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Abstract

This research focuses on the Proximal Policy Optimization Algorithm of Reinforcement Learning to
make a forecasting model of raw material stock in restaurants. Due to the restaurant's daily raw material
stock ordered. There is a high deviation from the number of raw material stock used. The rest of the
raw material stock become food waste. This causes fermentation and the formation of methane gas to rise
to destroy ozone in the atmosphere. Which is the main cause of the greenhouse effect. This research
investigated a One-Attribute Model and a Multi-Attribute Model. The dataset used in this research is
synthetic data that use the normal distribution theory to make it. The model's performance was assessed
using
F-statistics, R-Square, and RMSE. We trained each model trained 12 million timesteps. The result showed
that the Multi-Attribute Model would converge to the value optimization faster than the One-Attribute
Model. We found that both models' accuracy is about 82 percent of the number of the test set where
the number of the test set is 1,000. From this research, we can learn how to apply the Proximal Policy
Optimization Algorithm of Reinforcement Learning make a forecasting model of raw material stock. To be
able to forecast the number of raw material stock. As close as possible to the number of raw material stock

used and it can reduce the number of food waste.
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4.1 One-Attribute Model
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4.2 Multi-Attribute Model
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