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Abstract

This research aims to analyze the outbreak of influenza in Thailand by studying factors related to
the epidemic and predicting the Influenza-like Iliness percentage (ILI%). The ILI% data, aggregated monthly
for each province in Thailand, is compared using five prediction methods: multiple linear regression,
regression tree, Light Gradient Boosting Machine (LightGBM), Extreme Gradient Boosting (XGBoost), and
random forest. The features used include vaccine-related factors, risk group disease factors, population
factors, and weather factors. Additionally, feature selection methods such as Stepwise, Features Importance
Ranking, SHAP Ranking, Boruta, BorutaSHAP, and Mutual Information Scores (MI Scores) with Boruta and
BorutaSHAP. To evaluate the performance of the models, the researchers used the symmetric mean
percentage error (SMAPE) as a metric. Random forest method, using Ml Scores with BorutaSHAP, achieved
the lowest SMAPE of 59.11% on the test dataset and identified significant features such as vaccination rate,
number of houses, population aged 7-9 years, population aged 15-24 years, and number of patients with
stroke. These forecasts can help prevent and miticate the impact of outbreaks and inform vaccine

distribution decisions, as well as community-level outbreak prevention strategies.
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