Original research article

Source Position from EEG Signal with
Artificial Neural Network

Tanaporn Payommai*
Department of electronics communication and Computer, Faculty of Industrial Technology,
Valaya Alongkorn Rajabhat University under the Royal Patronage, Phaholyothin Road,
Khlong Nuang, Klong Luang, Pathum Thani 13180, Thailand

Received 18 September 2016; Received in revised form 6 December 2016
Accepted 12 January 2017; Available online 24 March 2017

ABSTRACT

Electroencephalography (EEG) is recording of the electrical signals on the scalp. These
signals come from sources of activity within the brain; however it can be difficult to determine
where the sources originate from just by looking at the signals. Through signal processing, these
EEG signals can be analyzed and displayed as more useful information. This research explored
the evolution of EEG (Brain-waves) topography. The aim of this research was to extract the
origins of brain-waves within the brain from EEG data and develop an algorithm to analyze and
display this information. This was done in the MATLAB environment by creating: a working
software to display and pre-process multichannel EEG data; software/algorithms that could
localize sources of EEG within the brain; and a clinician-friendly GUI block. Neural networks
are a supervised machine learning technique that can be used to train a system based on
previously seen data. Using this approach, it is possible to accurately extract signal positions

within the brain.
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Introduction

Brain-wave analysis is the process of
studying and analyzing the electrical activity
given off by the brain. It is an ongoing study
with new advances every few years.
Currently, there are many techniques that can
be used to analyze the activity of the brain
[1]. EEG is a method for measuring electrical
impulses given off by the brain. The EEG
signals are measured by placing a series of
sensors at set positions on the scalp. Thisis a
non-invasive and relatively cheap technique
to perform, and as such, will be the technique
used for the analysis.

Source localization techniques are
employed to extract the source locations

from a set of measuring devices. There are
many techniques which use either Magnetic
Resonance Imaging (MRI) data or EEG data
to process and locate source origins [1].
However, most of these techniques use an
iterative method to locate the source origins.
Although the source locations are considered
quite accurate, the time taken to produce
these results is not desired when looking at a
very large set of data. As such, a neural
network was used to dramatically reduce the
time, as the iterative process is done before
hand in the training step.

Neural Networks are a supervised
training method in which the input and
output data is known, and a network is
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trained to look at that data and learn how to
produce the output based on the input. For a
new set of data with known inputs, but
unknown outputs, the neural network will
guess the output based on what it has
previously seen. The initial learning stage
requires a lot of memory and time to process
if there is a large amount of training data.
However, once trained, the network will be
able to reproduce the output given an input
within a very short time. This is ideal as once
itis trained it will not need to be trained again
unless the number of signals being input is
changed.

There are already quite a few
programs which can locate source origins,
such as EEGLab [2] and ICALab [3-7].
However, these programs require a higher
level of understanding to use effectively. The
main objective of this research is to identify
sources of activity within the brain using
EEG data, and to display the position of brain
activity and observe how those sources move
over a period of time. This is to all be done
in a simple and easy to use Graphical User
Interface (GUI). In the research [8] the
possibilities that lie within the domain of
Brain-Computer Interfaces were investigated
and explored, using friendly equipment that
has recently become available. The Brain-
Computer Interfaces (BCI) is a driving force
for utilizing EEG that is the process of
recording brain activity from the scalp using
electrodes. The artificial neural networks
(ANNSs) proposed brain signal processing
which is analyzed to classify EEG and MEG
for brain images [9]. EEG data was divided
into frequency bands and indicated that the
low initial power increase mainly improved
the frequency [10]. The performance of EEG
analysis software used in clinical and
research settings has been examined by using
BCI but the forecast has some errors [11].

The overall goal at this stage of the
research is to implement an algorithm to
locate the origins of brain activity, and
display the data as it moves over time. This
research will only look at simulated data.
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The organization of the rest of the
research is as follows. Section 2 details the
methods employed in this research, viz., head
modeling, electrode positioning, neural
network training, and GUI development.
Results are presented in section 3. Discussion
and future work are presented in section 4.
Finally, Section 5 contains a conclusion.

Methods

This research will look at the
localization of sources from EEG signals.
This will be done by first simulating the
potential voltages on the scalp of a source
within the brain using a head model. Then by
using the simulated potentials we pass that
data to a learning algorithm to train a
network.

Head model

Skill

Fig. 1. Three concentric shell head model.

Fig. 1 shows the head model that will
be used for this research. It is a three
concentric shell model, in which the shells
are the brain, the skull, and the scalp.

The voltage on the scalp is calculated as
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Where d,, isgiven as
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And F; and F, are calculated as
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In equations (1) — (3), b is the eccentricity of
dipole location, m,. is the radial component
of the dipole moment, m, is the tangential
component of the dipole moment, r; is the
radius of the sphere representing the brain,
r, is the outside radius of the shell
representing the skull, R is the outside radius
of the shell representing the scalp, e is the
brain/skull conductivity ratio (=80), o is the
conductivity of the brain, and P} denotes the
legendry polynomial. Equations (1) - (3)
calculate the voltage at point P (Fig. 2.),
given a dipole source position in the z-axis.
As sources are said to be independent of each
other, multiple dipoles can be represented by
first calculating the potential at certain points
for each source, then simply adding them
together.

Mt = P(R,8,0)

Fig. 2. Diploe M is used to calculate the
voltage at scalp position P.

2.2 Electrode positioning

Nasion

20%

Fig. 3. 10-20 system of electrode placement.

The point P is the position of the
electrodes on the scalp. These points are
predetermined  positions set by an
international  standard. The electrode
placement system used for this report is the
10-20 system of electrode placement. In this
system, electrodes are placed at 10% and
20% intervals as shown in Fig. 3. There are
other types of electrode placement systems
available which increase the number of
electrodes used, such as the 10-10 system
where electrodes are placed at 10% intervals
of each other. This increases the number of
measurements resulting in more accurate
source positions. However, the 10-20 system
was chosen due to computational
complexities.

Neural networks

Fig. 4 shows the process flow
diagram of the neural network. The neural
network was trained using source parameters
generated by the head model. A series of
fixed dipole positions representing the ocular

69



Thammasat International Journal of Science and Technology

Vol.22, No.1, January-March 2017

dipoles, as well as dipole moment parameters
that were randomly generated, were used to
calculate the scalp potentials. Using the
calculated voltages as inputs, they were fed
into a neural network with their respective
original source parameters used as target
values. The network was trained using the
Neural Network Toolbox in MATLAB until
it was sufficiently trained to be able to
accurately guess the source location, given a
set of scalp voltages. The neural network
training involved training a network for a set
of randomized data, as well as testing on
another generated test data set in order to the
test the generalization of the network.

A large number of training points are
required to train the network for as many
possibilities as possible. An increase in
training points resulted in a better trained
network. However, increasing the training
points too much would lead to a longer time
spent training as well as using up more
memory.

As neural networks themselves
utilize  various  algorithms,  various
parameters and training algorithms had to be
decided upon. Fig. 5 shows a block diagram
of a neural network. Here there are three
layers: the input layer, the hidden layer, and
the output layer. During training the input
and output layers are known, and the hidden
layers are unknown. The hidden layer
contains a set of weights (neurons) that is
updated for each iteration of the input and
output data. As these weights are updated, a
more accurate solution is achieved. Initially,
the choice of the number of neurons within
each hidden layer, as well as the number of
layers, had to be decided upon. As the
parameters of neural networks vary from
application to application, using existing
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literature as a starting point and performing
trial-and-error tests was the most efficient
way of choosing these parameters. As such,
two hidden layers with 30 nodes in each layer
was deemed efficient.

Various tests were undertaken in
order to analyze the effectiveness of
changing the number of layers and neurons.
By increasing the number of hidden layers,
the computational power of the network
increases resulting in a more accurate
solution at the cost of computational time and
memory requirement. In this research, a two
hidden layer network was deemed to be
sufficient with little error. Increasing the
number of layers did not produce a network
that was more generalized for test data, hence
it was deemed unnecessary to create a more
complex network that would require more
computational time. A similar result was
found with the number of neurons. Too few
neurons would not produce a network that
would accurately calculate the source
positions, whereas increasing the number of
neurons above 30 did not produce a network
that performed significantly better.

The Neural Network Toolbox offers
a range of training algorithms, including the
traditional gradient descent method. Four
training algorithms were investigated: the
LM algorithm, gradient descent, Bayesian
regularization and one step secant
backpropagation. The LM algorithm and
gradient descent were accurate and fast at
converging for smaller sets of data, but failed
to generalize for larger sets of data that were
used in the training. Bayesian regularization
was the strongest algorithm that provided the
most generalized solution, but took the
longest to converge. One step secant
backpropagation provided the fastest



Vol.22, No.1, January-March 2017

Thammasat International Journal of Science and Technology

X Vi
Randomly Electrode
Generated | ¥ Voltage V2
Points Algarithm
(expected z {Head V3
outputs) Mx Model) :
|
Myl | [ '
Mz | Vm

Meural
Metwaork
Training

Unknown
EEG Data

Vm | ® ¥ ¥yl vl

Trained
Metwork

Fig. 4. Source location process flow diagram.

converging and decent generalization with
large sets of data and was deemed to be the
most effective in this research, as it provided
similar ~ generalization to  Bayesian
regularization for the same training data.

GUI development

The GUI was developed using
MATLAB?’s graphical development package
called GUIDE. The  development
environment has very basic functions which
can be expanded with the use of the JAVA
script language. However, due to having no
knowledge of the JAVA language, the entire
GUI was developed using GUIDE.
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Fig. 5. Neural network architecture.
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Fig. 6. Contour map of voltages calculated
on the scalp given a source position. a)
Dipole located in the center of the head with
only a radial component. b) The rotation of
(a) to a random point within the brain. ¢)
Dipole located in center of the head with only
a tangential component. d) the rotation of (c)
to a random point within the brain.

Results

Head model implementation

Various tests were undertaken to
check the accuracy of the head model. The
first step was to generate scalp voltage at any
point in the scalp of the head. This was done
by implementing the formula into a
MATLARB file that calculated the voltage at
a point given the azimuth and latitude angles.
To check the linear property of the voltage, a
simple test was undertaken by doubling the
magnitude of the dipole moment. The result
was a voltage that was double the original
result, which proved that the scalp voltage
implementation was correct.

The equation for the head model
requires the dipole to be situated on the z-axis
as shown in Fig. 2. This means that we must
rotate a source position from any point with
the brain to the z-axis in order to calculate the
potential given off by the source at the scalp.
To do this the rotation matrices were used.
R, rotates the source to the z — x plane.

R,, rotates the source to the z-axis.
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R, rotates the sources orientation to the zx
plane.

Fig. 6 a and b shows a dipole placed
in the center of the brain with only a radial
component, and the same dipole rotated to a
different position in the brain, respectively.
As the two source dipoles are directed
perpendicular to the scalp, the contour map
of the calculated voltage was identical as
expected. The distorted image was due to the
mapping of a 3-dimensional sphere on a 2-
dimensional plane.

Another test was to place a tangential
dipole that was also centered. As shown in
Fig. 6¢, the expected positive voltages on one
side of the head are mirrored by the negative
voltages on the other side of the head, which
symbolizes the negative voltages below the
dipole.

Neural network

The Neural Network Toolbox
provided by MATLAB was used to train a
network to locate source positions given a set
of potentials. The training was done on an
Intel i7 2.8 GHz processor with 8GBs of
memory. The algorithm used to train the
network was the one-step secant, as the
performance and error was comparable to
that of Bayesian regularization for
generalization, and was within acceptable
limits.

In this research, 30,000 random
points within the brain were generated. These
points were used as the target data for the
neural network. The data was also fed
through the head model algorithm to create
30,000 sets of scalp potentials. Each set of
scalp potentials contained 19 potentials
situated at the electrode positions shown in
Fig. 4. The set of potential data was then used
as the input data of the neural network.

An early stopping method was applied to the
training phase in order to stop the
localization from getting worse. An extra 200
source locations and scalp potentials were
also generated to be used as test data. This
data was fed through the network at each
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iteration and checked to see if the accuracy
got better over time.

Localization accuracy

The accuracy of the created network
was done by using a bipolarity test. The test
was done by taking the measured potential at
one point and comparing it with the
calculated potential at the same point. The
residual variable (RV) between the measured
and calculated points is determined by

— z:Ii\i1(vrn,i_”c,i)2
A L o) @
where V,,, ; is the measured potential at scalp
electrode ‘i’, V,.; is the calculated potential
at scalp electrode ‘i’, and N is the number of
electrodes available. The optimal value for
the residual variable would be 0, indicating
that the original signal was able to be recre-
ated with 100 percent accuracy. However,
this is not possible in real world situations.
The dipolarity is calculated from RV as

Dipolarity (D) =v1 — RV (5)

Table 1. The location accuracy of a set of
sources.
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o

Dipolarity

98.44%

97.08%

92.29%

79.06%

98.10%

99.70%

99.36%

O IN|O|UI B (WIN| -

95.32%

©

91.25%

Average 94.51%

Table 1 shows the location accuracy of a set
of sources found within simulated EEG data,
after training a network using 30,000 training
points within the entire brain using an intel i7
2.8GHz with 8GB of memory. It was shown
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that an average accuracy of 94.51% is
achieved.

Movement of dipole over time
using GUI
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Fig. 7. Movement of diode over time.

Fig. 7 shows the GUI created to
show how a source moves within the brain
over time. Here, 10 dipole locations were
extracted from a set of simulated EEG data
and displayed within the graph. The playback
feature was implemented to allow the user to
view the movement of the dipole at any given
time.

Discussion and Future Work

As shown in the results, the head
model was successfully implemented and
evaluated. Voltages at electrodes based on
the international 10-20 system could be
calculated for any arbitrarily positioned and
orientated dipole.

Following the generation of scalp
potentials, a neural network was successfully
trained and tested to calculate source
positions on a previously unseen set of
potential data. The accuracy of the network
was acceptable; however, with more training
data, a more accurate solution could be
created.

As of now, this research only deals
with simulated data, as EEG data is currently
not available. Upon receiving real EEG data,
it will then be possible to continue this
research to process the EEG data and show,
using images, how the eyes move over time,
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as well as how the sources within the brain
move over time. Graphical representation is
crucial as it allows people to see the
information without having to look at large
volumes of EEG data. Another objective is to
compare the localization accuracy with
existing techniques.

Conclusion

It was shown that we were able to
create a network which was able to
accurately guess the position of sources from
simulated EEG data. We found that using
30,000 sets of training data to look for 1
source within the brain resulted in 95%
accuracy of the source, which can be further
increased with more training data.

Upon further research, being able to
implement a more realistic head model which
describes the relationship between the source
and electrode sensors is recommended.
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