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Abstract

Distinguishing between a human portrait and one generated by artificial intelligence (Al) is becoming
increasingly difficult. As Al technology advances, making Al-generated portraits more similar to real people
portraits, posing a significant challenge for classification systems. Portraits contain a vast amount of
information regarding color, texture, lighting, and subtle details. Deep learning models, with their layered
architecture, can effectively learn patterns and relationships within this data. This paper explores the power
of transfer learning with CNNs and data augmentation to enhance accuracy for classifying real and Al-
generated portraits. We leverage three pre-trained models (MobileNetV2, ResNet50, and EfficientNetV2S) on
a dataset of 3,000 images (1,500 per class). The performance is evaluated with and without image
augmentation, providing valuable insights into their combined effect. Our findings suggest that
EfficientNetV2S without data augmentation achieved the highest accuracy of 94.67%. and 94.47% for F1-

Score.
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