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Abstract

The Rajamangala University of Technology Lanna (RMUTL) is Thailand's leading university in the field of
science and technology. The university focuses on producing graduates who are ready for workplaces through
a hands-on leaming system. RMUTL incorporates a Cooperative Education Program (CO-OP) in the learning
system which aims to gives students an opportunity to receive career training in industries. The students in the
final academic year are required to attain this program for a semester to be prepared for the workplace. During
the students’ internship period, the RMUTL CO-OP has a team of advisors who need to visit those students in
the industries at least two times to give the students advice on their projects and working life. The current
visiting plan is created based on the planner experience which sometimes ineffective in term of costs. Therefore,
in this study, a mixed-integer linear programming model is formulated to help the planner find an optimal route
for the advisors. The objective is to minimize the total cost of the advisor's visitation. Moreover, we propose a
simulated annealing heuristic (SA) to solve the problem. We generate benchmark instances and solved them
by SA. Computational results show the excellent performance of SA in terms of solution quality and

computational efficiency.
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1. Introduction

The Cooperative Education Program (CO-OP) is
an internship program that gives students an
opportunity to receive career training as they work
with professionals in their major fields of study [1].
The students who attend this program are
encouraged to build essential knowledge and skills
such as teamwork and problem-solving in the real-
world experience. Moreover, it supports the
development of graduates and making them more

employable and adaptable at the workplace [2].

The organization in CO-OP program consists of
competitive industry leaders and higher education
institutions  “cooperating” with each other to
provide hands-on work experience to full-time
actively enrolled students within a degree-seeking
program [3]. Rajamangala University of Technology
Lanna (RMUTL) requires students in the final
academic year to attain the CO-OP program for four
months (one semester). The students are eligible to
apply to CO-OP after completing a minimum
requirement of the university. The RMUTL CO-OP
allows the students to select the industry by
themselves under the direction of the department's
CO-OP advisors. Then, the RMUTL CO-OP
coordinator will contact the chosen industry and
process the application. During the student’s
‘internship’ period, the industries are requested to
assign students the project related to their field of
study. This project offers students the opportunity
to gain real-world experience in both theory and

practical skill.

The RMUTL CO-OP has a team of advisors who
come from different departments and have
different expertise. Those advisors are required to
visit the students in the industries at least two times
during the students’ internship period. The purpose
of this visit is to give the students advice on their
projects and working life. Moreover, the visit can
bring out a stronger relationship between university
and industries. To arrange this activity, the CO-OP
coordinators have a responsibility to plan visiting
routes for the advisors in each department by
manually created a route base on the planner
experience which sometimes ineffective in term of

costs and time.

The coordinators desire a good solution to help
them make significant improvements on planning
this activity. Due to the dynamic of the visiting
locations, there is no methodology or repeatable
process that available for the coordinator which can
be applied directly. Therefore, in this paper, we
propose the model for assigning and routing
advisors visitation to industries. The proposed
model is modified from the vehicle routing
problem (VRP) model which can be described as
the problem of designing optimal delivery or
collection of routes from a depot to some
customers subject to side constraints [4, 5]. In using
the model, we incorporate guidelines concerning
capacity, flow balance, and available travel
schedules of advisors. The model’s objective is to

minimize the total cost.

The combinatorial nature of VRP makes this
type of problem an NP-hard problem. Thus, studies

with the same intrinsic complexity usually use
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heuristic and meta-heuristic solution approaches. In
this paper, we propose a simulated annealing
heuristic that incorporates several neighborhood
structures to improve the performance on solving
the CO-OP instances. The performance of the
proposed SA in solving CO-OP instances is verified
by comparing its solution quality and
computational time with those obtained by
GUROBI. This study provides a decision support tool
for the CO-OP coordinators mainly at the

operational decision-making level.

This paper organized as follow. Section 2
presents the literature review. Section 3 provides
model

problem statement and mathematical

formulation. Section 4 shows the detailed
descriptions of the proposed SA algorithm. The
solution representation scheme is also explained.
Section 5 shows a comparative analysis of SA and
GUROBI results and presents the sensitivity. Finally,
Section 6 concludes the paper and presents future

research directions.

2. Literature review

The vehicle routing problem (VRP) and its
variants play an important role in many distribution
and transportation systems, as well as the costs
associated with operating vehicles [4, 6, 7]. VRP can
be described as the process of determining optimal
routes from one depot to some geographically
scattered customers, subject to side constraints [8].
is the
(CVRP),

One of the classical versions of VRP
capacitated vehicle routing problem
wherein a vehicle must satisfy a certain vehicle

capacity restriction [9]. Subsequently, when a total

distance or time restriction is also imposed on

CVRP, the problem becomes a distance-
constrained capacitated vehicle routing problem
(DCVRP) [10]. Another special variant of VRP is an
open vehicle routing problem (OVRP), in which the
route does not require vehicles to return to the
depot to avoid adding extra mileage to the

compensation model [11, 12].

VRP has been studied extensively over the past
few decades by using different approaches [4],
including the exact method, heuristic method and
metahueristic have been used to solve VRP and its
extensions [13]. The basic VRP model, known as the
NP-hard problem, uses the exact method to
determine the optimal solution; however, this
method is considerably difficult and usually
requires a long computational time. Therefore,
heuristic and evolutionary computing methods
have been applied to determine a near-optimal
solution in a reasonable amount of time such as:
(1) simulated annealing, (2) Tabu search, (3) genetic
algorithms, (5) particle swarm optimization, and (6)
some recently developed hybrid heuristic
algorithms. For further information one may refer to
works of Yu, Jewpanya [14], Osman [15],
Barbarosoglu and Ozgur [4], Lee, Jung [16], Baker
and Ayechew [17], Kachitvichyanukul [18], Berger

and Barkaoui [19] and Berger and Barkaoui [20].

In practice several variants of the problem exist
because of the diversity of operating rules and
constraints encountered in real-life applications.
This study focuses on the development of the
routing problem, which is motivated by the

problem faced in the real case. Although routing
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problems have been studied and solved using a
variety of methods, the proposed problem has

several unique requirements.

3. Problem definition and model formulation

This study considers the vehicle routing
problem. D is a set of a depot that is designated as
the starting and end location, that is, D = {0}. A set
Fis a set of industries, F = {1, 2... | F |}. Each industry
is allowed to visit at most once. A visiting time t; is
associated with industry ie F. V' is a set of vehicles,
V= {1, 2, 3, ..., |V|]}. A set of routes is constructed
such that all industries will be visited. The starting
location and the ending location of the routes are

fixed.

Parameters:

t Visiting time at a factory i

d; Travel distance from location i to j

hy; Travel time from location i to j

VCAP  Number of industries allowed per route
CDIST  Cost per unit distance

CRENT Renting cost of vehicle per day

CADV  Allowances for an advisor per day

CHOT  Cost of hotel renting per day

N Number of advisors assigned in each route
w Working hours per day

M Big number

Variables:

D, Number of days of each route v

Sy Start time of a visit to industry i in route v
Xiy 1, if a visit to industry i is followed by a

visit to factory j by route v; 0, otherwise

The objective of the problem is to determine
the number of routes and the best vehicle routes
for advisors to visit industries. The sum of the travel
costs is minimized consisting of the cost of vehicles,
the allowance and hotel renting cost of advisors.

Min Y. D.x,-d;-CDIST+ ' D,-(CRENT +N-CADV)

Vi, jeFuD veV eV

+Y (D,-1)-N-CHOT

YveV

Constraints:

Z Z, X kv =0 (1)

VkeFuUD VveV
Z Xjiv— Z‘ xivj’vzo,VieF,VVGV 2)
VieF i ]

S, =S, +t +ti; -M@1-x

v = ijv

VjeF i%j

) WVi, jeF,wev (3)

S, >t/ X, VieD,VjeF,vveV (@)
ox <1 vweV,VjeD (5)
Vie%:/D !
Lo , i 6
L Z,Xijv:]- VjeF (6)
VieFuD WveV
Z X,y <VCAP’ YveV (7)
VieFuUD VjuF
D, W Zsjv+t;i.xjiv,VieD,VjeF,VVeV (8)

Constraint (1) guarantees that a vehicle does

not travel inside itself. Constraint (2) is the

connectivity of each route. Constraint (3)
determines the timeline of each route. Constraint
(4) makes sure that the start service time at the first
visited industry of each route should be greater
than the traveling time from depot 0 to j. Constraint
(5) ensures that vehicle v can be used only one
time. Constraint (6) provides that an industry is
visited at most once. Constraint (7) confirms that
the total visited industry does not exceed the
number of industries allowed in each route.
Constraint (8) determines the number of the day

used in each route.
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4. Simulated Annealing (SA)

The SA algorithm is a local search-based
heuristic algorithm that is capable of avoiding being
trapped in a local optimum and can explore a wider
area of the search space. SA was introduced by
Metropolis, Rosenbluth [21] and popularized by
Kirkpatrick, Gelatt [22]. SA has been successfully
used to solve several problems such as location
routing problem (LRP) [23], vehicle routing problem
[14], and team orienteering problem (TOP) [24].

SA typically starts with an initial solution. At
each iteration, the algorithm randomly selects a
neighborhood move to generate a new solution
from the current solution. The neighborhood
moves that are normally used in SA are swap,
reverse, and insert. In the SA searching process, the
new solution is generated by one of these moves.
If the new solution is better than the current
solution, it replaces the current solution. The
search process resumes from the new current
solution. However, a small probability is calculated
using the Boltzmann function in which a worse

solution is accepted as the new current solution.

4.1 Solution representation

The solution representation consists of routes
of advisors, that is represented by permutation
numbers consisting of |F| industries, which are
denoted by the set {1, 2, ..., |F[} and Nyymm, zeros.
The parameter N, for the route is equal to |V|-
1. The Nyymmy is the number of zero added to the
solution representation that are used to terminate
illustrates  the solution

routes. Figure 1

representation.

Industries Dummy zeros

o|o|o

Figure 1 The solution representation

To demonstrate the solution and route
construction, we give an example with a small
instance consisting of seven industries and four
vehicles. The solution representation is shown at

Figure 2.

Industries Dummy
zeros

o‘o‘o

1‘2‘3‘4‘5‘6‘7

Figure 2 The example of a solution representation

Figure 3 presents an example of a solution.
The first vehicle starts from depot. The vehicle visits
industries 1 and 2. The industry 2 is followed by a
zero; thus, the first route is terminated. The second
vehicle visits only industry 6 and followed by a
zero; thus, the second route is terminated. The
third vehicle services industries 4 and 7. Finally, the

fourth vehicle visits industries 3 and 5.

s

Figure 3 The example of a solution
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4.2 Initial solution

An important factor for obtaining an effective
initial solution is the effective utilization of vehicle.
To generate the initial solution, we try to produce
a feasible solution with a greedy strategy. Such a
strategy is inspired by the probabilistic nearest
neighbor heuristic approach. The steps of this

method are described as follows.

Step 1. Gather all the new information for the
current period, including data of factory locations.
The coordinator determined the amount of time
each person can work.

Step 2. Clusters the industries based on a region.
For example, the industries that located in the
same province are assigned into the same cluster.
Step 3. Assign a vehicle route to each cluster. The
order of visiting is arbitrary.

Step 4. Determine the number of days and travel

cost of each route.

4.3 Neighborhood moves

The proposed SA algorithm incorporates three

neighborhood structures to explore different

possibilities  of  route  combination.  We
independently use all neighborhoods the routes.
These neighborhood structures are explained as

follows.

Swap move: The swap procedure starts by taking
random /" and ;" positions of a solution and
systematically swapping the numbers in these two
positions. For example, the swap procedure is
applied to the routes in Figure 3. The 2" and 4™

positions of the solution are randomly selected.

The numbers appearing in these positions are 2 and

6, respectively. These numbers are then
systematically swapped. After finishing the swap
operation, the pickup route is updated to {1, 6, 0, 2,
0,4,7,0, 3, 5}.

Reverse move: The reverse procedure operates by
reversing the direction of numbers in the position
between two randomly chosen i and /" positions
of a solution. For example, the 3™ and 6™ positions
of the solution in Figure 3 are chosen. The numbers
in the positions between these random positions
are 0, 6, 0, 4. The direction of these numbers is then
reversed. Here, the solution is updated to {1, 2, 4,
0,6,0,7,0, 3, 5}.

Insertion move: This insert operator is executed by
randomly selecting the i and /" positions of a
solution and then inserting an " number in front of
the /™ position. Using the same example with the
previous, the 5" and 1% positions are randomly
selected from solution in Figure 3. The numbers in
these positions are 0 and 1. In this case, 0 is inserted
in front of 1. Therefore, the solution is updated to

{0,1,2,0,6,4,7,0, 3, 5}.
4.4 Parameters used

The SA algorithm uses five parameters, namely,
lterr Tor T K and @, to search for the best solution.
lier denotes the number of iterations that proceed
at a particular temperature. Toand T, represent the
initial and final temperatures, respectively, and K is
the Boltzmann constant used in the calculation of
the probability of accepting a worse solution.
Lastly, a is the cooling rate coefficient to control

the cooling process.
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4.5 SA Procedure

Algorithm 1 describes the steps of the SA
heuristics. The search mechanism starts with an
initial solution and follows the SA searching process
to improve it. The SA searching process starts at
setting the current temperature T to the initial
temperature T, The best solution Xy and the
current solution X are set to be the initial solution.
The best objective value is set to be the objective
value of solution X. Here, R; is the probability of
choosing neighborhood t, t € {swap, reverse,
insert}. R, is set to be 1/3.

The process continues to generate a new
solution Y from the current solution X by the
neighborhood moves in each iteration at a
particular temperature. Let A be the objective
value difference between Y and X. If A < 0, then Y
is better than X; thus, Y replaces X as the current
solution; otherwise, the new neighborhood solution
is accepted with a probability calculated by the
Boltzmann  function, exp(-A/KT). The next
temperature is that the current temperature
decreases to AT. The SA algorithm is terminated if
the current temperature is below or equal to the

final temperature T

Algorithm 1. SA

1 Input: Jier, To, T & , K InitialSolution;
2 Output: Objective;
3; | €= 0; T 4= Tp; Feq <— 0bj (X) X «— InitialSolution; Xpest <— X;
4 R, <— 1/3 for all t in {swap, reverse, insert};
5: While T < T
6 | <= 1; N, «— 0 and O, «— @ for all t in {swap, reverse, insert};
7 While / < o
8 7« random (0, 1);
9 If (r < Ry0p) then
Generate a new solution Y from X by swap move;
Else if (Ruwap < I < Rauopt Rreverse) then
Generate a new solution Y from X by reverse move;
Else Generate a new solution Y from X by insertion move;
End if
A« obj (V) - obj ();
If (A < 0) then X «— V;
Else r «<— random (0, 1);
If (r < exp(-A/KT)) then X <— V; End if
End if
If (0bj (X) < Frest ) then Xpes €— X; Fpeee €— 0bj (X); End if
l<—1+1;
End while
T=al;
End while

5. Computational study
5.1 Instances

We generate the CO-OP instances from real
geographical distances of industries in Thailand.
Those industries have accepted the students from
the industrial engineering department of RMUTL,
Tak, to attend the CO-OP program. The dataset
contains 8 to 100 industries, with a total of 40
instances. The problem parameter values are

shown in Table 1.

Table 1 the problem parameter values

Scale No. of industries No. of instances No. of Vehicle VCAP CDIST CRENT CADV CHOT N W
Small 8 5 3 4,5 6,7,8
11 5 3 6,7,8,9, 11
17 5 6 3,6, 11,15, 17
Medium 25 5 6 6,12, 15, 20, 25
4 1800 240 750 2 12
30 5 6 6, 10, 15, 20, 30
50 5 6 10, 20, 30, 40, 50
Large 80 5 10 10, 20, 40, 60, 80
100 5 10 20, 30, 50, 80, 100
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5.2 Parameter settings

We conduct the experiment to select the best
combination of SA parameters. We use the same
methodology as reported in Yu, Lin [23], who
introduced a simple method for selecting the
parameter combination. The method first
introduces several values for each parameter. The
process then tests the combinations of these
parameter values and selects the combination that
can obtain the lowest average cost for solving
problem instances. In the proposed algorithm, the
parameter values tested are as follows:

ler = 500, 800, and 1000;
T,=3,51T1,

T,= 0.1, 0.01, 0.001;

a =0.8,0.9,0.99;
K=1,1/2,1/3, 1/4.

The results indicate that the best solution
quality can be obtained from the parameter values:

//‘rer = 500; To, = 5, 7} = 0001, o = 099, K=1.

5.3 Computational results

5.3.1 The results of the small-scale CO-OP

instances

To confirm optimality, we compare the results
from the proposed SA with those obtained from
GUROBI. GUROBI is a commercial optimization
solver for linear programming (LP). The commercial
solver was terminated after 4 hours if it could not
find an optimal solution. Tables 2 report the best
objective values and computational time (CPU) of
the small-scale

instances, respectively. The

respective optimality gap is calculated by equation

(9), where Solution represents the best solution
value of SA. The BKS denotes the solutions
obtained by GUROBI.

Solution — BKS 9
BKS

Gap (%) = 100 ©)
Comparative results in Table 2 show that the
average gap upon the best-known solution is -
0.06% for small-scale instances. As for
computational time, SA can obtain the solution in
an average 1.82 s. In summary, the proposed SA
obtains six optimal solutions same as the GUROBI
solutions and five solutions better than GUROBI

solutions.

Table 2 Comparison of CO-OP solution for small-

scale instances

Objective values Computational

a time
§ i) Q )

) 3 g < ‘9’: g <
=z £ G] 0 > (G] %)
1 S8 4 26460% 26460 0.00 22.08 1.45
2 S8 5 23544* 23544 0.00 23.09 1.16
3 S8 6 23544*% 23544 0.00 27.36 1.18
a4 S8 7 20580* 20580 0.00 10.84 1.26
5 S8 8 18276* 18276 0.00 9.39 1.19
6 S11.6 27808* 27808 0.00 6173.94 1.36
7 S11.7 27808 27808 0.00 34065.20  1.52
8 S11 8 27256 27256 0.00 42273.10 1.26
9 S11.9 27256 27256 0.00 1442880  1.64
10 S11.11 21916 21916 0.00 14406.80 1.65
11 S17 6 68188 68068 -0.18  38193.00  3.89
12 S17_11 61600 61468 -0.21 44947.30 2.57
13 S17_13 61516 61368 -0.24  39232.00 2.57
14 S17_15 61428 61368 -0.10  43213.70 242
15 S17_17 55800 55720 -0.14  43684.80 217

Average  36865.33 36829.33 -0.06 21380.76 1.82
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5.3.2 The results of the medium and large-scale

CO-OP instances

For the medium and large-scale CO-OP
instances, GUROBI fails to find the solution within 4
hours. The proposed SA is tested on medium and
large-scale CO-OP instances. We evaluate the
performance of SA over the initial solution using the
percentage of the relative improvement (Improv),
which is calculated by equation (10); SASolution is
the best solution values obtained by SA and

InitialSolution is the solution obtained from the

initial solutions.

Improv (%) = InltlaISI(r)]IiltJit:I);quStQSnolutlon <100 (10)

Tables 3 and 4 display the performance of SA
compared to the initial solution in solving the
medium and large scale instances, respectively. We
offer two observations about the objective values
and CPU. First, Table 3 shows that the best
objective values of the medium-scale instances
obtained by SA are improved from initial solution
by an average of 9.25%. For the large-scale
instances, Table 4 reports that the best SA solutions
are better than the initial solutions by an average
of 7.39%. However, as for computational time, the
initial solution can obtain the solution faster than

SA.

Table 3 Comparison of CO-OP solution for

medium-scale instances

Objective values Computational time

[=]

g _ 8 o _ 8
. £ £ 3 3 £ 3
2 2 c 3 S 2 c 3 S
1 M25_6 75612 62968 16.72 0.58 2.40
2 M25_12 60560 53936 10.94 0.51 2.28
3 M25_15 60500 55044 9.02 0.73 2.14
a4 M25_20 60780 51184 15.79 0.66 2.23
5 M25_25 54624 48032 12.07 0.62 2.17
6 M30_6 86936 75948 12.64 0.55 2.56
7 M30_10 67512 65316 3.25 0.69 2.62
8 M30_15 61204 58348 4.67 0.79 2.48
9 M30_20 61620 57004 7.49 0.53 2.27
10 M30_30 55448 51132 7.78 0.93 2.36
11 M50_10 117424 106540 9.27 0.61 3.51
12 M50_20 105968 94228 11.08 0.49 353
13 M50_30 91892 88104 4.12 0.96 3.44
14 M50_40 96216 86832 9.75 0.15 3.00
15 M50_50 85728 82120 4.21 0.80 2.97

average 7613493 6911573 9.25  0.64 2.66

Table 4 Comparison of CO-OP solution for large-

scale instances

Objective values Computational time

=]
] c c
] é E § < lDE- é § <
4 £ £ wn n 3 £ wn W
1 L80_10 176436 138804 2133 1.62 9.73
2 L80_20 150420 140004 6.92 1.25 9.13
3 L80_40 135076 128556 4.83 1.65 8.78
4 L80_60 135336 126380 6.62 1.58 8.80
5 L80_80 129172 122580 5.10 1.38 8.87
6 L100 20 206736 192624 6.83 177 19.31
7 L100_30 196860 180412 8.36 1.85 20.18
8 L100_50 184620 173880 5.82 1.79 20.64
9 L100_80 181768 174728 3.87 1.92 23.00
10 L100_100 175144 167736 4.23 1.85 21.30
average 167156.80 154570.40  7.39 1.67 14.97
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5.4 Sensitivity analysis

To provide more insight on the problem, we
conducted sensitivity analysis on the impact of the
number of industries allowed in each route. The
large-scale instances are tested with five values of
VCAP. The first set of data consists of 80 industries.
VCAP equals to 10, 20, 40, 60 and 80 industries are
allowed in each route. The second set of data
consists of 100 industries. VCAP equals to 20, 30,
50, 80 and 100 industries are allowed in each route.
Figure 4 (a) and (b) illustrate that the higher value
of VCAP can give the lower total costs. According to
the results, the CO-OP planner should consider to
increase the number of industries visited in one

route.

145000
140000
135000
130000
125000
120000
115000
110000

Obijective values

L80_10 L80_20 L80_40

Insance ID

L80_60 L80_80

(a)

195000
190000
185000
180000
175000
170000
165000
160000
155000

Obijective values

L100_20 L100_30 L100_50
Instance ID

L100_80 L100_100

(b)

Figure 4 Sensitivity analysis on the number of

industries allowed in each route (VCAP)

6. Conclusions and further work

This paper has proposed a new model for
routing the advisors in the RMUTL CO-OP program.
The model has applications in a wide range of
settings, planning, and

including strategic

environments.  Moreover, the model gives

consulting firm management a method for
calibrating the impact of a number of industries

allowed in each route on the total costs.

Since the routing for CO-OP is a new problem,
we have generated three sets of benchmark
instances including small-scale, medium-scale and
large-scale instances. The proposed SA is used to
solve three set of instances. The results show that
the proposed SA outperforms GUROBI both in
solution quality and solution time. Furthermore,
GUROBI fails to solve medium- and large-scale
instances, whereas the proposed SA heuristic solves
all instances in the three sets. When the RMUTL
implemented the solution in its routing planning
process, it realized travel cost savings. Moreover,
the sensitivity analysis shows that when the
number of factories allowed in each route is
increasing, it causes the lower total cost.

Future studies may consider CO-OP with more
practical constraints. They can take uncertainty of
traveling and service times into account so as to
bring the problem closer to reality. Alternatively,
they can focus on developing exact methods or
different heuristics

that exploit the problem

characteristics for solving CO-OP instances.
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