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บทคัดย่อ 
การดำเนินการในคลังสินค้าเป็นกิจกรรมที่ต้องใช้แรงงานมากและคิดเป็นค่าใช้จ่ายที่สูงเมื่อเทียบกับต้นทุนโลจิสติกส์

ทั ้งหมด ในบรรดาการดำเนินการต่างๆในคลังสินค้า การหยิบสินค้าถือเป็นหนึ่งในกระบวนการที่สำคัญที่สุด โดยเป็น
กระบวนการที่ผู้หยิบสินค้าเดินหยิบสินค้าจากตำแหน่งต่าง ๆ ในคลังสินค้า ซึ่งพบว่าระยะทางรวมที่ผู้หยิบสินค้าเดินหยิบสินคา้
มีผลต่อปริมาณงานที่ทำได้ในช่วงเวลาหนึ่งในคลังสินค้า ดังนั้นการลดระยะทางที่ไม่เกิดประโยชน์นี้จึงเป็นหนึ่งในกลไกสำคัญ
ในการเพิ่มประสิทธิภาพของคลังสินค้าได้ งานวิจัยนี้มีวัตถุประสงค์เพื่อประเมินผลกระทบของปัจจัยที่แตกต่างกันต่อระยะทาง
ที่ผู้หยิบสินค้าเดินหยิบสินค้าในคลังสินค้าที่มีผังแบบหนึ่งบล็อก โดยพิจารณาปัจจัยต่าง ๆ ประกอบด้วยขนาดของใบสั่งซื้อ 
ตำแหน่งของจุดเริ่มต้นและจุดสิ้นสุดการหยิบสินค้า วิธีการเดินหยิบสินค้า และวิธีการเก็บสินค้า ผู้วิจัยจำลองสถานการณ์ที่
เป็นไปได้ทั้งหมดของแต่ละระดับของปัจจัยตา่งๆ และใช้ผลลัพธ์จากการจำลองไปศึกษาอิทธิพลหลักและอิทธิพลร่วมของปัจจยั
ต่าง ๆ ต่อระยะทางการเดินหยิบสินค้าโดยใช้การวิเคราะห์ความแปรปรวน ผลการวิเคราะห์ที่ระดับนัยสำคัญ 0.05 พบว่า
ปัจจัยหลักทุก ๆ ปัจจัยและผลกระทบร่วมระหว่าง 2 ปัจจัยมีอิทธิพลต่อระยะทางการเดินหยิบสินค้าในคลังสินค้าอย่างมี
นัยสำคัญทางสถิติ  ผลการทดสอบผลกระทบร่วมของ 3 ปัจจัยพบว่าส่วนใหญ่จะไม่มีผลกระทบร่วมกันต่อระยะทางการเดิน
หยิบสินค้า ยกเว้นผลกระทบร่วมของ 3 ปัจจัยที่ประกอบด้วยขนาดของใบสั่งซื้อ ตำแหน่งของจุดเริ่มต้นและจุดสิ้นสุดการหยิบ
สินค้า และวิธีการเดินหยิบสินค้า ที่มีผลต่อระยะทางการเดินหยิบสินค้าอย่างมีนัยสำคัญทางสถิติ ส่วนผลการทดสอบของ
ผลกระทบร่วมของ 4 ปัจจัย พบว่าไม่มีผลกระทบร่วมกันต่อระยะทางการเดินหยิบสินค้าในคลังสินค้า 
 
คำสำคัญ: เส้นทางการหยิบสินค้า, การจัดเก็บสินค้า, การหยิบสินค้า, คลังสินค้า  

 
* Corresponding author: E-mail: makusee.ma@psu.ac.th 
1 อาจารย์ สาขาวิทยาศาสตร์การคำนวณ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ 
2 อาจารย์ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล 
3 ผู้ช่วยศาสตราจารย ์สาขาวิทยาศาสตร์การคำนวณ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ 

mailto:makusee.ma@psu.ac.th


Thai Journal of Operations Research: TJOR Vol 10 No 1 (January - June 2022) 

95 

 

Evaluating the effects of different factors on the order picking efficiency in 
the single-block warehouse 

 

 
Makusee Masae1*, Wasin Padungwech2 and Panupong Vichitkunakorn3 

1Statistics and Applications Research Unit, Division of Computational Science, Faculty of Science,  
Prince of Songkla University, 15 Kanjanavanich Road, Hatyai, Songkhla 90110 

2Department of Mathematics, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, 
Bangkok, 10400. 

3Applied Analysis Research Unit, Division of Computational Science, Faculty of Science,  
Prince of Songkla University, 15 Kanjanavanich Road, Hatyai, Songkhla 90110 

 

Received: 27 January 2022; Revised: 19 March 2022; Accepted: 6 May 2022 
 

Abstract 
 Warehouse operations are labor-intensive activities, and they account for the highest share of the 
total logistics cost. Among the various operations in warehouses, order picking, which is the process of 
retrieving a set of requested items from specified storage locations in a warehouse, is one of the most 
critical ones. The picking travel distance required by the order pickers has profound effects on the 
warehouse throughput. Hence, reducing this unproductive traveling of the order pickers is a significant lever 
for increasing the total warehouse throughput. The focus of the paper at hand is to evaluate the effects of 
four main factors, including pick-list sizes, depot location, order picker routing policies, and storage 
assignment policies on the picking travel distance in a single block warehouse. We simulate all possible 
combinations of several levels and evaluate the main and interaction effects using the analysis of variance 
(ANOVA). According to ANOVA analysis, all main single effects and two-way interactions have a statistically 
significant effect on the picking travel distance at a level of significance 𝛼 of 0.05. On the other hand, most 
of the three-way interactions are not statistically significant at an 𝛼  of 0.05, except the three-way 
interactions between pick-list sizes, depot location, and storage assignment policies. In terms of four-way 
interactions, they are not statistically significant at an 𝛼 of 0.05. 
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1. Introduction 

 Warehouses play a vital role in the supply 
chain process as they facilitate the shipping of 
products to the next stage of the supply chain with 
the highest level of customer service and at the 
lowest possible cost. As a result, both researchers 
and practitioners have focused on improving 
warehouse operations in the past to enhance the 
efficiency of the supply chain. Among the various 
warehouse operations, order picking, which is 
commonly defined as the process of retrieving 
requested items from storage locations in a 
warehouse in response to customer orders [1-2], is 
the most costly activity [3]. Some authors 
estimated that it accounts for up to 55% of the 
total warehouse operating costs [4]. In addition, 
order picking is a critical process for every supply 
chain because of its direct influence on customer 
satisfaction [5], which is the main performance 
factor in e-commerce retail. Underperforming in 
order picking can cause both unsatisfied customers 
and high warehouse operating costs. Consequently, 
improving the efficiency of order picking will lead 
to lower logistics costs and to an improved 
performance of the whole supply chain [6-7]. In 
picker-to-parts systems, order pickers travel through 
the aisles of the warehouse to pick requested items 
from storage locations. The time required by the 
order pickers to travel through the warehouse may 
account for up to 50% of the total order picking 
time [8-9]. Hence, reducing this unproductive and 
non-value adding time is an essential lever for 
lowering warehouse operating costs. Since the 
travelling distance is proportional to the travelling 
time, minimizing the travelling distance of a picking 
tour is often considered equivalent to reducing the 
travelling time, and it is seen as a major contributor 
to the improvement of order picking efficiency. To 
reduce picking travel distance, previous research 
has focused on single order picking planning 

problem, but this research breaks new ground by 
combining multiple planning problems. Therefore, 
the main contribution of the paper at hand is to 
evaluate the effects of four main factors, including 
pick-list sizes, depot location, order picker routing 
policies, and storage assignment policies on the 
picking travel distance in a single block warehouse.    
 

2. Problem description 

 We assume a single block warehouse, which 
is a layout that is common in practice and that this 
is the most frequently used layout in the literature 
[5],[10]. The warehouse under study is the single-
block warehouse with ten aisles. The picking aisles 
are two-sided with the width of 1  meter. The 
dimension (width*depth*height) of each storage 
location is 1*1*1 meter3 containing a single type of 
SKU, and 1,000 SKUs (100 in each aisle) are stored 
in the warehouse in total. This layout is consistent 
with the warehouse layout literatures of [11-12]. In 
defining the model, we make the following design 
assumptions. 
1 .  There is only one depot, where order pickers 
receive orders and where retrieved items are 
dropped off for further processing. 
2 .  Order pickers can retrieve the requested items 
from storage racks arranged on both sides of the 
picking aisles without having to cross the aisles. 
3. Order pickers working in the same area can pass 
each other, which means that we do not consider 
picker congestion within aisles. 
4. The requested items can be picked directly from 
the racks without additional vertical travel, which 
means that in this study we focus on the picker 
routing problem in a low-level picker-to-parts 
system. 
5. An item is stored in a single location only, which 
means we consider order picking in a single storage 
system. 
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3. Order picker routing 
3.1 Exact algorithm 
 Ratliff and Rosenthal [13] developed exact 
routing algorithm for routing order pickers through 
a single-block warehouse as illustrated in Figure 1. 
The rectangle boxes in Figure 1 represent the 
storage locations in warehouse, where the black 
boxes are locations of items to be picked. The order 
picker receives a pick-list containing a list of items 
to be picked at the depot, starts retrieving all 
requested items from storage locations, and then 
returns to the depot to drop off the retrieved items. 
Ratliff and Rosenthal [13] defined the picker routing 
problem as the problem of finding a tour of 
minimal length on a graph representation of the 
investigated warehouse.  

Figure 1 warehouse with a single block [13]. 

Figure 2 Graph representation 𝐺, where 𝑚 = 12 
and 𝑛 = 6 [13]. 

The authors defined a graph 𝐺  in Figure 2 
associated with the picker routing problem in Figure 
1, where the vertex 𝑣0 represents the location of 
the depot and the vertices 𝑣𝑖 , 𝑖 = 1,2,3, … , 𝑚 , 
represent the storage locations of all 𝑚 requested 
items. The vertices 𝑎𝑗  and 𝑏𝑗  are back and front 
endpoints of each picking aisle 𝑗, 𝑗 = 1,2,3, … , 𝑛. 
The weight of an edge corresponds to the distance 
between the endpoints of that edge. The algorithm 
of Ratliff and Rosenthal [13] aims to find the 
shortest order picking tour that starts from 𝑣0 , 
determines a sequence of storage locations 𝑣𝑖 , 𝑖 =

1,2,3, … , 𝑚 that have to be visited, and ends at 
𝑣0. As can be seen, a tour of an order picker in the 
warehouse corresponds to a tour on the graph 𝐺. 
So, the problem of finding the shortest order 
picking tour is identical to the problem of finding a 
tour on the graph 𝐺  containing all the required 
vertices.  

3.2 Heuristics 
 S-shape: The order picker starts in the first 
aisle that contains requested items and traverses 
the aisle completely. The picker then moves to the 
next aisle that contains requested items, traverses 
this aisle completely, and continues in this fashion 
until all requested items have been retrieved. 

 Largest gap: This heuristic divides aisles into 
two halves using the largest gap between two 
requested items or between the aisle exits and a 
requested item for defining the front and back part 
of each aisle. The order picker enters the aisles in 
the front part of the warehouse that contain 
requested items and leaves each aisle on the side 
where s/he entered it without accessing the back 
part. Once the front part of the warehouse has 
been completed, the order picker moves to the 
back part of the warehouse to complete all aisles 
in the same fashion. 
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3.3 Meta-heuristics 
Adaptive large neighborhood search (ALNS) is 

based on the large neighborhood search (LNS), a 
metaheuristic introduced by Shaw [14]. In an LNS, 
the neighborhoods are defined by destroy and 
repair operators. A destroy operator is used to 
remove a set of vertices to cut the present solution 
into parts in each iteration of the search. Then, a 
repair operator is used to re-combine the removed 
vertices and the remaining parts of the solution to 
obtain a new feasible solution. A destroy operator 
that can affect a large portion of a solution, hence 
the name “large neighborhood search”, has 
potential to help the search navigate different parts 
of a solution space and lessen a chance of getting 
stuck at local optima, especially when a problem 
being tackled has constraints that make it difficult 
to move from one feasible solution to another by 
small changes. ALNS has been developed by Ropke 
and Pisinger [15] and extends the LNS by an 
adaptive selection mechanism for choosing a 
destroy and repair operator at each iteration from 
a “portfolio”, i.e. a set of operators. The use of 
multiple operators and the ability to choose them 
adaptively in the ALNS allows the search to adjust 
itself to different instances of the same problem. 
As it contains a mechanism for choosing operators, 
ALNS can also be viewed as a hyper-heuristic; it is 
a heuristic for deciding which heuristic 
(destroy/repair operators) to use for creating a new 
feasible solution. ALNS is comprised of four main 
steps: (1) creating an initial solution; (2) choosing a 
destroy operator and performing a destroy 
operator; (3) picking a repair operator and 
performing a repair operator; and (4) renewing the 
parameters and the current solution. Such 
parameters include those that control the 
probability of choosing each destroy or repair 
operator. For example, one may adjust the 
parameters in such a way that an operator that 
leads to a better solution has a higher probability 
of being chosen in the next iteration. 

 A pseudocode of ALNS used in this work is 
given below, where N_item is the pick-list size, and 
N_itr is the number of iterations to be specified. 
Given: N_item, N_itr. 
Generate an initial solution, called S. 
Set Best_S = S. 
For each destroy operator: 
 Set its score = 1. 
For itr = 1 to N_itr: 
 Randomly choose the number of items to 
remove from the route S, called N_to_remove. 
 Randomly choose one of the destroy 
operators. 
 Apply the chosen destroy operator with 
N_to_remove to S. Call the result New_S. 
 Repair New_S. 
 If New_S is accepted 
  Set S = New_S. 
  Set delta = 1. 
 If total distance of New_S is less than Best_S 
  Set Best_S = New_S. 
  Set delta = 2. 
 Increase the score of the chosen destroy 
operator by delta. 
Return Best_S. 
  
 In this work, N_itr is set to 100×N_item, and 
N_to_remove ranges between 1 and min(1, 
N_item/2). An initial solution is generated by 
randomly permuting items to be picked. Destroy 
operators are randomly chosen by a process similar 
to roulette wheel selection in a genetic algorithm 
[18] with the operators’ scores viewed as their 
“fitness”. Destroy operators considered here are 
“random removal” (randomly removing a given 
number of items from the route) and “worst 
removal” (successively removing an item that leads 
to the highest saving of distance). 
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4. Storage assignment 

 Four storage assignment policies are 
considered in our study, namely (1) random storage 
with uniform demand, (2 )  turnover-based storage 
with 20/40  demand skewness, (3) turnover-based 
storage with 2 0 / 6 0  demand skewness, and (4 ) 
turnover-based storage with 2 0 / 8 0  demand 
skewness. The notation x/y indicates that x% of the 
items represents y% of the total demand. For a 
random storage policy, items are assigned 
randomly to locations available in the warehouse. 
In case of turnover-based storage, we implement 
the turnover-based storage with demand skewness 
proposed by Çelik and Süral [9] and Pohl et al. [16] 
by assigning higher demand to items closer to the 
depot. To do so, we first sort the storage locations 
in increasing order of their distance from the depot. 
Secondly, to account for demand skewness, we use 
the model of Bender [17] as in equation (1 )  to 
determine the probability that the item stored in 
storage location 𝑖 will be added to a picklist. 

          𝐹(𝑥) = (1 + 𝐴)𝑥/(𝐴 + 𝑥)   (1)  
The function 𝐹(𝑥)  is a cumulative distribution 
function for 𝑥 ∈ [0,1].  The variable 𝐴 is a shape 
factor depending on the demand skewness, where 
the values of 𝐴 are 0 . 60 , 0 . 20 , and 0 . 07  for the 
demand skewness of 20/40 , 20/60 , and 20/80 , 
respectively. Assume that the number of items in 
the warehouse is 𝑁. The probability that the item 
𝑖 will be added to the picklist is equal to  𝑝𝑖 , as in 
equation (2): 

𝑝𝑖 = 𝐹(𝑖/𝑁) − 𝐹((𝑖 − 1)/𝑁), 
𝑖 = 1,2,3, … 𝑁  

(2) 

Since the function 𝐹 is concave down (i.e., 𝐹 has 
negative second derivative), an item closer to the 
depot has higher demand. 

 

5. Experimental design 

 To investigate the effects of different 
parameters on the picking travel distance in the 
single-block warehouse, we use the parameters 
summarized in Table 1. As can be seen, the 

experimental design consists of four factors: pick-
list sizes (number of items in an order), depot 
location, order picker routing policies, and storage 
assignment policies, with some problem sets taken 
from [11]. This experiment considers five different 
pick-list sizes with 5, 15, 25, 35, and 45 items. The 
depot locations considered are central (in the 
middle of the front cross aisle) (C) and decentral (in 
the front of the left-most aisle) (D). The order picker 
routing policies factor investigated here include the 
exact algorithm (E), the S-shape (S), the largest gap 
(L), and the adaptive large neighborhood search 
(ALNS) policy. Four storage assignment policies are 
considered in our study, namely (1) random storage 
with uniform demand (R), (2) turnover-based 
storage with 20/40 demand skewness (TB1), (3) 
turnover-based storage with 20/60 demand 
skewness (TB2), and (4) turnover-based storage with 
20/80 demand skewness (TB3). 
 
Table 1 Parameters used for evaluating the effect 
of different parameters on the picking travel 
distance. 

Picklist 5, 15, 25, 35, 45 
Depot C, D 
Routing E, S, L, ALNS 
Storage R, TB1, TB2, TB3 

 

6. Results and statistical analysis  

 The results of the experiment were analyzed 
by full factorial design using SPSS software. Table 2 
shows the ANOVA results for the picking travel 
distance. The ANOVA results indicate that the main 
effect, depot, was found to be statistically 
significant at a level of significance 𝛼 of 0.05. The 
factors, picklist, routing, and storage are also 
statistically significant; however, these results are 
not surprising as they are naturally happened. 
Explaining the effect of the picklist sizes on the 
picking travel distances is simple and 
straightforward. An increase in picklist size should 
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be directly translated to an increase in the picking 
travel distances. Regarding the storage assignment 
policy, the turnover-based storage policy results in 
less travel distance than a random storage policy. 
This result follows from the fact that in the case of 
higher demand skewness, frequently requested 
items are assigned closer to the depot, resulting in 
shorter travel distances. The two-way interactions 
were found to be statistically significant at a level 
of significance 𝛼 of 0.05. On the other hand, most 
of the three-way interactions are not significant 
because there is no interaction effect of the three 
factors on the mean of picking travel distance. The 
only thing that is significant is the three-way 
interactions between picklist, depot, and storage. In 
terms of four-way interactions, they are not 
significant at a level of significance 𝛼 of 0.05 for the 
similar mentioned interaction of four different 
factors. 

Table 2 Full-factorial ANOVA results for picking 
travel distance. 

 

The two main decision problems which are 
usually solved to increase order picking efficiency 
include picker routing and storage assignment 
policies. Table 3 and Figure 3 show the average 
picking travel distance of the four order picker 
routing policies in combination with four storage 
assignment policies. As can be seen, E outperforms 
ALNS, L, and S for all storage assignment policies. 
Furthermore, an increase in the skewness of 
demand reduces the average picking travel distance 
for all routing policies. In terms of depot location, 
we summarize the effect of the depot locations on 
the picking travel distance in Figure 4. It is obvious 
that the average picking travel distance decreases 
when the depot location considered is 
decentralized.   
 
Table 3 Average picking travel distance (meters). 

       
Storage 
Routing 

R TB1 TB2 TB3 

E 391.64 372.76 320.16 241.52 
S 474.76 461.52 424.08 388.88 
L 431.36 419.72 371.36 289.76 

ALNS 407.44 391.40 331.72 247.60 
 

Figure 3 Average picking travel distance (meters) for 
the order picker routing policies in combination 
with various storage assignment policies. 
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Figure 4 Average picking travel distance (meters) for 
each routing policy in combination with TB3 under 
different depot locations. 

 

7. Conclusions and future research 

 This paper evaluated the effects of four main 
factors, including pick-list sizes, depot location, 
order picker routing policies, and storage 
assignment policies on the picking travel distance 
in a single block warehouse. The ANOVA results 
indicated that all the considered parameters and 
their two-way interactions affect the travel 
distance. Our computational results showed that 
the picking travel distance from the combination of 
exact routing, turnover-based storage with 20/80 
demand skewness, and decentralized depot is 
shorter than the picking travel distance from other 
combinations. These findings should encourage 
practitioners to implement the exact routing policy 
[13] and use decentralized depot together with 
turnover-based storage assignment. This work could 
be extended in various directions. For example, 
future work could also study the effect of order 
batching on the picking travel distance. Moreover, 
future research could consider the occurrence of 
picker blocking in warehouses.   
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