H.Nyquist [1], 

who used the term "Regeneration" as 

synonymous with “feedback”, the general 

stability problem was found to be solved by 

the well-known Nyquist stability criterion 

that he established as well. The Nyquist 

stability criterion has been used to examine 

the relative stability of continuous-time 

control systems [2], [3]. With the graphical 

tool called “Nyquist plot”, the relative 

stability analysis of systems involving time 

delays is obviously comprehensible. Its 

effectiveness depends upon the correct shape 

of the Nyquist plot of the loop transfer 

function. With the introduction of 

microprocessors and microcontrollers, 

continuous-time control systems have 

evolved into the mixture of the continuous-

time plants and the discrete-time controllers 

bridged by the sampling process. The new 

control systems are called the sampled-data 

control systems. Researchers facilitated the 

analysis and design of the sampled-data 

control systems by converting them into the 

discrete-time control systems. The analysis 

and design of discrete-time control systems 

in frequency domains is done in the z-plane. 

The relative stability property of the discrete-

time control system still relies on the Nyquist 

stability criterion considering the unit circle 

in the z-plane as the reference boundary for 

constructing the Nyquist contour prior to the 

Nyquist plot as the mapping result. In [4], the 

Nyquist contour is defined as the unit circle 

with the imposed constraint of the equal 
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order of both the numerator and denominator 

constituting the characteristic equation as a 

rational function of the complex variable z. 

Then the number of zeros (poles of system) 

outside the unit circle of the characteristic 

equation are inferred from the ones inside the 

unit circle with additional information by 

using the Principle of Argument theorem. 

However, there are some situations in which 

the imposed constraint is invalid, yielding an 

incorrect result from the relative stability 

test. In order to overcome the problem, some 

researchers [5], [6], [7], [8], [9] and [10] 

redefined the Nyquist contour surrounding 

the entire area of the z-plane excluding the 

unit circle(enclosing the exterior of the unit 

circle) without the aforementioned constraint 

but with some segments traversing on the 

real axis of the z-plane outside the unit circle. 

These segments make the Nyquist contour 

exclude real poles and zeroes of )(zGH  

outside the unit circle leading to the relative 

stability test error.  Although there are 

software packages that assist in plotting, all 

the input data must be numerical values and 

it is very hard to quantitatively explain the 

infinite quantities.  It always happens that the 

obtained Nyquist plot is unreadable when the 

system possesses poles on the real axis 

outside the unit circle in the z-plane due to 

the large span in the magnitude of the polar 

plot over the entire frequency range. 

Accordingly, this study delineates 

extensively the sketch of the Nyquist plot or 

the Nyquist sketch for discrete-time control 

systems extending to the sampled-data 

control systems considering poles and 

zeroes, especially when some of the real 

poles and/or  zeros of )(zGH  are outside the 

unit circle in the z-plane. 

 

2. Nyquist Contours and Qualitative 

Graphical Representations  
 

Figure 1. shows a basic sampled-data 

control system consisting of a continuous- 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. A basic sampled-data control 

system.   

 

time plant )(sG p with a zero-order hold,  

s

e sT1
 leading it. )(sG  is defined as: 

 

)(
1

)( sG
s

e
sG p

sT
  (1) 

 

The error signal )()( sCsR   is 

sampled by a sampler with the sampling 

period of T  s. The feedback path represents 

the sensor transfer function )(sH . 

Converting this system to a discrete-time 

control system results in the pulse transfer 

function relating the input )(zR  to output 

)(zC as: 

 

)(1

)(

)(

)(

zGH

zG

zR

zC


  (2) 

 

The characteristic equation 

)(1)( zGHzP   describes the behaviors 

including the relative stability of this system. 

For the relative stability analysis, the system 

becomes unstable when there is at least one 

pole (one zero of )(zP ) of the system outside 

the unit circle in the z-plane. The Nyquist 

stability criterion implies the number of zeros 

of )(zP  from the number of encirclements of 

the Nyquist plot of the loop pulse transfer 

function )(zGH  around point  1)( zGH  in 

the )(zGH plane. The Nyquist plot can be 
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considered as the graphical result of the 

mapping by the complex function  )(zGH  

from the Nyquist contour in the z-plane to the 

Nyquist plot in the )(zGH -plane. The scope 

of this paper considers )(zGH as a rational 

polynomial pulse transfer function able to be 

expressed in three different forms as follows: 

 Polynomial form: 

)(
)(

01

1

1

01

1

1

azazazaz

bzbzbzb
zGH

n

n

n

n

h

m

m

m

m
















   

......................... (3) 

 Zero-pole-gain form: 

)())((

)())((
)(

21

21

n

h

m

pzpzpzz

zzzzzz
kzGH








  

......................... (4) 

 Time-constant form: 

)1()1)(1(

)1()1)(1(
)(

11

2

1

1

11

2

1

1










zzzz

zzz
zGH

nDDD

h

mNNN










 

......................... (5) 
 

This study proposes to construct the 

Nyquist contour in such a way that it 

surrounds the entire area of the z-plane 

excluding the unit circle (enclosing the 

exterior of the unit circle), embraces all the 

real poles and zeros of  )(zGH  outside the 

unit circle in the z-plane and complies with 

the frequency response plot of this system by 

the Bode plot where 
 jez , 

)()(  jeGHzGH

)()(  jeGHzGH and 20   or 

   rad/sample (   is the digital 

angular frequency). The marvelous segment 

of the contour proposed by this study is the 

segment parallel to the real axis of the z-

plane but raised above this real axis by a tiny 

amount of . 

 

2.1 Nyquist contour when no 

poles of )(zGH on the unit circle or on 

positive real axis at 1z  in the z- plane  

Consider the situation when no poles 

of )(zGH  are on the unit circle or on the 

positive real axis at 1z  in the z-plane. For 

illustration, a real pole, ipz    and a real 

zero, szz   are given. The Nyquist contour 

can be drawn as in Figure 2. The contour 

comprises 4 segments, namely  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

Figure 2. Nyquist contour when no pole of 

)(zGH  on the unit circle or on positive real 

axis from 1z in the z-plane. 

 

2.1.1 1C  segment:  

This segment is a straight line, a 

short distance ( ) above the real axis of the 

z-plane , traversing from jz 

(point d, e) to jz  1 (point a1, c1). It is 

characterized by  

 

j
r

z 



1

1
  …………………(6) 

 

Where 01  r  and 

)0(0   . When 1r , 

jz   and it is represented by point e 
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in Figure 2. By the zero-pole-gain form of 

)(zGH , 










0;

0;0

krad

krad
k


  

......................... (7) 
 

For most physical systems,  0k  and 

therefore 

When )( nhm  and 0k , 

)0(0;0

)()(











j

e
zz

z
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nh

m

 

.................. (8) 
 

When )( nhm  and 0k , 
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)()(











j

e
zz
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.................. (9) 

 

When )( nhm  and 0k , 

 

1

)()(







kj

nh

m

e
zz

z

eGHzGH

 

.................. (10) 

When 0r , jz  1  or 1z  it is 

represented by point 1a . By the polynomial 

form of )(zGH , 

011

011
1)()(

aaaa

bbbb
aGHzGH

nn

mm


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







   

......................... (11) 
 

2.1.1.1  )(zGH  on the intervals 

over the real poles and zeros of )(zGH  

On the 1C  segment,   )(zGH  

does not depend on the complex conjugate 

pole pairs or zero pairs because of the angle 

cancellation for each pair. Now, considering 

when jzz i  
 ,  

0

0



   jzjzzz iii   

.................. (12) 

  

    radjzz i

  00    

.................. (13) 
 

When jzz i   , 

0

0



  jzjzzz iii
  

.................. (14) 

  

    radjzz i
2

0


    

.................. (15) 
 

When jzz i  
 , 

0

0



   jzjzzz iii   

.................. (16) 

  

    radjzz i

  0   

.................. (17) 

 
Graphical representation of 

radj   0)0(   can be depicted as 

in Figure (3). From Eq. (12), Eq. (13), Eq. 

(14), Eq. (15), Eq. (16), and Eq. (17), it 

means that when travelling on 1C  segment, 

)(zGH  is changed by an amount of  

rad
2


 at the position directly over each 

zero or pole of )(zGH on the real axis of the 
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z-plane.  0)( zGH  at the position exactly 

over each zero, whereas )(zGH  at 

the position exactly over each pole. Just after 

passing the position directly over each zero 

or pole, )(zGH  is changed by an amount 

of  rad  with the same )(zGH  as at the 

position directly over each zero or pole. 

Consecutively, in the Nyquist sketch,  

)(zGH  is changed abruptly at the position 

of z over either the pole or the zero and 

preserved at that magnitude until )(zGH  

is changed by a greater amount of  rad
2


 

from that position. 

 

 

 

 

 

 

 

 

 
Figure 3. Graphical representation of 

radj   0)0(  . 

 

2.1.1.2 )(zGH  on the intervals 

over the real poles and zeros of )(zGH  

 Moving on the  1C  segment results 

in the variation of )(zGH  as follows: 

 Moving from point e to a position 

directly over a zero: )(zGH  is 

varied as  00  finite  

 Moving from point e to a position 

directly over a pole: )(zGH  is 

varied as   finite0   
 Moving from a position directly over 

a zero to a position directly over a 

pole: )(zGH  is varied as  

 finite0    

 Moving from a position directly over 

a zero to a position directly over a 

zero: )(zGH  is varied as  

00  finite   

 Moving from a position directly over 

a pole to a position directly over a 

zero: )(zGH  is varied as  

0 finite   

 Moving from a position directly over 

a pole to a position directly over a 

pole: )(zGH  is varied as  

 finite   

2.1.2 aC1  segment:  

This segment is a straight line, a 

short distance ( ) above the real axis of the 

z-plane , traversing from jz  1 (point

1a ) to )(,1 0

  jezjz  (or point a  

on the unit circle) in Figure 2. It is 

characterized by   

 

jrz 1   ………………(18) 

 

Where 
 00 r . When 0r , jz 1  

(point 1a ) and no pole or zero of )(zGH is  

at 1z ,   )( 1aGH  is as of Eq.(11). When 

 0r , jz  1  (point a ) and no pole 

or zero of )(zGH  is at 1z ,   )(aGH  is 

as of Eq.(11).  

 

2.1.3 2C  segment: 

This segment is characterized by 
 jez  where  

  20  
(19) 

 

 

))(Re( zGH
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When )0(0  , )(1 0 jezz  it is 

represented by point a in Figure 2. 
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.................. (20) 

When 
2


 , jez

j

 2



 it is represented 

by point q. By the polynomial form of 

)(zGH ,  
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   22
)](Im[)](Re[)( qGHqGHqGH    

.................. (23) 
 

When  , )(1 jezz   it is represented 

by point b. By the polynomial form of 

)(zGH ,  
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When   2 , )(1 2  jezz  it is 

represented by point c. 
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.................. (25) 
  

From Eq. (20), Eq. (21), Eq. (22), Eq. (23), 

Eq. (24) and Eq. (25), it is obvious that the 

2C segment in the z-plane is mapped to a 

curve in the )(zGH plane starting from point  

)(aGH  on the real axis of the )(zGH plane 

and moves in the direction(CCW or CW 

depending upon the number of zeros and 

poles of )(zGH  surrounded by this segment 

in the z-plane) such that the next quadrant in 

the )(zGH plane is identified by )(qGH . 

This curve continues to move to point )(bGH  

on the real axis of the )(zGH plane and ends 

at point )(cGH  which is very close to point 

)(aGH . In the )(zGH plane, it is possible to 

locate the real axis crossings and imaginary 

axis crossings from this curve by letting 

 

jyxz    (26) 

 

Owing to the 2C segment being the unit 

circle arc, any point z  on 2C  must comply 

with the following relation: 

 

122  yx   (27) 

 

 By the zero-pole-gain form of )(zGH , 
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Vol.21, No.4, October-December 2016                                          Thammasat International Journal of Science and Technology  

 73 

  

The real axis crossings are obtained 

from the coordinates ),( yx  satisfying the two 

following equations: 

 

  0)(Im  jyxGH  (29) 

122  yx  (30) 

  

With the calculated ),( yx from Eq. 

(29) and Eq. (30), the real axis crossings in 

the )(zGH plane are expressed as the 

coordinate )0),(( jyxGH  . 

The imaginary axis crossings are 

obtained from the coordinates ),( yx  

satisfying the two following equations: 

 

  0)(Re  jyxGH  (31) 

122  yx  (32) 

  

With the calculated ),( yx from Eq. 

(31) and Eq. (32), the imaginary axis 

crossings in the )(zGH plane are expressed as 

the coordinate ))(,0( jyxGH  . 

2.1.4 aC3  segment:  

This segment is a straight line, a 

short distance ( ) above the real axis of the 

z-plane, traversing from  

)(,1 0

  jezjz  (or point  c) to 

jz  1 (point 1c ) in Figure 2. It is 

characterized by   

 

jrz 1   (33) 

 

Where 00  r . When  
 0r , 

jz  1  (point c ) and no pole or zero of 

)(zGH  is at 1z ,   )(cGH  is as of 

Eq.(25). When 0r , jz 1  (point 1c ) 

and no pole or zero of )(zGH  is at 1z ,   

)( 1cGH  is as of Eq.(25).  

  

2.1.5 3C  segment: 

 This segment is characterized by  

  

jrz 1  where  

 r0 and )0(0    
(34) 

  

When 0r , )1(1 jzz 

and it is represented by point c in Fig. 2. 

)(cGH  is as of Eq.(25). When r , 

jz   it is represented by point d. 

)(dGH is the same as )(eGH  of Eq. (8), 

Eq. (9), and Eq. (10), respectively. This 

means that aC3  segment is mapped by 

)(zGH  as a point as the one mapped by aC1  

segment and 3C  segment is mapped by 

)(zGH  into the )(zGH -plane   with reversed 

direction from the one mapped by 1C

segment. 

 

2.1.6 4C  segment: 

This segment is characterized by 

 
 jrez   (35) 

 

Where r  and    20 . 

When  0 , 
 0jrez  it is represented by 

point d in Fig. 2. By the zero-pole-gain form 

of )(zGH ,  

When )( nhm  and 0k , 
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When )( nhm  and 0k , 
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When )( nhm  and 0k , 
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.................. (38) 

 When   2 , 
  2jrez  it is 

represented by point e. By the zero-pole-gain 

form of )(zGH , 

When )( nhm  and 0k , 

 

      

      

)0(0;0

0

)()(

)222(

)222(

























j

e

e
rr

r

eGHzGH

nhmkj

nhmkj

nh

m

 

.................. (39) 
 

When )( nhm  and 0k , 
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.................. (40) 

 

When )( nhm  and 0k , 
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It can be noticed that when )( nhm  and 

0k , 

 

      nhm

dGHeGH
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)()(




  

......................... (42) 
 

In contrast, when )( nhm  and 0k , 

0

)()(



 dGHeGH
  

......................... (43) 
 

It can be noticed that  )(eGH  of 

4C  segment is different from the one of 1C

segment because the meaning of point e on 

the 4C  segment is the position of the locus 

encircling the origin of the z-plane, whereas 

the meaning of point e on the 1C  segment is 

the position of a point on the straight line in 

the z-plane. Considering a practical physical 

system(causal system),  )( nhm   and

0k , this means that 4C segment in the z-

plane is mapped to the miniature circular arc 

centering at the origin of the )(zGH  plane 

starting encircling around the origin of the 

)(zGH  plane  from point )(dGH with the 

angle of rad0 ( radk 0 ) and 

continuing to rotate CCW for an additional 

angle of radnhm )222(    till the 

arc stops at point )(eGH  with the angle of 

       radnhmk


  222 . 
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Moreover, let the system have a pole, ip  and 

a zero,  sz  located as in Figure 2.  The 

Nyquist plot in this section can be illustrated 

as in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Nyquist plot of )(zGH  when no 

pole of )(zGH  on the unit circle or on 

positive real axis at 1z in the z-plane, such  

a pole
ip   and zero 

sz  located as in Figure 2.  

for 0k and  )( nhm  . 

   

By defining 1C , aC1 , 3C and aC3

segments in these manners, only the 2C

segment plays a major role in the 

encirclement of )(zGH  around point 

1)( zGH  in the )(zGH  plane. )(bGH and 

)(aGH or )(cGH are used to predict the 

encirclement of )(zGH  around point 

1)( zGH  in the )(zGH  plane with the 

direction of rotation indicated by )(qGH . 

 2.2 Nyquist Stability Criterion 

 After the Nyquist sketch from 

Section 2.1 is completed, the number of 

CCW encirclements around point 

1)( zGH  in the )(zGH  plane is countable 

as N (i.e., N  for CW encirclements). The 

loop gain )(zGH has the known P open loop 

poles with the unknown Z  zeros of )(zP   

inside the Nyquist contour or outside the unit 

circle in the z-plane. The rotation direction of 

the contour in Figure 2, when situated inside 

the contour, is in CW direction. By the 

Principle of Argument theorem,   

 

ZPN   (44) 

  

And therefore,  

 

NPZ   (45) 

 

Eq. (45) is used to determine the 

number of zeros of )(zP  inside the contour 

or outside the unit circle in the z-plane. The 

LSI control system (discrete-time control 

system) is unstable if  

 

0Z  (46) 

 

or 

 

PN   (47) 

 

Eq. (47) is used to determine the relative 

stability property of the discrete-time control 

system. 

 

3. Numerical Example 

3.1 Example 1. 

Considering a sample-data control 

system in Figure 1. with unity feedback  

1)( sH , let   

5.1

0.1
)(




z
zG  

 

Pole of )(zG is at : 5.1z  
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The characteristic equation, )(zP

can be expressed as 

 

 )(Im zGH
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5.1

5.0
)(1)(






z

z
zGzP  

Zero of )(zP is at : 5.0z  

The Nyquist contour can be 

demonstrated as in Figure 2. The contour 

consists of 6 segments, namely  

1C  segment:  referring  to Eq. (6),  

j
r

z 



1

1
  where  01  r  and 

)0(0     . According to Eq. (8) 

 

jeG  0)(  

Traversing on this segment to the 

point directly over the pole at 5.1z . This 

point is expressed as jz  5.1   











2
)5.1(


jG  

Continuing to point jz  5.1  

 

   )5.1( jG   

 

Continuing to point jz  0.1  

0.2
5.11

1
)0.1( 


 jG  

aC1  segment:   referring  to Eq. (18),   

jrz 1  where 
 00 r  and 

)0(0     . At point jz  0.1  

0.2
5.11

1
)0.1( 


 jG  

At point jz  0.1  

0.2
5.11

1
)0.1( 


 jG  

2C  segment:  referring to Eq. (19), 

 jez  where   20  . At point 

  0jez ,  

  0.2
5.11

1
)( 0 




jeG  

At point jez
j
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



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



2


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1
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2 





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j
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At point 
  1 jez ,   

4.0
5.11

1
)1( 


G  

  

At point 
  2jez , 

  0.2
5.11

1
)( 2 




jeG  

aC3  segment is analyzed as aC1

segment , whereas the mapping by the 3C  

segment is reversed to the one  by the  1C  

segment. )(dG  of  the 3C  segment is the 

same as )(eG  of  the 1C  segment.  

4C  segment: referring to Eq. (35), 

 jrez  where r  and 

   20 . From Eq. (36),   

   

  00 0)()( jj ereGdG  

From Eq. (39),   
   

   22 0)()( jj ereGeG  

 

 2)()(  dGeG  

This means that there is an 

encirclement by rad2 of a miniature 

circle around the origin of the )(zG plane 

starting from point )(dG  and continuing to 

point )(eG . The Nyquist sketch of this 

example can be illustrated as in Figure 5. 
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Figure 5. Nyquist plot of  
5.1

0.1
)(




z
zG .  

From Figure 5, 1N and from 1),( PzG

, therefore, 

011  NPZ  

 

As a result, this system is stable due 

to the nonexistence of closed-loop poles 

(zeros of )(1 zG ) outside the unit circle in 

the z-plane complying with the calculation 

for the zero of )(zP  at 5.0z . 

3.2 Example 2. 

Considering a sample-data control 

system in Fig. 1 with unity feedback 

1)( sH , let   

)23)(5.4)(5.1(

)5.2)(2(
)(

jzzz

zz
zG




  

 

Poles of )(zG are at: jz 23,5.4,5.1   

Zeros of )(zG are at: 5.2,2z  

  

The polynomial form of )(zG  is 

 

87.75 + z 118.5 - z 55.75 + z 12 - z

5 + z 4.5- z

)(

234

2



zG

  

The characteristic equation, )(zP can be 

expressed as 

 

87.75 + z 118.5 - z 55.75 + z 12 -z

92.75 + z 123 - z 56.75 + z 12 - z

)(1)(

234

234



 zGzP

 

 

Zeros of )(zP are at : 

2.1502j  3.11594.2430,1.5252, z  

 

The Nyquist contour can be 

demonstrated as in Figure 2. The contour 

consists of 6 segments, namely  

1C  segment:  referring  to Eq. (6),  

j
r

z 



1

1
  where  01  r  and 

)0(0     . According to Eq. (8) 
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Traversing on this segment to the 

point directly over the pole at 5.4z . This 

point is expressed as jz  5.4   
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Continuing to point jz  5.1  
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Continuing to point jz  0.1  
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5 +  4.5- 1
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aC1  segment:   referring  to Eq. (18),   

jrz 1  where 
 00 r  and 

)0(0     . At point jz  0.1  
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At point jz  0.1  
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2C  segment:  referring to Eq. (19), 

 jez  where   20  . At point 

  0jez ,  
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At point 
  1 jez ,   
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At point 
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aC3  segment is analyzed as aC1

segment , whereas the mapping by the 3C  

segment is reversed to the one  by the  1C  

segment. )(dG  of  the 3C  segment is the 

same as )(eG  of  the 1C  segment.  

4C  segment: referring to Eq. (35), 

 jrez  where r  and 

   20 . From Eq. (36),   

   
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From Eq. (39),   
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 4)()(  dGeG  

This means that there is an 

encirclement by rad4 of a miniature 

circle around the origin of the )(zG plane 

starting from point )(dG and continuing to 
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point )(eG . The Nyquist sketch of this 

example can be illustrated as in Figure 6. 

From Figure 6, 0N and from 

4),( PzG , therefore, 

 

404  NPZ  

 

As a result, this system is unstable 

due to the existence of closed-loop poles 

(zeros of 

 )(1 zG ) outside the unit circle in the z-

plane complying with the calculation for the  

zeros of )(zP  at 4.24301.5252,z

2.1502j  3.1159,  . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 5. Nyquist plot of  
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4. Conclusion 

On the ground of the Nyquist 

contours proposed by many literatures, real 

poles and zeros of the loop pulse transfer 

function, )(zGH , outside the unit circle in 

the z-plane are always excluded, leading to 

the wrong result of the relative stability test 

by the Nyquist stability criterion; however, 

this study proposes a new Nyquist contour 

that can incorporate those real poles and 

zeros. In addition, the encirclement around 

the point 1)( zGH  of the mapping by  

)(zGH  is influenced mainly by the 2C  

segment which is the unit circle in the z-

plane. The relative stability analysis results 

by this contour are confirmed by two 

examples in Section 3 that can handle the 

case of complex conjugate poles and zeros 

outside the unit circle in the z-plane as well. 

Nevertheless, the study scope focuses on the 

case of real poles and zeros of the loop pulse 

transfer function, )(zGH , outside the unit 

circle. Future work will include coverage of 

the complex conjugate poles and zeros on the 

unit circle and real poles and/or zeros at 1z  

in the z-plane. 
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