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Abstract

Warehouse operations are labor-intensive activities, and they account for the highest share of the
total logistics cost. Among the various operations in warehouses, order picking, which is the process of
retrieving a set of requested items from specified storage locations in a warehouse, is one of the most
critical ones. The picking travel distance required by the order pickers has profound effects on the
warehouse throughput. Hence, reducing this unproductive traveling of the order pickers is a significant lever
for increasing the total warehouse throughput. The focus of the paper at hand is to evaluate the effects of
four main factors, including pick-list sizes, depot location, order picker routing policies, and storage
assignment policies on the picking travel distance in a single block warehouse. We simulate all possible
combinations of several levels and evaluate the main and interaction effects using the analysis of variance
(ANOVA). According to ANOVA analysis, all main single effects and two-way interactions have a statistically
significant effect on the picking travel distance at a level of significance & of 0.05. On the other hand, most
of the three-way interactions are not statistically significant at an & of 0.05, except the three-way
interactions between pick-list sizes, depot location, and storage assignment policies. In terms of four-way

interactions, they are not statistically significant at an a of 0.05.
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1. Introduction

Warehouses play a vital role in the supply
chain process as they facilitate the shipping of
products to the next stage of the supply chain with
the highest level of customer service and at the
lowest possible cost. As a result, both researchers
and practitioners have focused on improving
warehouse operations in the past to enhance the
efficiency of the supply chain. Among the various
warehouse operations, order picking, which is
commonly defined as the process of retrieving
requested items from storage locations in a
warehouse in response to customer orders [1-2], is
the most costly activity [3]. Some authors
estimated that it accounts for up to 55% of the
total warehouse operating costs [4]. In addition,
order picking is a critical process for every supply
chain because of its direct influence on customer
satisfaction [5], which is the main performance
factor in e-commerce retail. Underperforming in
order picking can cause both unsatisfied customers
and high warehouse operating costs. Consequently,
improving the efficiency of order picking will lead
to lower logistics costs and to an improved
performance of the whole supply chain [6-7]. In
picker-to-parts systems, order pickers travel through
the aisles of the warehouse to pick requested items
from storage locations. The time required by the
order pickers to travel through the warehouse may
account for up to 50% of the total order picking
time [8-9]. Hence, reducing this unproductive and
non-value adding time is an essential lever for
lowering warehouse operating costs. Since the
travelling distance is proportional to the travelling
time, minimizing the travelling distance of a picking
tour is often considered equivalent to reducing the
travelling time, and it is seen as a major contributor
to the improvement of order picking efficiency. To
reduce picking travel distance, previous research

has focused on single order picking planning

problem, but this research breaks new ground by
combining multiple planning problems. Therefore,
the main contribution of the paper at hand is to
evaluate the effects of four main factors, including
pick-list sizes, depot location, order picker routing
policies, and storage assiecnment policies on the

picking travel distance in a single block warehouse.

2. Problem description

We assume a single block warehouse, which
is a layout that is common in practice and that this
is the most frequently used layout in the literature
[5],[10]. The warehouse under study is the single-
block warehouse with ten aisles. The picking aisles
are two-sided with the width of 1 meter. The
dimension (width*depth*height) of each storage
location is 1¥1*1 meter’ containing a single type of
SKU, and 1,000 SKUs (100 in each aisle) are stored
in the warehouse in total. This layout is consistent
with the warehouse layout literatures of [11-12]. In
defining the model, we make the following design
assumptions.

1. There is only one depot, where order pickers
receive orders and where retrieved items are
dropped off for further processing.

2. Order pickers can retrieve the requested items
from storage racks arranged on both sides of the
picking aisles without having to cross the aisles.

3. Order pickers working in the same area can pass
each other, which means that we do not consider
picker congestion within aisles.

4. The requested items can be picked directly from
the racks without additional vertical travel, which
means that in this study we focus on the picker
routing problem in a low-level picker-to-parts
system.

5. An item is stored in a single location only, which
means we consider order picking in a single storage

system.
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3. Order picker routing

3.1 Exact algorithm

Ratliff and Rosenthal [13] developed exact
routing algorithm for routing order pickers through
a single-block warehouse as illustrated in Figure 1.
The rectangle boxes in Figure 1 represent the
storage locations in warehouse, where the black
boxes are locations of items to be picked. The order
picker receives a pick-list containing a list of items
to be picked at the depot, starts retrieving all
requested items from storage locations, and then
returns to the depot to drop off the retrieved items.
Ratliff and Rosenthal [13] defined the picker routing
problem as the problem of finding a tour of
minimal length on a graph representation of the

investigated warehouse.

Back cross aisle

- | -

Front cross aisle
Depot

Figure 1 warehouse with a single block [13].

(a2 (2
(o

20O

Figure 2 Graph representation G, where m = 12
andn = 6 [13].

The authors defined a graph G in Figure 2
associated with the picker routing problem in Figure
1, where the vertex v represents the location of
the depot and the vertices v;,1 = 1,2,3, ..., m,
represent the storage locations of all m requested
items. The vertices a; and bj are back and front
endpoints of each picking aisle j,j = 1,2,3, ..., n.
The weight of an edge corresponds to the distance
between the endpoints of that edge. The algorithm
of Ratliff and Rosenthal [13] aims to find the
shortest order picking tour that starts from vy,
determines a sequence of storage locations v;, I =
1,2,3, ..., m that have to be visited, and ends at
Vg. As can be seen, a tour of an order picker in the
warehouse corresponds to a tour on the graph G.
So, the problem of finding the shortest order
picking tour is identical to the problem of finding a
tour on the graph G containing all the required

vertices.

3.2 Heuiristics

S-shape: The order picker starts in the first
aisle that contains requested items and traverses
the aisle completely. The picker then moves to the
next aisle that contains requested items, traverses
this aisle completely, and continues in this fashion

until all requested items have been retrieved.

Largest gap: This heuristic divides aisles into
two halves using the largest gap between two
requested items or between the aisle exits and a
requested item for defining the front and back part
of each aisle. The order picker enters the aisles in
the front part of the warehouse that contain
requested items and leaves each aisle on the side
where s/he entered it without accessing the back
part. Once the front part of the warehouse has
been completed, the order picker moves to the
back part of the warehouse to complete all aisles

in the same fashion.
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3.3 Meta-heuristics

Adaptive large neighborhood search (ALNS) is
based on the large neighborhood search (LNS), a
metaheuristic introduced by Shaw [14]. In an LNS,
the neighborhoods are defined by destroy and
repair operators. A destroy operator is used to
remove a set of vertices to cut the present solution
into parts in each iteration of the search. Then, a
repair operator is used to re-combine the removed
vertices and the remaining parts of the solution to
obtain a new feasible solution. A destroy operator
that can affect a large portion of a solution, hence
the name “large neighborhood search”, has
potential to help the search navigate different parts
of a solution space and lessen a chance of getting
stuck at local optima, especially when a problem
being tackled has constraints that make it difficult
to move from one feasible solution to another by
small changes. ALNS has been developed by Ropke
and Pisinger [15] and extends the LNS by an
adaptive selection mechanism for choosing a
destroy and repair operator at each iteration from
a “portfolio”, i.e. a set of operators. The use of
multiple operators and the ability to choose them
adaptively in the ALNS allows the search to adjust
itself to different instances of the same problem.
As it contains a mechanism for choosing operators,
ALNS can also be viewed as a hyper-heuristic; it is
a heuristic for deciding which heuristic
(destroy/repair operators) to use for creating a new
feasible solution. ALNS is comprised of four main
steps: (1) creating an initial solution; (2) choosing a
destroy operator

and performing a destroy

operator; (3) picking a repair operator and
performing a repair operator; and (4) renewing the
and the Such
include those that control the

probability of choosing each destroy or repair

parameters current  solution.

parameters
operator. For example, one may adjust the
parameters in such a way that an operator that
leads to a better solution has a higher probability

of being chosen in the next iteration.

A pseudocode of ALNS used in this work is
given below, where N_item is the pick-list size, and

N_itr is the number of iterations to be specified.

Given: N_item, N_itr.
Generate an initial solution, called S.
Set Best S =S.
For each destroy operator:
Set its score = 1.
Foritr = 1 to N_itr:
Randomly choose the number of items to
remove from the route S, called N_to remove.
Randomly choose one of the destroy
operators.
Apply the chosen destroy operator with
N _to_remove to S. Call the result New S.
Repair New S.
If New S is accepted
Set S = New S.
Set delta = 1.
If total distance of New S is less than Best S
Set Best S = New S.
Set delta = 2.
Increase the score of the chosen destroy
operator by delta.
Return Best S.

In this work, N_itr is set to 100XN_jtem, and

N _to remove ranges between 1 and min(1,
N_item/2). An initial solution is generated by
randomly permuting items to be picked. Destroy
operators are randomly chosen by a process similar
to roulette wheel selection in a genetic algorithm
[18] with the operators’ scores viewed as their
“fitness”. Destroy operators considered here are
“random removal” (randomly removing a given
number of items from the route) and “worst
removal” (successively removing an item that leads

to the highest saving of distance).
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4. Storage assignment

Four storage assignment policies are
considered in our study, namely (1) random storage
with uniform demand, (2) turnover-based storage
with 20/40 demand skewness, (3) turnover-based
storage with 20/60 demand skewness, and (4)
turnover-based storage with 20/8 0 demand
skewness. The notation x/y indicates that x% of the
items represents y% of the total demand. For a
random storage policy, items are assigned
randomly to locations available in the warehouse.
In case of turnover-based storage, we implement
the turnover-based storage with demand skewness
proposed by Celik and Stral [9] and Pohl et al. [16]
by assigning higher demand to items closer to the
depot. To do so, we first sort the storage locations
in increasing order of their distance from the depot.
Secondly, to account for demand skewness, we use
the model of Bender [17] as in equation (1) to
determine the probability that the item stored in
storage location [ will be added to a picklist.
F(x)=(1+A)x/(A+x) (1)
The function F(x) is a cumulative distribution
function for x € [0,1]. The variable A is a shape
factor depending on the demand skewness, where
the values of A are 0.60, 0.20, and 0.07 for the
demand skewness of 20/40, 20/60, and 20/80,
respectively. Assume that the number of items in
the warehouse is N. The probability that the item
i will be added to the picklist is equal to p;, as in
equation (2):
pi = F(@i/N) = F((i — 1)/N), )
i=123,..N
Since the function F is concave down (i.e., F has
negative second derivative), an item closer to the

depot has higher demand.

5. Experimental design

To investicate the effects of different
parameters on the picking travel distance in the
single-block warehouse, we use the parameters

summarized in Table 1. As can be seen, the

experimental design consists of four factors: pick-
list sizes (number of items in an order), depot
location, order picker routing policies, and storage
assisnment policies, with some problem sets taken
from [11]. This experiment considers five different
pick-list sizes with 5, 15, 25, 35, and 45 items. The
depot locations considered are central (in the
middle of the front cross aisle) (C) and decentral (in
the front of the left-most aisle) (D). The order picker
routing policies factor investigated here include the
exact algorithm (E), the S-shape (S), the largest gap
(L), and the adaptive large neighborhood search
(ALNS) policy. Four storage assignment policies are
considered in our study, namely (1) random storage
with uniform demand (R), (2) turnover-based
storage with 20/40 demand skewness (TB1), (3)
with  20/60 demand
skewness (TB2), and (4) turnover-based storage with
20/80 demand skewness (TB3).

turnover-based storage

Table 1 Parameters used for evaluating the effect

of different parameters on the picking travel

distance.
Picklist | 5, 15, 25, 35, 45
Depot | C, D
Routing | E, S, L, ALNS
Storage | R, TB1, TB2, TB3

6. Results and statistical analysis

The results of the experiment were analyzed
by full factorial design using SPSS software. Table 2
shows the ANOVA results for the picking travel
distance. The ANOVA results indicate that the main
effect,

significant at a level of significance & of 0.05. The

depot, was found to be statistically
factors, picklist, routing, and storage are also
statistically significant; however, these results are
not surprising as they are naturally happened.
Explaining the effect of the picklist sizes on the
distances is simple and

picking  travel

straightforward. An increase in picklist size should
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be directly translated to an increase in the picking
travel distances. Regarding the storage assignment
policy, the turnover-based storage policy results in
less travel distance than a random storage policy.
This result follows from the fact that in the case of
higher demand skewness, frequently requested
items are assigned closer to the depot, resulting in
shorter travel distances. The two-way interactions
were found to be statistically significant at a level
of significance & of 0.05. On the other hand, most
of the three-way interactions are not significant
because there is no interaction effect of the three
factors on the mean of picking travel distance. The
only thing that is significant is the three-way
interactions between picklist, depot, and storage. In
terms of four-way interactions, they are not
significant at a level of significance & of 0.05 for the
similar mentioned interaction of four different

factors.

Table 2 Full-factorial ANOVA results for picking

travel distance.

Tests of Between-Subjects Effects

DependentVariable: Distance

Type Il Sum
Source of Squares df Mean Square F Sig.
Corrected Model 14879157 6° 159 93579.607 55373 000
Intercept 111216680.8 1 1112166808 | 65809.076 000
Picklist 10585220.68 4 2646305170 1565870 000
Depot 12418.880 1 12418.880 7.348 007
Routing 1338351.200 3 446117.100 263.976 .0oo
Storage 2201404180 3 733201.303 434205 .0oo
Picklist* Depot 21077.620 4 5269.380 ERRE 015
Picklist* Routing 116032.000 12 9665.333 5722 ooo
Picklist* Storage 276543.520 12 23045293 13,636 ooo
Depot* Routing 24363.480 3 8121160 4805 o003
Depot* Storage 45100.440 3 16033.480 8.896 ooo
Routing * Storage 107872.660 9 11985.851 7.082 o0oo
Picklist* Depot* Routing 5526.120 12 460510 272 993
Picklist* Depot * Storage 40800.360 12 3400.030 2012 021
g{gg;'&' Routing* 71810.040 36 1994723 1180 220
Depot* Routing * Storage 25010.800 9 2778.978 1.644 .099
fglglzlg'eDEpnt*Rnut‘ng 7625.600 36 211822 125 | 1.000
Error 1081593.600 G40 1689.990
Total 1271774320 e00
Corrected Total 1596075118 799

a. R Squared= 932 (Adjusted R Squared = 915)

The two main decision problems which are
usually solved to increase order picking efficiency
include picker routing and storage assignment
policies. Table 3 and Figure 3 show the average
picking travel distance of the four order picker
routing policies in combination with four storage
assignment policies. As can be seen, E outperforms
ALNS, L, and S for all storage assignment policies.
Furthermore, an increase in the skewness of
demand reduces the average picking travel distance
for all routing policies. In terms of depot location,
we summarize the effect of the depot locations on
the picking travel distance in Figure 4. It is obvious
that the average picking travel distance decreases
location  considered is

when the depot

decentralized.

Table 3 Average picking travel distance (meters).

Storag R TB1 TB2 TB3
Routing
E 391.64 | 372.76 | 320.16 | 241.52
S 474.76 | 461.52 | 424.08 | 388.88
L 431.36 | 419.72 | 371.36 | 289.76
ALNS 407.44 | 391.40 | 331.72 | 247.60

AVERAGE PICKING TRAVEL DISTANCE (METERS)
——L S L ALNS

500

o .\’\
300 \
¢

200

100

Figure 3 Average picking travel distance (meters) for
the order picker routing policies in combination

with various storage assignment policies.
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AVERAGE PICKING TRAVEL DISTANCE (METERS)
=——TB3(0) TB3(D)

500
400
300
200

100

E S L ALNS

Figure 4 Average picking travel distance (meters) for
each routing policy in combination with TB3 under

different depot locations.

7. Conclusions and future research

This paper evaluated the effects of four main
factors, including pick-list sizes, depot location,
order picker routing policies, and storage
assiecnment policies on the picking travel distance
in a single block warehouse. The ANOVA results
indicated that all the considered parameters and
their

distance. Our computational results showed that

two-way interactions affect the travel
the picking travel distance from the combination of
exact routing, turnover-based storage with 20/80
demand skewness, and decentralized depot is
shorter than the picking travel distance from other
combinations. These findings should encourage
practitioners to implement the exact routing policy
[13] and use decentralized depot together with
turnover-based storage assignment. This work could
be extended in various directions. For example,
future work could also study the effect of order
batching on the picking travel distance. Moreover,
future research could consider the occurrence of

picker blocking in warehouses.
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