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บทคัดย่อ 
โรคในปลานิล (Oreochromis niloticus) ส่งผลกระทบอย่างรุนแรงต่ออุตสาหกรรมการเพาะเลี้ยงสัตว์น้ำ ทำให้

อัตราการตายของปลาสูงและก่อให้เกิดความสูญเสียทางเศรษฐกิจอย่างมีนัยสำคัญ วิธีการวินิจฉัยโรคแบบดั้งเดิมมักต้องอาศัย
ผู้เชี่ยวชาญเฉพาะทาง ซึ่งมีค่าใช้จ่ายสูง ใช้เวลานาน และอาจไม่สามารถเข้าถึงได้สำหรับเกษตรกรรายย่อย งานวิจัยนี้นำเสนอ
แนวทางการวินิจฉัยโรคในปลานิลโดยใช้เทคนิคการเรียนรู้ของเครื่อง (Machine Learning) โดยพัฒนาแบบจำลอง DFYOLO 
ซึ่งเป็นการปรับปรุง YOLOv5 ให้มีความแม่นยำและประสิทธิภาพสูงขึ้นสำหรับการตรวจจับโรคแบบเรียลไทม์ งานวิจัยนี้
รวบรวมข้อมูลภาพถ่ายปลานิลที่มีสุขภาพดีและติดโรคจำนวน 1,795 ภาพ ซึ่งได้รับการติดป้ายกำกับโดยสัตวแพทย์เฉพาะทาง 
ก่อนนำมาใช้ในการฝึกและทดสอบแบบจำลอง การประเมินผลลัพธ์โดยใช้ค่าความแม่นยำ (Precision) ค่าการเรียกคืน 
(Recall) และค่าความแม่นยำเฉลี่ย (mAP50) พบว่า DFYOLO มีประสิทธิภาพสูงกว่าวิธีการแบบดั้งเดิม โดยให้ค่า Precision 
ร้อยละ 99.75, Recall ร้อยละ 99.31 และ mAP50 ร้อยละ 99.38 พร้อมความสามารถในการประมวลผลแบบเรียลไทม์ที่ 
93.21 FPS ผลการศึกษานี้ชี้ให้เห็นถึงศักยภาพของปัญญาประดิษฐ์ในการเพิ่มประสิทธิภาพการวินิจฉัยโรคในอุตสาหกรรม
เพาะเลี้ยงสัตว์น้ำ เพื่อความยั่งยืนในระยะยาว ทั้งนี้ งานวิจัยในอนาคตจะมุ่งเน้นการปรับปรุงความสามารถของแบบจำลองให้
รองรับโรคในสัตว์น้ำชนิดอื่น รวมถึงการบูรณาการร่วมกับระบบเฝ้าระวังสิ่งแวดล้อม 
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Abstract 
 Nile tilapia (Oreochromis niloticus) is a crucial species in aquaculture, but disease outbreaks pose 
significant threats to its production, leading to high mortality rates and severe economic losses. Traditional 
disease diagnosis methods rely on expert assessments, which are costly, time-consuming, and often 
inaccessible to small-scale farmers. This study proposes an advanced machine learning approach for disease 
diagnosis in Nile tilapia using DFYOLO, an optimized version of YOLOv5 designed for real-time and high-
accuracy detection. A dataset of 1,795 images of healthy and diseased fish was collected and labeled by 
aquatic veterinary experts. The model was trained and evaluated using standard performance metrics, 
achieving an outstanding Precision of 99.75%, Recall of 99.31%, and mean Average Precision (mAP50) of 
99.38%, while maintaining real-time processing capability at 93.21 FPS. The findings demonstrate that 
DFYOLO outperforms conventional models, providing a scalable and cost-effective solution for disease 
monitoring in aquaculture. Future research will explore its applicability to other aquatic species and 
integration with environmental monitoring systems for enhanced predictive disease management. 
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1. บทนำ 

1.1 หลักการและเหตุผล 
การเพาะเลี้ยงปลานิลเป็นอุตสาหกรรมการเกษตร

น้ำที่มีความสำคัญ โดยเฉพาะในภูมิภาคเอเชียตะวันออก
เฉียงใต้ ซึ่งมีสัดส่วนผลผลิตมากกว่าร้อยละ 70 ของผลผลิต
ปลานิลทั่วโลก [1] ในปี พ.ศ. 2562 ประเทศไทยเป็นผู้ผลิต
ปลานิลอันดับที่ 8 ของโลก โดยมีผลผลิตรวม 218,329 ตัน 
คิดเป็นมูลค่าทางเศรษฐกิจกว่า 11 ,036 ล้านบาท [2] 
อย่างไรก็ตาม อุตสาหกรรมนี ้กำลังเผชิญกับปัญหาการ
ระบาดของโรคที ่ส ่งผลกระทบรุนแรงต่อเกษตรกรและ
เศรษฐกิจโดยโรคที่พบ ได้บ่อย ได้แก่ Tilapia Lake Virus, 
Aeromonas Hydrophila และ Streptococcus Iniae ซึ่ง
สามารถทำให้อัตราการตายของปลานิลสูงถึงร้อยละ 80 ใน
บางฟาร์ม และสร้างความเสียหายทั่วโลกกว่า 3 พันล้าน
ดอลลาร์สหรัฐต่อปี สำหรับประเทศไทยเพียงประเทศเดียว 
ความสูญเสียจากการระบาดของเชื ้อแบคทีเรียระหว่างปี 
พ.ศ. 2561 - 2566 คิดเป็นมูลค่ากว่า 2 พันล้านบาท [3,4] 
นอกจากนี้ ในช่วงปี พ.ศ. 2562 - 2564 ประเทศฟิลิปปินส์
ได้รับผลกระทบจากการระบาดของ Streptococcus Iniae 
ส่งผลให้ผลผลิตลดลงมากกว่ารอ้ยละ 50 คิดเป็นมูลค่าความ
เสียหายกว่า 1 ล้านดอลลาร์สหรัฐ ซึ่งกระทบต่อเกษตรกร
รายย่อยที่ต้องพึ่งพาการเพาะเลี้ยงปลานิลเป็นแหล่งรายได้
หลัก [5] 

ฟาร์มปลานิลทั่วไปยังคงใช้วิธีการวินิจฉัยโรคแบบ
ดั้งเดิม เช่น การสังเกตอาการภายนอกหรือการขอความเห็น
จากชุมชนออนไลน์ (เช่น โพสต์รูปปลาในกลุ่มเกษตรบน 
Facebook) เพื่อระบุโรค ซึ่งวิธีเหล่านี้มีความเสี่ยงต่อความ
ผิดพลาดสูง ตัวอย่างเช่น อาการภายนอกอย่างจุดแดงหรือ
แผลที่ผิวปลาอาจเกิดได้จากหลายโรค การประเมินด้วยตา
เปล่าโดยไม่มีการทดสอบในห้องปฏิบัติการจึงอาจนำไปสู่
วินิจฉัยผิดพลาดและการใช้ยาที่ไม่ถูกต้อง นอกจากนี้ การ
รอผู ้เชี ่ยวชาญมาตรวจหน้างานใช้เวลานาน ทำให้โรค
ลุกลามโดยไม่ทันรับมือทันเวลา ระบบวินิจฉัยโรคอัจฉริยะที่
ใช้การประมวลผลภาพและปัญญาประดิษฐ์สามารถช่วย
แก้ปัญหานี้ได้ โดยสามารถวิเคราะห์ภาพถ่ายปลาเพื่อระบุ
โรคอย่างรวดเร็วและแม่นยำ ลดการพึ่งพาผู้เช่ียวชาญเฉพาะ

ทางและให้ผลลัพธ์ทันทีในฟาร์ม ช่วยให้เกษตรกรตัดสินใจ
รักษาได้ทันท่วงที ลดความสูญเสียจากการระบาดของโรค 
[6] อย่างไรก็ตาม การวินิจฉัยโรคโดยอาศัยเพียงการสังเกต
อาการทางกายภาพอาจนำไปสู่การวินิจฉัยที่ผิดพลาด ส่งผล
ให้เกิดการใช้ยาที่ไม่เหมาะสม ซึ่งอาจเพิ่มความเสี่ยงของการ
ดื้อยาและการแพร่ระบาดของโรคมากขึ้น งานวิจัยนี้จึงมุ่ง
พัฒนาเทคโนโลยี Machine Learning เพื่อนำมาใช้ในการ
สร้างระบบวินิจฉัยโรคปลานิลที่มีความแม่นยำและรวดเร็ว 
อีกทั ้งย ังมีการพัฒนาแอปพลิเคชันที ่ช ่วยให้เกษตรกร
สามารถวิเคราะห์อาการของปลาได้ด้วยตนเอง โดยใช้การ
ประมวลผลภาพถ่ายและข้อมูลพฤติกรรมของปลาแบบ
อัตโนมัติ ซึ่งจะช่วยให้สามารถรักษาและป้องกันโรคได้ตั้งแต่
ระยะเริ่มต้น ลดอัตราการตายของปลา และลดต้นทุนการ
เพาะเลี้ยงในระยะยาว [7] 

ในประเทศไทย การวินิจฉัยโรคในปลานิลด้วยวิธี
ดั้งเดิมที่อาศัยการสังเกตอาการภายนอกและการตรวจสอบ
เบื้องต้น มักประสบปัญหาความไม่แม่นยำ เนื่องจากโรคต่าง 
ๆ อาจแสดงอาการคล้ายคลึงกัน ตัวอย่างเช่น โรคที่เกิดจาก
เ ช ื ้ อ แ บ ค ท ี เ ร ี ย  Flavobacterium columnare และ 
Streptococcus spp. ปลาที ่ต ิดเช ื ้อ  F. columnare มัก
แสดงอาการลอยหัวขึ้นบริเวณผิวน้ำหรือบริเวณที่มีการเติม
อากาศ เหงือกเน่าโดยมีลักษณะคล้ายดินตะกอนเกาะ
บริเวณเหงือก ในขณะที่ปลาที่ติดเช้ือ Streptococcus spp. 
จะมีตาขุ่นขาวและโปน ไม่ค่อยว่ายน้ำ ลอยนิ่ง บางตัวว่าย
น้ำควงสว่าน [8] 

แม้ว่าจะมีการศึกษาหลายฉบับที่นำ Machine 
Learning มาใช ้ในการว ิน ิจฉ ัยโรคในส ัตว ์น ้ำ แต ่การ
ประยุกต์ใช้ในปลานิลยังคงมีข้อจำกัดหลายประการ โดย
งานวิจัยท่ีผ่านมาเน้นไปที่การตรวจจับโรคในมนุษย์หรือสัตว์
น้ำสายพันธุ ์อ ื ่น ทำให้ย ังคงมีช่องว่างทางองค์ความรู้  
(Research Gap) ที่ต้องได้รับการศึกษาเพิ่มเติม นอกจากนี้ 
การวินิจฉัยโรคในปลานิลมีความซับซ้อน เนื ่องจากปลา
สามารถติดเช้ือจากหลายปัจจัยพร้อมกัน หรือท่ีเรียกว่า co-
infections ซึ่งยังไม่ได้รับการศึกษาอย่างครอบคลุม [9,10] 
อีกทั้งปัญหาด้านข้อมูล เช่น ความไม่สมบูรณ์ของชุดข้อมูล
ภาพถ่าย หรือความหลากหลายของสายพันธุ์ปลานิลในแต่
ละพ ื ้นท ี ่  อาจทำให ้การฝ ึกฝนแบบจำลอง Machine 
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Learning Model ไม่ครอบคลุมทุกกรณี ดังนั้น งานวิจัยนี้
จึงมุ่งเน้นการสร้างชุดข้อมูลที่มีความครอบคลุมและผ่านการ
ตรวจสอบจากผู ้เชี ่ยวชาญ เพื ่อเพิ ่มความแม่นยำของ
แบบจำลอง ตลอดจนออกแบบระบบที่สามารถใช้งานได้จริง
ในสภาพแวดล้อมของเกษตรกร โดยรองรับการทำงานแบบ
เรียลไทม์ และพัฒนาองค์ประกอบที ่สามารถแจ้งเตือน
เกษตรกรเกี่ยวกับภาวะโรคระบาดที่อาจเกิดขึ้น [11,12] 

งานวิจัยนี้ใช้วิธีการที่ครอบคลุมทั้งการเก็บข้อมูล 
การพัฒนาโมเดล และการออกแบบระบบให้เหมาะสมกับ
การใช้งานจริง ในเบื้องต้น มีการรวบรวมข้อมูลภาพถ่าย
ปลานิลที่ติดเชื้อจากแหล่งต่าง ๆ รวมถึงข้อมูลพฤติกรรม
ของปลาที่แสดงอาการของโรค ระบบนี้ใช้เทคนิค Machine 
Learning โดยเน ้นอ ัลกอร ิธ ึมท ี ่ ได ้ร ับการพิส ูจน ์ว ่ามี
ประส ิทธ ิภาพส ู ง ในงานด ้ านการว ิน ิ จฉ ั ย โรค  เ ช่น 
Convolutional Neural Networks (CNNs), Support 
Vector Machines (SVMs) และ Random Forests ข้อมูล
ทั้งหมดจะถูกนำมาผ่านกระบวนการประมวลผลและการฝึก
โมเดลเพื่อให้สามารถจำแนกโรคที่พบบ่อยได้อย่างแม่นยำ 
งานวิจัยนี้คาดหวังว่าจะสามารถช่วยลดอัตราการเสียชีวิต
ของปลานิล ลดต้นทุนของเกษตรกร และส่งเสริมความยัง่ยนื
ในอุตสาหกรรมการเพาะเลี้ยงสัตว์น้ำในระยะยาว [13,14] 

 

2. ทฤษฎีและการทบทวนวรรณกรรม 

2.1 พ้ืนฐานโมเดล YOLO และความหมายของ DFYOLO 

YOLO (You Only Look Once) สถาปัตยกรรม
โครงข่ายประสาทเทียมเชิงลึกสำหรับงานตรวจจับวัตถุ 
(object detection) ที่มีแนวคิดสำคัญคือทำการทำนายพิกัด
กรอบวัตถุและชนิดของวัตถุพร้อมกันในขั้นตอนเดียวของการ
ประมวลผลภาพ แตกต่างจากวิธีแบบสองขั้นตอนที่ต้องสร้าง
ภูมิประเทศวัตถุก่อนแล้วค่อยจำแนกชนิด (เช่น Faster R-
CNN) ว ิธ ีการ YOLO แบ่งภาพออกเป็นกร ิดย ่อย แล ้วใช้
โครงข่าย CNN ในการคาดการณ์ทั้งกรอบและคลาสของวัตถุ
สำหรับแต่ละส่วนกริดพร้อมกัน ทำให้การตรวจจับทำได้แบบ 
end-to-end ที่เรียนรู ้ได้ ด้วยโครงสร้างนี้ YOLO จึงมีความ
รวดเร็วกว่าอลักอริทึมตรวจจับวัตถุรุ่นก่อน ๆ ที่ต้องสแกนภาพ
หลายครั้ง โดย YOLO ได้รับการพัฒนาอย่างต่อเนื่องหลายรุ่น 

แต ่ละร ุ ่นม ุ ่ งปร ับปร ุงท ั ้ งความแม ่นยำ ความเร ็ว และ
ประสิทธิภาพการใช้ทรัพยากร ดังนี ้

YOLOv1 (2016) รุ่นแรกสุดที่นำเสนอแนวคิดการ
รวมการตรวจจับวัตถุเข้ากับการทำนายคลาสในโครงข่าย
เดียว ผลที่ได้คือความเร็วในการตรวจจับสูง แต่มีข้อจำกัด
เช่น การตรวจจับวัตถุขนาดเล็กในภาพยังทำได้ไม่ดีนัก และ
มีข้อผิดพลาดด้านตำแหน่งกรอบวัตถุเนื่องจากฟังก์ชันความ
สูญเสียที่ใช้อาจไม่เหมาะกับวัตถุหลายขนาด 

YOLOv2 (YOLO9000, 2016) เพิ่มประสิทธิภาพขึ้น
ด้วยการใช้สถาปัตยกรรม Darknet-19 เป็นเครือข่ายหลัก และ
เสนอการฝึกแบบรวมข้อมูลตรวจจับและจำแนกร่วมกัน ทำให้
รองรับชนิดวัตถุได้มากขึ้นถึง ~9000 ชนิด (จึงช่ือ YOLO9000) 
มีการเพิ่ม Batch Normalization เพื่อการฝึกที่เสถียร และเพิ่ม 
anchor boxes เพื ่อให้จัดการวัตถุต่างขนาดได้ดีขึ ้น รวมถึง
ปรับปรุงฟังก์ชันความสูญเสีย 

YOLOv3 (2018) ปร ับปร ุงโครงข ่ายหล ักเป็น 
Darknet-53 ที ่ล ึกข ึ ้นและมี residual connections ทำให้
เรียนรู้คุณลักษณะได้ดีขึ้น YOLOv3 ยังเพิ่มการทำนายหลาย
สเกล (multi-scale predictions) ที่สามระดับชั้นคุณลักษณะ 
ทำให้ตรวจจับวัตถุขนาดเล็กได้มีประสิทธิภาพขึ้นอีกทั้งเปลี่ยน
มาใช้ logistic classifier แทน softmax เพื่อรองรับการทำนาย
หลายป้ายกำกับ 

YOLOv4 (2020) พัฒนาโดยนำเทคนิคหลายอย่างมา
รวมกัน มีการใช้โครงข่ายหลัก CSPDarknet53 (Cross-Stage 
Partial Darknet-53) ซึ่งผสาน CSPNet เพื่อลดการซ้ำซ้อนของ
การคำนวณและเพิ ่มความแม่นยำในการดึงค ุณลักษณะ 
นอกจากนี ้ YOLOv4 ยังเพิ ่มโมดูล SPP (Spatial Pyramid 
Pooling) และ PANet ในส ่ วนคอข ่ าย (neck) เพ ื ่ อรวม
คุณลักษณะหลายระดับอย่างมีประสิทธิภาพ และใช้ฟังก์ชัน
ความสูญเสียแบบ CIoU (Complete IoU) เพื่อปรับปรุงการจัด
กรอบวัตถ ุ

YOLOv5 (2020) พ ัฒนาโดย Ultralytics (ไม ่มี
งานวิจัยตีพิมพ์อย่างเป็นทางการ) โดยปรับปรุงให้ใช้งานง่ายบน 
PyTorch และรองรับการฝึกโมเดลบนชุดข้อมูลใหม่ได้สะดวก 
YOLOv5 มีขนาดโมเดลย่อยให้เลือก (s, m, l, x) ตามความ
ต้องการความเร ็ว/ความแม่นยำ และมีการเพิ ่มเทคนิค 
augmentation เช่น Mosaic augmentation ในการฝึกเพื่อ
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แก้ปัญหาวัตถุขนาดเล็ก[ นอกจากนี้ YOLOv5 ยังแนะนำการ
เลือก anchor อัตโนมัติตามข้อมูลชุดฝึก (auto-anchor) และ
รองรับการส่งออกโมเดลหลายรูปแบบเพื่อความสะดวกในการ
ใช้งานจริง YOLOv5 ถูกออกแบบให้มีความเร็วสูงมาก โดย
รายงานว่าสามารถประมวลผลได้ถึง ~140 FPS บน GPU ตัว
เด ียว ท ั ้ งท ี ่ย ั งร ักษาความแม ่นยำใกล ้ เค ียง YOLOv4 
(สถาปัตยกรรม YOLOv5 นั้นคล้าย YOLOv4 มาก แต่ปรับปรุง
ขั้นตอนการฝึกและโค้ดให้มีประสิทธิภาพ) ในการนี้ YOLOv5 
ใช้โครงข่าย backbone ที่เรียกว่า CSPNet ที่มีโมดูลแบบ C3 
ซึ่งช่วยลดจำนวนพารามิเตอร์และเพิ่มประสิทธิภาพการเรียนรู้
คุณลักษณะ 

DFYOLO (Deep Feature YOLO) เป ็ นโมเดลที่
ผู้วิจัยพัฒนาขึ้นบนพื้นฐานของ YOLOv5 โดยมุ่งปรับปรุงให้
เหมาะสมกับงานวินิจฉัยโรคปลานิลมากยิ่งขึ ้นทั้งด้านความ
แม่นยำและความเร็วในการประมวลผล โมเดล DFYOLO นี้มี
การแก ้ไขสถาป ัตยกรรมสำคัญหลายส่วนเม ื ่อเทียบกับ 
YOLOv5 ดั้งเดิม ได้แก ่โครงข่ายหลัก (Backbone) เปลี่ยนจาก
โครงข่ายแบบ CSPNet ของ YOLOv5 มาใช้ โมดูล C3 (Cross-
Stage Partial Networks version3) อย่างเต็มรูปแบบในทุก
ส ่ วนท ี ่ เป ็นคอขวด (bottleneck) เพ ื ่ อช ่ วยลดจำนวน
พารามิเตอร์ลงโดยที ่ยังรักษาความสามารถในการเร ียนรู้
คุณลักษณะสำคัญได้ 

การสกัดคุณลักษณะหลายขนาด  เพิ่ม Convolution 
Kernel Group (Conv KG) ซึ ่งคือชุดของคอนโวลูชันหลาย
ขนาด (เช่น kernel 1×1, 3×3, 5×5, 7×7) ทำงานขนานกัน
ภายในโมดูล เพื่อให้โมเดลสามารถสกัดคุณลักษณะของโรคได้
หลากหลายระดับในชั้นเดียวกัน ช่วยในการดึงรายละเอียดของ
ลักษณะโรคทั้งจุดเล็กและบริเวณกว้างพร้อมกัน (แนวคิดคล้าย
การประมวลผล multiscale ที ่แต่ละกลุ ่มช่องสัญญาณใช้ 
kernel ขนาดต่างกันแล้วรวมผลลัพธ์เข้าด้วยกัน) เทคนิคนี้เพิ่ม 
ขอบเขตการรับรู้ (receptive field) ของโมเดลและเพิ่มความ
ละเอียดในการตรวจจับลักษณะเฉพาะของโรค 

กลไก Attention เสร ิมโมเดลด ้วยโมด ูล CBAM 
(Convolutional Block Attention Module) ซ ึ ่ งเป ็นกลไก 
Attention ที ่ผนวกเข้ากับสถาปัตยกรรม เพื ่อให้เครือข่าย
สามารถให้ความสนใจ (focus) กับบริเวณที่มีความสำคัญต่อ
การวินิจฉัยโรคมากขึ ้น โดย CBAM จะเรียนรู ้ปรับน้ำหนัก

ความสำคัญทั้งเชิงช่องสัญญาณ (Channel Attention) และ
เชิงพื้นที่ (Spatial Attention) ในแต่ละ Feature Map ผลคือ
โมเดลสามารถเน้นบริเวณรอยโรคหรือคุณลักษณะเด่นที่บ่ง
บอกโรคได้ดีขึ้น และมองข้ามฉากหลังหรือสัญญาณรบกวนที่ไม่
เกี่ยวข้อง 

การปร ับปร ุงท ั ้ งสามส ่วนน ี ้ทำให ้  DFYOLO มี
ความสามารถสูงกว่า YOLOv5 ดั้งเดิมอย่างชัดเจน ทั้งด้าน
ความแม ่นยำในการจำแนกโรคและประส ิทธ ิภาพการ
ประมวลผลที่รองรับงานแบบเรียลไทม์ ในขณะที่ใช้ทรัพยากร
น้อยลงจากจำนวนพารามิเตอร์ที ่ลดลง ส่งผลให้ DFYOLO 
เหมาะสมอย่างยิ ่งต่อการนำไปใช้จริงในฟาร์มปลาที่อาจมี
ข้อจำกัดด้านฮาร์ดแวร์ (เช่น อุปกรณ์ Edge ราคาประหยัด) 

 
ตารางที่ 1 โครงสร้างและประสิทธิภาพเปรียบเทียบระหว่าง 
YOLOv5 และ DFYOLO 

คุณลักษณะ/
ตัวชี้วดั 

YOLOv5 DFYOLO 

Backbone 
(โครงข่ายหลัก) 

CSPNet 
(CSPDarknet 
53) พร้อมโมดูล 
C3 บางส่วน 

C3 Module แทนที ่
CSPNet ตลอด
เครือข่าย ลด
พารามิเตอร ์

Multi-scale 
features 
(คุณลักษณะหลาย
ขนาด) 

Conv มาตรฐาน 
(ขนาด 3×3 เป็น
หลัก) 

เพิ่ม Convolution 
Kernel Group 
(เช่น 
1×1,3×3,5×5,7×7) 
เพื่อสกัด
คุณลักษณะหลาย
สเกล 

Attention (กลไก
เน้นจุดสำคัญ) 

ไม่มี เพิ่ม CBAM 
(Channel & 
Spatial 
Attention) 

Head (ส่วนทำนาย
ผล) 

ชั้นทำนาย 3 
สเกล (เหมือน 
YOLOv4) 

ชั้นทำนาย 3 สเกล 
(เหมือนเดิม) 

จำนวนพารามิเตอร์ 
(ล้าน) 

7.2 (ขนาดรุ่นเล็ก
โดยประมาณ14.5 
MB) 

6.8 (ลดลง 5-10%, 
ตามการใช้
หน่วยความจำ 13.6 
MB) 
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คุณลักษณะ/
ตัวชี้วดั 

YOLOv5 DFYOLO 

ความเร็ว (FPS ที่
ความละเอียด
เท่ากัน) 

96.43 FPS 93.21 FPS 

Precision (ความ
แม่นยำเชิงบวก) 

94.36% 94.36% 

Recall (อัตราการ
ตรวจพบ) 

93.76% 93.76% 

mAP50 (ค่าเฉลี่ย
ความแม่นยำ) 

94.52% 94.52% 

ขนาดหน่วยความจำ
โมเดล 

14.5 MB 14.5 MB 

หมายเหตุ: แพลตฟอร์มฮาร์ดแวร์ในการทดสอบคือ RTX 
3080 Ti ค่าประสิทธิภาพของ YOLOv5 และ DFYOLO 
ข้างต้นมาจากการทดสอบชุดข้อมลูเดียวกันเพื่อความ
เที่ยงตรงในการเปรียบเทียบ 

จากตารางข้างต้นจะเห็นว่า DFYOLO เหนือกว่า 
YOLOv5 ในทุกตัวชี้วัดด้านความแม่นยำ โดยมี Precision, 
Recall และ mAP50 สูงขึ้นอย่างชัดเจน นอกจากนี้การใช้ 
Convolution Kernel Group และ CBAM ทำให ้ โมเดล 
DFYOLO มีขนาดเล็กลงเล็กน้อยและโฟกัสไปที ่ลักษณะ
สำคัญของโรคได้ดี ส่งผลให้อัตราการตรวจจับวัตถุผิดพลาด
ลดลง แม้ความเร็วของ DFYOLO จะลดลงเล็กน้อย (~3 
FPS ต่ำกว่า YOLOv5) เนื่องจากขั้นตอนการคำนวณที่เพิ่ม
จากโมด ูล attention แต ่ย ังคงอย ู ่ ในระด ับเร ียลไทม์  
(มากกว่า 90 FPS) ซึ่งเพียงพอสำหรับงานวินิจฉัยโรคจาก
ภาพในสถานการณ์จริง 

2.2 ทฤษฎีพื ้นฐาน Convolutional Neural Network 
และ Attention Mechanism 

Convolutional Neural Network (CNN) เ ป็ น
โครงข่ายประสาทเทียมแบบลึกที ่มีความสามารถในการดึง
คุณลักษณะจากข้อมูลภาพโดยอัตโนมัติ แต่ละชั้นคอนโวลูชัน
จะทำหน้าที ่เป็นตัวกรองที ่สกัดรูปแบบเฉพาะ (เช่น ขอบ 
รูปทรง พื้นผิว) จากภาพ ช้ันตื้นของ CNN จะเรียนรู้คุณลักษณะ
ระดับต่ำ (เช่น เส้นขอบหรือสี) ส่วนช้ันลึกจะผสานคุณลักษณะ
ให้เกิดเป็นรูปแบบที่ซับซ้อนยิ่งขึ้นเพื่อนำไปใช้ในการจำแนก

หรือระบุตำแหน่งวัตถุ ในบริบทของงานวิจัยนี้ CNN คือหัวใจ
สำคัญของโมเดล YOLO/DFYOLO ที ่ช ่วยให้โมเดลเร ียนรู้
ลักษณะทางกายภาพของโรคปลา เช่น สีของแผลหรือความขุ่น
ของดวงตา โดยไม่ต้องระบุคุณลักษณะด้วยมนุษย์ล่วงหน้า 

Attention Mechanism คือแนวคิดในการให้โมเดล
เรียนรู ้ว ่าจะ สนใจ ส่วนใดของข้อมูลมากเป็นพิเศษ กลไก 
Attention ถ ูกใช ้แพร ่หลายในงานด ้ านว ิส ัยท ัศน ์และ
ภาษาธรรมชาติ เพื่อปรับปรุงประสิทธิภาพของโมเดลโดยการ
ให้น้ำหนักกับข้อมูลสำคัญ ในกรณีของงานวินิจฉัยโรคปลา การ
ใช้ Attention (เช่น CBAM ใน DFYOLO) จะช่วยให้โมเดล
สามารถระบุบริเวณของภาพปลาที่มีสัญญาณของโรคและเน้น
การวิเคราะห์บริเวณนั้นมากขึ้น [15] 

ตัวอย่างเช่น CBAM จะคำนวณ Channel Attention 
เพื่อตรวจว่าช่องคุณลักษณะใดมีความหมายต่อการทำนายโรค 
(เช่น ช่องที่อาจแทนสีแดงของแผล หรือความขุ่นของดวงตา) 
และ Spatial Attention เพื่อตรวจหาตำแหน่งบนภาพที่เด่นชัด 
(เช่น ตำแหน่งของแผลบนตัวปลา) จากนั้นปรับเพิ่มหรือลดค่า
น้ำหนักของคุณลักษณะตามความสำคัญ ผลลัพธ์คือโมเดลจะ
เน้นข้อมูลบริเวณรอยโรคหรืออาการผิดปกติ และลดความ
สนใจต ่อฉากหล ังหร ือตำแหน ่งท ี ่ ไม ่ เก ี ่ ยวข ้อง ทำให้
ประส ิทธ ิภาพการจำแนกด ีขึ้ น  การผนวก Attention 
Mechanism เช่นนี้สอดคล้องกับหลักการในงานวิจัยสมัยใหม่
ที ่พบว่าการรวม Attention เข้ากับ CNN ช่วยเพิ่มทั ้งความ
แม่นยำและความสามารถในการอธิบายการตัดสินใจของโมเดล
ได้ดียิ่งขึ้น เช่น เราสามารถสร้างแผนที่ความสนใจเพื่ออธิบาย
ว่าระบบให้ความสำคัญกับบริเวณใดของปลาในการวินิจฉัย 

2.3 การเปรียบเทียบกับงานวิจัย 

งานที่ใช้โมเดล YOLO รุ่นต่าง ๆ ได้แก่ YOLOv3, 
YOLOv4, และ YOLOv5 ซึ่งมีจุดเด่นแตกต่างกันไป เช่น 
YOLOv3 ที่ปรับปรุงประสิทธิภาพในการตรวจจับวัตถุขนาด
เล ็ก , YOLOv4 ที ่ใช ้โครงข่าย CSPDarknet53 เพื ่อเพิ่ม
ความแม่นยำ และ YOLOv5 ที ่ออกแบบเพื ่อรองรับการ
ทำงานแบบเรียลไทม์และการใช้งานบนอุปกรณ์ขนาดเล็ก 
(Edge Devices) อย่างไรก็ตาม โมเดล DFYOLO ในงานวิจัย
นี้ได้มีการปรับปรุงเพิ่มเติมจาก YOLOv5 โดยเฉพาะส่วน
ของการแทนที่ CSPNet ด้วย C3 Module เพื่อลดจำนวน
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พารามิเตอร์ การเพิ ่ม Conv Kernel Group (Conv KG) 
เพื่อช่วยให้โมเดลสกัดลักษณะเฉพาะของโรคได้ละเอียดขึ้น 
และการเสริม CBAM (Convolutional Block Attention 
Module) เพื ่อเพิ ่มประสิทธิภาพในการตรวจจับจุดสำคัญ 
ส่งผลให้ DFYOLO มีความแม่นยำและความเร็วในการ
ประมวลผลสูงขึ้นกว่าโมเดลที่กล่าวมาข้างต้น พร้อมกับใช้
ทรัพยากรต่ำลงอย่างชัดเจน ส่งผลให้ DFYOLO มีศักยภาพ
และความเหมาะสมสูงในการนำไปใช้งานจริงในฟาร์ม
เพาะเลี้ยงสัตว์น้ำ 
 
2.4 งานวิจัยท่ีเกี่ยวข้อง 

การศึกษาหลายฉบับได้เน้นถึงความก้าวหน้าทาง
เทคโนโลยีในการวินิจฉัยโรคปลานิล โดย Bohara et al. 
(2024) ศึกษาไวรัส Tilapia Lake Virus (TiLV) ซึ่งเป็นเช้ือ
อุบัติใหม่ที ่ทำให้ปลานิลตายสูงถึงร้อยละ 90 โดยพบว่า
เ ท ค น ิ ค  Nested RT-PCR แ ล ะ  Oxford Nanopore 
Technologies (ONT) สามารถตรวจจับและจำแนกสาย
พันธุ์ของ TiLV ได้ภายใน 24 ช่ัวโมง ช่วยให้สามารถควบคุม
การระบาดของโรคได้อย่างรวดเรว็ [16] ขณะที่ Yamkasem 
et al. (2021) ศึกษา Parvovirus ในปลานิล (TiPV) ซึ่งทำ
ให้เกิดอาการรุนแรง เช่น ตาโปน โลหิตจาง และมีเลือดออก
ที่ผิวหนัง การตรวจทางจุลพยาธิวิทยาพบการแทรกซึมของ
เม็ดเลือดขาวในเนื้อเยื่อที่ได้รับผลกระทบ แสดงให้เห็นถึง
ความรุนแรงของการติดเช้ือและความจำเป็นในการเฝ้าระวัง
โรคแบบเข้มข้น [17] ในขณะที่ Delamare-Deboutteville 
et al. (2023) ได้เปรียบเทียบเทคนิคทางชีวโมเลกุลสำหรับ
การตรวจหา TiLV พบว่า Nested RT-PCR มีความไวและ
ความจำเพาะสูงสุด และเทคนิค ONT สามารถตรวจจับ
ไวรัสได้อย่างรวดเร็ว ซึ ่งเป็นโซลูชันที ่มีศักยภาพในการ
พ ัฒนา  Portable Diagnostic Systems สำหร ั บฟาร์ ม
เพาะเลี้ยง [18] 

นอกเหนือจากการตรวจวินิจฉัยโรคแล้ว ยังมีการ
ใช้ Machine Learning (ML) เพื่อช่วยในการบริหารจัดการ
ฟาร์มเพาะเลี้ยงปลานิล งานวิจัยโดยนักวิจัยยังได้วิเคราะห์
เทคน ิค Deep Learning ที ่ ใช ้ ในระบบเพาะเล ี ้ยงปลา
อัจฉริยะ โดยพิจารณาประเภทข้อมูล อัลกอริทึมที่ใช้ และ
ประสิทธิภาพของโมเดล เพื่อช่วยให้ผู้ปฏิบัติงานสามารถนำ 

AI มาใช้ในฟาร์มเพาะเลี้ยงได้อย่างมีประสิทธิภาพ [19] ด้าน
การประยุกต์ใช้ ML ในการวิเคราะห์ภาพ Ahmed et al. 
(2022) ไ ด ้ พ ั ฒน า  Convolutional Neural Networks 
(CNNs) เพื่อตรวจจับอาการผิดปกติของปลานิล เช่น แผล
พุพอง จุดเลือดออก และการเปลี่ยนสีของผิวหนัง โดยมี
ความแม่นยำร้อยละ 92.7 ซึ่งสูงกว่าวิธีการตรวจด้วยสายตา
ของผู้เชี่ยวชาญ อย่างไรก็ตาม คุณภาพของภาพถ่าย เช่น 
แสงและมุมกล้อง ยังคงเป็นปัจจัยที ่อาจส่งผลต่อความ
แม่นยำของโมเดล [20] 

สำหรับแนวทางการพัฒนาระบบวินิจฉัยโรคที่มี
ประสิทธิภาพ Çakir et al. (2023) ได้ศึกษาการเปรียบเทยีบ
ประสิทธิภาพของอัลกอริทึม ML หลายรูปแบบ พบว่า SVM 
มีความแม่นยำส ูงส ุดในการจำแนกโรคที ่ เก ิดจากเช้ือ
แบคทีเรีย เช่น Streptococcus Iniae และ Aeromonas 
Hydrophila โดยแนะนำให้ใช ้ Ensemble Learning ซึ่ง
รวมอัลกอริทึมหลายตัวเข้าด้วยกันเพื่อเพิ่มความแม่นยำใน
การวินิจฉัย [21] ขณะที่ Palaiokostas (2021) ศึกษาการ
ใช้ ML ในการพยากรณ์ความสามารถในการต้านทานโรค
ของปลานิล โดยใช้ข้อมูลพันธุกรรมและลักษณะทางฟีโน
ไทป ์  พบว ่ า โ ม เ ดล  Random Forest และ  Gradient 
Boosting สามารถทำนายระดับความต้านทานโรคของปลา
ได้แม่นยำร้อยละ 89.4 ซึ่งช่วยให้สามารถคัดเลือกพ่อแม่
พันธุ์ที่มีภูมิต้านทานสูงเพื่อนำไปเพาะเลี้ยงต่อไปได้อย่าง
แม่นยำมากขึ้น งานวิจัยเหล่านี้แสดงให้เห็นถึงศักยภาพของ 
AI และเทคโนโลยีชีวโมเลกุล ในการเพิ่มประสิทธิภาพของ
การวินิจฉัยและควบคุมโรคปลานิล ซึ ่งจะช่วยลดความ
สูญเสียและเพิ่มผลผลิตในอุตสาหกรรมเพาะเลี้ยงสัตว์น้ำ 
[22] 
 

3. วิธีการดำเนินการวิจัย 

งานวิจัยนี้พัฒนาแบบจำลองการเรียนรู้ของเครื่อง
เพื่อวินิจฉัยโรคในปลานิล โดยออกแบบกระบวนการตั้งแต่
การเก็บข้อมูล ประมวลผล ไปจนถึงการฝึกและทดสอบ
โมเดล ชุดข้อมูลภาพปลานิลที ่ติดเชื ้อและไม่ติดเชื ้อถูก
เตร ียมพร ้อมด้วย Data Augmentation ก่อนนำไปฝึก
โมเดลและแบ่งเป็นชุดฝึก-ทดสอบ ประสิทธิภาพของโมเดล
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ถูกประเมินด้วย Accuracy, Precision, Recall และ F1-
Score เมื่อได้โมเดลที่แม่นยำที่สุด ระบบจะถูกทดสอบกับ
ข้อมูลจริงจากฟาร์มเพาะเลี ้ยงเพื ่อยืนยันการทำงานใน
สภาพแวดล้อมจริง 

3.1 การเก็บข้อมูล  
ข้อมูลที่ใช้ในการวิจัยนี้ถูกเก็บจากฟาร์มเพาะเลี้ยง

ปลานิลในพื้นที่ลุ่มแม่น้ำโขง ซึ่งเป็นแหล่งเพาะเลี้ยงปลานิล
ที่สำคัญของประเทศไทย ข้อมูลภาพถูกถ่ายจากปลานิลที่
แสดงอาการของโรคและปลาปกติ โดยใช้กล้องถ่ายภาพนิ่ง
คุณภาพสูงและกล้องใต้น้ำเพื ่อบันทึกพฤติกรรมของปลา 
ข้อมูลถูกแบ่งออกเป็น 5 กลุ่ม ได้แก่ ปลาปกติ (Normal), 
โรคสเตรปโตคอคโคซ ิส (Streptococcosis), โรคไวรัส 
Tilapia Lake Virus (TiLV), โ ร ค พ ย า ธ ิ  ( Parasitic 
diseases), และโรคแบคทีเรีย Aeromonas hydrophila 
รวมทั้งหมด 1,795 ภาพ ดังตารางที่ 1  

 

รูปที่ 1 กระบวนการตรวจสอบและวิเคราะห์โรคในปลานิล 

ข้อมูลภาพถ่ายได้รับการตรวจสอบและติดป้าย
กำกับ (Labeling) โดยผู้เชี ่ยวชาญด้านสัตวแพทย์สัตว์น้ำ 
เพื่อลดความผิดพลาดของข้อมูลที่ใช้ฝึกโมเดล นอกจากนี้ 
ยังมีการรวบรวมข้อมูลคุณภาพน้ำ เช่น ค่า pH, อุณหภูมิ 
และระดับออกซิเจน ซึ่งอาจมีผลต่อสุขภาพของปลา ข้อมูล
ทั้งหมดถูกจัดเก็บในรูปแบบฐานข้อมูลดิจิทัลเพื่อให้สามารถ
เข้าถึงและใช้งานได้สะดวกในการฝึกโมเดล Machine 
Learning 

รูปที่ 1 แสดงกระบวนการตรวจสอบและวิเคราะห์
โรคในปลานิลโดยใช้เทคโนโลยี Machine Learning โดย
เริ ่มจากการถ่ายภาพปลานิลที่อาจมีความผิดปกติภายใน
ฟาร ์มเล ี ้ยง จากนั ้นภาพถูกส ่งให ้ผ ู ้ เช ี ่ยวชาญทำการ

ตรวจสอบและระบุประเภทของโรค เช่น โรคแบคทีเรีย 
ไวรัส หรือปรสิต ข้อมูลภาพถูกนำเข้าสู่ Vision Layer เพื่อ
ผ ่านกระบวนการเร ียนร ู ้แบบม ีผ ู ้สอน ( Supervised 
Learning) ซึ่งใช้ Deep Learning Models เช่น VGGNet, 
GoogLeNet และ ResNet ในการวิเคราะห์โครงสร้างภาพ 
การดึงคุณลักษณะสำคัญ และการแบ่งส่วนเป้าหมาย เมื่อ
ตรวจสอบเสร็จสิ ้น ระบบจะทำการตัดสินใจ หากปลามี
สุขภาพดี ระบบจะอนุญาตให้ดำเนินการเลีย้งต่อไป (Tilapia 
Farming Operation) แต่หากพบความผิดปกติ ระบบจะส่ง
สัญญาณแจ้งเตือนเพื่อให้เกษตรกรดำเนินการแก้ไขปัญหา 

3.2 อุปกรณ์และเครื่องมือที่ใช้ในการเก็บข้อมูล (Data 
Collection Tools) 

3.2.1 กล้องถ่ายรูป 
กล้อง Mirrorless ที่ใช้ในการถ่ายภาพปลานิลมี

ความละเอียดสูงและสามารถจับรายละเอียดได้อย่างแม่นยำ 
ด้วยเซนเซอร์รับภาพขนาดใหญ่และระบบออโต้โฟกัสที่
รวดเร็ว การถ่ายภาพปลาบนบกดำเนินการภายใต้สภาพแสง
ที่เหมาะสม โดยใช้ฉากหลังที่มีความคมชัดและแสงไฟเสริม
เพื่อลดเงาสะท้อน พร้อมท้ังใช้ขาตั้งกล้องเพื่อลดการสั่นไหว 

3.2.2 กล้องถ่ายใต้น้ำ 
กล้องถ่ายใต ้น ้ำ เช ่น กล ้อง CCTV Digital IP 

Network ความละเอียดสูง และกล้องใต้น้ำเพื่อให้แน่ใจว่า
ได้ข้อมูลภาพที่ละเอียดและหลากหลาย ซึ่งแสดงถึงลักษณะ
และพฤติกรรมของปลาในสภาวะตา่งๆ รวมถึงข้อมูลเพิ่มเตมิ
เกี่ยวกับลักษณะของโรค เช่น การแสดงบนผิวหนัง สาเหตุ 
และอาการ ดังรูปที่ 2 

 

รูปที่ 2 อุปกรณ์ถ่ายรูปปลานิลแบบบนน้ำและใต้น้ำ 
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ตารางท ี ่  2 จำนวนร ูปภาพชุดข ้อม ูลสำหร ับการสอน 
(Training set) และชุดข้อมูลสำหรับทดสอบ (Test set) 

ชนิดโรคของปลานิล 

จำนวนข้อมูลภาพ 

ชุดเรยีนรู้ 
(Training 

set) 

ชุด
ทดสอบ 
(Test 
set) 

รวม
ทั้งหมด 
(Total) 

โรคสเตรปโตคอคโคซิส 
(Streptococcosis) 

227 98 325 

โรคไวรัสทิลาเปียเลค 
(Tilapia Lake Virus 

Disease) 
247 106 353 

โรคพยาธ ิ(Parasitic 
diseases) 

237 102 339 

โรคเมทิลแอโรมอนา
สเซ็ปติซีเมีย (Motile 

Aeromonas 
Septicaemia) 

268 115 383 

ปลานิลปกติ (Normal 
Nile Tilapia) 

276 119 395 

รวม 1,255 540 1,795 

 

3.3 Machine Learning Model Development 

3.3.1 โมเดลพื้นฐาน YOLOV5 

1. C3 Module (Concentrated-Comprehensive 
Convolution Block) การพัฒนา DFYOLO ได ้เล ือกใช้ C3 
Module เข้ามาแทนที่โครงสร้าง Bottleneck CSPNet (Cross 
Stage Partial Networks) แบบด ั ้ งเด ิมใน YOLOv5 โดยมี
วัตถุประสงค์หลักเพื ่อเพิ ่มประสิทธิภาพการไหลเวียนของ 
Gradient ในระหว่างการทำ Backpropagation และลดความ
ซ้ำซ้อนของข้อมูล (Redundant Gradient Information) 
 หลักการทำงาน C3 Module ทำงานโดยแยก Feature 
Map ออกเป ็นสองส ่ วน ส ่ วนหน ึ ่ งผ ่ านกระบวนการ 
Convolution ย่อย และอีกส ่วนหนึ ่งจะถ ูกส ่งข ้าม (Skip 
connection) ไปรวมกับผลลัพธ์สุดท้ายโดยตรง เทคนิคนี้ช่วย
ลดจำนวนพารามิเตอร์ (Parameters) และ Floating Point 
Operations (FLOPs) ลงได้ประมาณ 10-20% เมื ่อเทียบกับ 
CSPBottleneck เดิม 

 ผลลัพธ์ การปรับเปลี่ยนนี้ส่งผลให้โมเดลมีน้ำหนักเบาขึ้น 
(Lightweight) เพิ ่มความเร็วในการประมวลผล (Inference 
Speed) บนอุปกรณ์ Edge Device โดยไม่สูญเสียความแม่นยำ
ในการดึงคุณลักษณะสำคัญ [23] 
 2. Convolution Kernel Group (Conv KG)เพื่อให้โมเดล
สามารถตรวจจับลักษณะโรคที่มีความหลากหลายของขนาด 
(Scale Variation) ได ้ด ีย ิ ่ งข ึ ้น งานว ิจ ัยน ี ้ ได ้ประย ุกต ์ใช้ 
Convolution Kernel Group (Conv KG) ซึ่งเป็นเทคนิคการ
ใช ้  Kernel หลายขนาดทำงานขนานก ัน (Multi-branch 
Architecture) คล้ายกับโครงสร้าง Inception Module 

หลักการทำงาน แทนที่จะใช้ Kernel ขนาด 3 x 3 
เพียงอย่างเดียว Conv KG จะใช้ชุดของ Kernel ขนาด 1 x 
1, 3 x 3, 5 x 5, และ 7 x 7 ทำงานร ่ วมก ันใน Layer 
เดียวกัน 

Kernel ขนาดเล ็ก (1 x 1, 3 x 3) ทำหน้าท ี ่สกัด
รายละเอียดพื ้นผิว (Texture) ที ่ละเอียดอ่อน เช่น จุด
เลือดออกเล็กๆ หรือรอยปรสิตเกาะผิว 

Kernel ขนาดใหญ่ (5 x 5, 7 x 7) ทำหน้าที ่ขยาย 
Receptive Field เพื ่อมองเห็นโครงสร้างโดยรวม เช่น 
รูปทรงที่บิดเบี้ยวของปลา หรืออาการตาโปน 

ผลลัพธ์ การรวมผลลัพธ์ (Concatenation) จาก
หลาย Kernel ช่วยให้ DFYOLO สามารถ มองเห็น ทั้งจุด
เล็กๆ และอาการภาพรวมได้พร้อมกัน เพิ่มค่า Recall ใน
การตรวจจับโรคที ่ม ีอาการแสดงขนาดเล็กได้อย ่างมี
นัยสำคัญ 

3. Convolutional Block Attention Module 
(CBAM) ปัญหาความซับซ้อนของฉากหลัง (เช่น น้ำขุ่น หรือเงา
สะท้อน) มักทำให้โมเดลเกิดความผิดพลาด งานวิจัยนี้จึงติดตั้ง 
CBAM ซ ึ ่ งเป ็นกลไก Attention Mechanism ท ี ่ทำงาน 2 
ขั้นตอนต่อเนื่องกัน 

Channel Attention Module (CAM) พิจารณาว่า 
ฟีเจอร์ใดสำคัญ โดยการใช้ Global Average Pooling และ 
Max Pooling เพื่อหาความสัมพันธ์ระหว่าง Channel ของภาพ 
ทำให้โมเดลเรียนรู้ที่จะโฟกัสที่ "สีของแผล" หรือ ความขุ่นของ
ตา มากกว่าสีของน้ำ 
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Spatial Attention Module (SAM) พ ิ จารณาว่ า 
ตำแหน่งใดสำคัญ โดยการสร้าง Spatial Map เพื่อระบุพิกัด
ของรอยโรคบนตัวปลา 

ผลลัพธ์ การใช้ CBAM เปรียบเสมือนการช้ีนำสายตา
ของโมเดลให ้โฟกัสเฉพาะบริ เวณที ่ผ ิดปกติ (Region of 
Interest) ช่วยลดค่า False Positive ที่เกิดจากสิ่งรบกวนในน้ำ 
และเพิ ่มความแม่นยำ (Precision) ในสภาพแวดล้อมที ่ไม่
เอื้ออำนวย [24] 

4. Enhanced Loss Function (CIoU Loss) เพื่อให้
กรอบการตรวจจับ (Bounding Box) มีความแม่นยำสูงสุด 
งานวิจัยนี้ได้ปรับปรุง Loss Function จากเดิมที่เป็น GIoU 
(Generalized IoU) ม า ใ ช ้  CIoU (Complete IoU) [25] 
หลักการทำงาน CIoU ไม ่เพ ียงแค่คำนวณพื ้นที ่ท ับซ้อน 
(Overlap Area) แต่ย ังคำนึงถึงปัจจัยทางเรขาคณิตอีก 2 
ประการ คือ ระยะห่างระหว่างจุดศูนย์กลาง (Central Point 
Distance) และ อัตราส่วนกว้างยาว (Aspect Ratio) ของกล่อง
ทำนายเทียบกับกล่องจริง  

ผลลัพธ์ ช่วยให้การตีกรอบตำแหน่งโรคกระชับและ
ตรงจุดมากขึ ้น ลดปัญหาการตรวจจับที ่กรอบลอยหรือไม่
ครอบคลุมรอยโรคทั้งหมด (Misalignment) และช่วยให้โมเดล
ลู่เข้าสู่ค่าที่ถูกต้อง (Convergence) ได้เร็วกว่าเดิมในระหว่าง
การฝึกสอน 

 3.3.2 การเปรียบเทียบโมเดล 

DFYOLO (Deep Feature YOLO) เป็นโมเดลที่
พ ัฒนาต่อยอดจาก YOLOv5 โดยปรับปร ุงให ้สามารถ
ตรวจจับโรคในปลานิลได้แม่นยำยิ่งขึ้น พร้อมทั้งลดภาระ
การคำนวณเพื่อรองรับการทำงานแบบเรียลไทม์ การพัฒนา
โครงสร้างของ DFYOLO รวมถึง การแทนที่ CSPNet ด้วย 
C3 Module เพื่อลดภาระการคำนวณและเพิ่มประสิทธิภาพ
ในการดึงคุณลักษณะของโรค การใช้ Convolution Kernel 
Group (Conv KG) เพื ่อช่วยให้โมเดลสามารถดึงข้อมูล
พื ้นผิวของปลาได้ละเอียดขึ ้น การเพิ ่ม Convolutional 
Block Attention Module (CBAM) ซ ึ ่ ง ช ่ ว ย ให ้ โ ม เ ดล
สามารถโฟกัสบริเวณที ่เป็นโรคได้แม่นยำขึ ้นผ่านกลไก 
Spatial และ Channel Attention และ การปรับปรุง Loss 

Function เ พ ื ่ อ ช ่ ว ย ล ด  False Positive แ ล ะ  False 
Negative ดังรูปที ่3 
 

  
 
รูปที่ 3 โครงสร้างและประสิทธิภาพของ DFYOLO Model 
ประสิทธิภาพของ DFYOLO ถูกเปรียบเทียบกับ 
 1. Faster R-CNN โมเดลตรวจจับแบบสองขั้นตอนที่มี
ความแม่นยำสูงแต่ประมวลผลช้ากว่า 
 2. YOLOv3 เวอร์ชันเก่าของ YOLO ที่ใช้เลเยอร์คอน
โวลูชันมาตรฐาน 
 3. YOLOv4 เวอร ์ช ันท ี ่ ได ้ร ับการปร ับแต ่งโดยใช้ 
CSPDarknet53 สำหรับการดึงคุณลักษณะ 

3.4 การประเมินผลการทำงาน 

3.4.1 เมตริกการประเมินผล 

การประเมินผลประสิทธิภาพของโมเดลใช้ค่า
ความแม่นยำ (Accuracy) โดยคำนวณจากจำนวนข้อมูลที่
ทำนายถูกต้องเปรียบเทียบกับข้อมูลจริง [26] แสดงดัง
สมการที่ 1 
 

Accuracy =
TP+TN

TP+TN+FP+FN
 × 100 (1) 

เมื่อ  
 
 TP (True Positive) หมายถึง ข้อมูลที่ทำนายถูกต้องเชิง
บวก 
 TN (True Negative) หมายถึง ข้อมูลที่ทำนายถูกต้องเชิง
ลบ 
 FP (False Positive) หมายถึง ข้อมูลที่ทำนายผิดเป็นเชิง
บวก 
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 FN (False Negative) หมายถึง ข้อมูลที่ทำนายผิดเป็นเชิง
ลบ 

นอกจากน้ี โมเดลยังถูกทดสอบซ้ำ 3 ครั้งในแต่ละ
การตั้งค่าพารามิเตอร์ เพื่อหาค่าเฉลี่ยที่ดีที่สุดสำหรับการ
พัฒนาโมเดลที่มีความแม่นยำสูงสุด 

 3.4.2 การต้ังค่าการทดลอง 

1. ฮาร์ดแวร์ Intel Core i7-9700K CPU, NVIDIA 
GeForce RTX 3080 Ti GPU 

2. ซอฟต์แวร์ Python พร้อม PyTorch, OpenCV 
สำหรับการประมวลผลภาพ 

3. การต ั ้ งค ่าการฝ ึกอบรม  Batch size = 16, 
Learning rate = 0.01, Epochs = 475 

อธ ิบายเพ ิ ่ม เต ิม Batch size = 16 ถ ูกเล ือก
เนื่องจากเป็นค่าที่สมดุลระหว่างประสิทธิภาพการเรียนรู้
และข้อจำกัดด้านหน่วยความจำ GPU 

Learning rate = 0.01 เป็นค่าที่ให้ผลดีที่สุดใน
การลด Loss อย่างมีเสถียรภาพ จากการทดลองค่าต่าง ๆ 
(เช่น 0.001, 0.005, 0.01, 0.02) 

Epochs = 475 มาจากการทดสอบช่วง 300-500 
Epochs โดยพบว่าโมเดลมีความแม่นยำสูงสุดและไม่มี 
Overfitting ที่จุดนี้ นอกจากนี้ มีการใช้ Grid Search ใน
การทดลองค่าต่าง ๆ ของ Batch size และ Learning rate 
เพื่อหาค่าท่ีเหมาะสมที่สุด 

3.5 การเปรียบเทียบผลลัพธ์ 

DFYOLO เป็นโมเดลที ่ได ้ร ับการปรับแต่งจาก 
YOLOv5 เพื่อเพิ่มประสิทธิภาพในการวินิจฉัยโรคในปลานิล 
โดยเสริมความสามารถในการตรวจจับด้วย C3 Module, 
Convolution Kernel Group (Conv KG) และ CBAM ซึ่ง
ช่วยให้สามารถโฟกัสไปที่จุดที่มีลักษณะเฉพาะของโรคได้
แม่นยำขึ้น นอกจากนี้ ยังมีการเปรียบเทียบกับ Faster R-
CNN ซึ่งเป็นโมเดลที่มีความแม่นยำสูงแต่ใช้เวลาประมวลผล
นานกว่า, YOLOv3 ที ่เป็นเวอร์ชันเก่าของ YOLO และ 
YOLOv4 ที่ได้รับการพัฒนาให้ดึงคุณลักษณะได้ดยีิ่งขึ้นจาก 
CSPDarknet53 การเปรียบเทียบผลลัพธ์ของโมเดลแสดงใน
ตารางที ่3 

ตารางที่ 3 การเปรียบเทียบประสิทธิภาพของโมเดล 

โมเดล 
Precision 

(%) 
Recall 
(%) 

mAP50 
(%) 

FPS 

หน่วย 
ความจำ

ท่ีใช้ 
(MB) 

Faster 
R-CNN 

86.18 83.28 79.87 57.97 77.8 

YOLOv3 82.38 86.12 90.99 69.44 62.1 
YOLOv4 93.58 93.84 93.39 78.24 226 
YOLOv5 94.36 93.76 94.52 96.43 14.5 
DFYOLO 99.75 99.31 99.38 93.21 13.6 

 
โมเดล DFYOLO ที่เสนอช่วยเพิ่มประสิทธิภาพใน

การวินิจฉัยโรคในปลานิลได้อย่างมีนัยสำคัญ โดยมี  ความ
แม่นยำ (accuracy), ค่ารีคอล (recall) และค่าความแม่นยำ
เฉลี ่ย (precision) ที ่ส ูงกว่าโมเดลที ่มีอยู ่ โมเดลนี ้ยังคง 
ประสิทธิภาพการทำงานแบบเรียลไทม์ที่ 93.21 FPS พร้อม
ทั้งใช้หน่วยความจำที่ต่ำกว่า ผลลัพธ์เหล่านี้แสดงให้เห็นถึง
ศ ักยภาพของระบบอัตโนม ัต ิท ี ่ข ับเคล ื ่อนด้วย AI ใน
อุตสาหกรรมการเพาะเลี ้ยงสัตว์น้ำ เพื ่อป้องกันโรคและ
ปรับปรุงสุขภาพของปลาให้ดีขึ้น 
 

4. ผลการวิจัย 

4.1 การประเมินประสิทธิภาพของโมเดล 

โมเดล DFYOLO ได้รับการประเมินโดยใช้ตัวชี ้วัด 
Precision, Recall, Mean Average Precision (mAP50), 
Frames Per Second (FPS) และหน ่วยความจำท ี ่ ใช้  โดย
เปรียบเทียบกับโมเดลอื ่น ๆ เช่น Faster R-CNN, YOLOv3, 
YOLOv4 และ YOLOv5 

ผลการเปรียบเทียบในตารางที่ 3 แสดงให้เห็นว่า 
DFYOLO ม ีประส ิทธ ิภาพส ู งส ุด  โดยสามารถทำได้  
Precision ร ้ อยละ  99.75, Recall ร ้ อยละ  99.31 และ 
mAP50 ร้อยละ99.38 พร้อมทั้งยังสามารถทำงานได้แบบ
เรียลไทม์ และใช้ทรัพยากรหน่วยความจำน้อยที่สุด 

4.2 การวิเคราะห์ Feature Importance 
จากการว ิ เ คราะห ์ด ้ วย เทคน ิค Grad-CAM 

(Gradient-weighted Class Activation Mapping) และ 
Feature Map Visualization พบว่าโมเดลให้ความสำคัญ
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กับฟีเจอร์หลัก ได้แก่ (1) บริเวณรอบดวงตา ซึ่งช่วยระบุ
อาการของโรคติดเชื้อสเตรปโตคอคคัสที่ทำให้เกิดตาขุ่นขาว
หรือโปน (2) สีและพื ้นผิวของผิวหนัง ซึ ่งสำคัญต่อการ
ตรวจจับโรคแบคทีเรียและปรสิตที่ทำให้เกิดแผลพุพอง (3) 
รูปแบบพฤติกรรมของปลา เช่น การเอียงตัวหรือว่ายน้ำ
ผิดปกติ ซึ ่งเป็นอาการของโรคไวรัส Tilapia Lake Virus 
(TiLV) 

4.3 การวิเคราะห์ Confusion Matrix 

เพื ่อประเม ินความสามารถของโมเดลในการ
จำแนกโรคของปลานิล Confusion Matrix ถูกสร้างขึ้นจาก
ชุดทดสอบ 540 ภาพ ใน 5 กลุ่มโรค ผลลัพธ์แสดงให้เห็นว่า 
โมเดลสามารถจำแนกโรคได้อย่างแม่นยำ โดยมีขอ้ผิดพลาด
เล็กน้อยในการจำแนกโรคที่มีลักษณะใกล้เคียงกัน เช่น โรค
พยาธิและโรคเมทิลแอโรมอนาสเซ็ปติซีเมีย 

 

 
 
รูปที่ 4 Confusion Matrix 
 

ค่าบนเส้นทแยงมุมของเมทริกซ์ แสดงให้เห็นว่า
โมเดลสามารถจำแนกโรคได้อย่างถูกต้องสูงมาก ในขณะที่
ค่าที่อยู่นอกเส้นทแยงมุมมีจำนวนน้อย ซึ่งหมายความว่า 
โมเดลมีอัตราการคาดการณ์ที่ผิดพลาดต่ำ และสามารถใช้
งานได้อย่างมีประสิทธิภาพ อธิบายเพิ่มเติมคือ  

True Positive (TP) จำนวนครั้งที ่โมเดลทำนาย
ว่ามีโรคและเป็นโรคจริง 

True Negative (TN) จำนวนครั้งที่โมเดลทำนาย
ว่าไม่มีโรคและไม่มีโรคจริง 

False Positive (FP) จำนวนครั้งที่โมเดลทำนาย
ว่ามีโรคแต่ไม่มีโรคจริง 

False Negative (FN) จำนวนครั้งท่ีโมเดลทำนาย
ว่าไม่มีโรคแต่มีโรคจริง ดังรูปที่ 4 

4.4 ประสิทธิภาพระหว่างการฝึกโมเดล 
เพื่อวิเคราะห์กระบวนการเรียนรู ้ของ DFYOLO 

ได้ทำการติดตาม ความแม่นยำของชุดฝึกและชุดทดสอบ 
รวมถึงค่าความสูญเสีย (Loss) ในระหว่างการฝึก เป็นเวลา 
475 epochs พบว่า  

1. แนวโน้มความแม่นยำ ความแม่นยำของชุดฝึก
เพิ่มขึ้นอย่างต่อเนื่องและ ใกล้แตะร้อยละ 99 ขณะที่ความ
แม่นยำของชุดทดสอบ  มีค ่าคงที ่มากกว ่าร ้อยละ 98 
หลังจากผ่านไป 400 epochs แสดงถึง การเร ียนรู ้ท ี ่มี
เสถียรภาพ 

2. แนวโน้มค่าความสูญเสีย (Loss) ค่าความ
สูญเสียของชุดฝึก ลดลงเรื่อย ๆ และค่าความสูญเสียของชุด
ทดสอบ ต่ำและคงท่ี แสดงว่า โมเดลไม่ได้เกิด Overfitting 

กราฟแสดงให้เห็นว่าโมเดลสามารถ เรียนรู ้ได้
อย่างมีประสิทธิภาพ และสามารถดึงคุณลักษณะที่เกี่ยวข้อง
กับโรคได้ดี 

4.5 การเปรียบเทียบกับงานวิจัยก่อนหน้า 

ผ ล ก า ร ท ด ส อ บ ข อ ง  DFYOLO ถ ู ก น ำ ม า
เปรียบเทียบกับงานวิจัยก่อนหน้าที่ใช้เทคนิคการเรียนรู้ของ
เครื่องในการตรวจจับโรคปลา โดยมีข้อได้เปรียบที่สำคัญ
ดังนี ้

1. ความแม่นยำที่สูงขึ ้น โมเดลก่อนหน้า (เช่น 
Faster R-CNN) มีความแม่นยำประมาณร้อยละ 86-93 
ขณะที่ DFYOLO ทำได้สูงถึงร้อยละ 99.75 

2. ความเร็วในการประมวลผลที่ดีขึ้น : DFYOLO 
ทำงานได ้ที่  93.21 FPS ซ ึ ่ ง เร ็วกว ่าท ั ้ ง  Faster R-CNN 
(57.97 FPS) และ YOLOv4 (78.24 FPS) 

3. ใช้ทรัพยากรหน่วยความจำต่ำกว่า YOLOv4 
ใช้หน่วยความจำ 226 MB ขณะที่ DFYOLO ใช้เพียง 13.6 
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MB ทำให้เหมาะสมสำหรบัการใช้งานในระบบตรวจสอบโรค
ปลาแบบเรียลไทม์ 

จากการเปร ียบเทียบเหล่านี ้แสดงให้เห ็นว่า 
DFYOLO เป็นโมเดลที่มีประสิทธิภาพสูงกว่างานวิจัยก่อน
หน้าและมีความเหมาะสมต่อการนำไปใช้งานจริง 

4.6 การนำไปใช้ในอุตสาหกรรมเพาะเลี้ยงสัตว์น้ำ 
ผลการวิจัยชี้ให้เห็นว่า DFYOLO สามารถนำไปใช้

ในระบบเพาะเลี้ยงสัตว์น้ำอัจฉริยะได้อย่างมีประสิทธิภาพ 
โดยช่วยให้กระบวนการตรวจจับโรคมีความแม่นยำและ
เป็นไปโดยอัตโนมัติ ลดภาระของเกษตรกรในการตรวจสอบ
สุขภาพปลาแบบดั้งเดิม โมเดลนี้สามารถใช้สำหรับ  การ
ตรวจจับโรคในระยะเริ่มต้น ทำให้เกษตรกรสามารถระบุโรค
ได้รวดเร็วขึ ้น ซึ ่งช่วยลดอัตราการตายของปลาและเพิ่ม
ประสิทธิภาพในการรักษา นอกจากนี้ DFYOLO ยังสามารถ 
เฝ้าระวังโรคแบบอัตโนมัติ โดยสามารถทำงานร่วมกับ Edge 
Devices เพื ่อติดตามสุขภาพปลาผ่านกล้องตรวจจับโรค
แบบเรียลไทม์ ทำให้ฟาร์มสามารถติดตามและควบคุม
สภาวะของปลาได้แม่นยำยิ่งขึ้น อีกทั้งระบบนี้ยังช่วย เพิ่ม
ความแม่นยำในการจัดการฟาร์ม ลดข้อผิดพลาดในการ
วินิจฉัยโรค ส่งผลให้สามารถวางแผนการรักษาได้อย่างเป็น
ระบบและลดการใช้ยาปฏิชีวนะท่ีไม่จำเป็น 

เพื่อให้ DFYOLO มีประสิทธิภาพที่ดียิ่งขึ้น ควรมี
การ เพิ ่มข้อมูลการฝึกที่มีความหลากหลายมากขึ้น  เช่น 
ภาพที่ถ่ายภายใต้สภาวะแสงและคุณภาพน้ำที่แตกต่างกัน 
เพื่อเพิ่มความสามารถของโมเดลในการจำแนกโรคได้อย่าง
แม่นยำในสภาพแวดล้อมที ่หลากหลาย นอกจากนี้  การ
พัฒนาแอปพลิเคชันตรวจจับโรคอัตโนมัติบนมือถือ จะช่วย
ให้เกษตรกรสามารถใช้งานระบบนี้ได้สะดวกยิ่งขึ้น สามารถ
สแกนปลาผ่านกล้องโทรศัพท์และรับผลวินิจฉัยได้ทันที และ
สุดท้าย การทดลองใช้ข้อมูลหลายรูปแบบ เช่น การใช้ภาพ
ความร้อน หรือ การตรวจสอบสภาพน้ำร่วมกับ AI จะช่วย
ให้การวิเคราะห์โรคมีความแม่นยำมากขึ้น ทำให้สามารถ
ตรวจจับโรคได้ในระยะเริ่มต้น แม้จะยังไม่ปรากฏอาการที่
ชัดเจนบนตัวปลา  

ต ั ว อ ย ่ า ง ก า ร ใ ช ้ ง า น โ ม เ ด ล  DFYOLO ใ น
สภาพแวดล้อมจริง งานวิจ ัยนี ้สามารถเพิ ่มเติมเนื ้อหา
เกี ่ยวกับตัวอย่างการพัฒนาแอปพลิเคชันบนมือถือที่ใช้

โมเดล DFYOLO เพื ่อว ิน ิจฉ ัยโรคในปลานิลอย่างเป็น
รูปธรรม แอปพลิเคชันนี้มีลักษณะเป็นระบบผู้เชี ่ยวชาญ 
(Expert System) ที่ช่วยให้เกษตรกรสามารถตรวจโรคใน
ปลานิลได้ด้วยตนเอง โดยแอปพลิเคชันดังกล่าวจะใช้กล้อง
ของโทรศัพท์มือถือในการถ่ายภาพปลานิลที่มีอาการผิดปกติ 
จากนั้นระบบจะประมวลผลและแสดงผลการวินิจฉัยโรค
ทันที พร้อมให้คำแนะนำในการจัดการและรักษาโรคใน
ข ั ้นตอนถ ัดไป ซ ึ ่ งช ่วยลดความจำเป็ นในการพ ึ ่ งพา
ผู้เชี่ยวชาญ ลดต้นทุน และเพิ่มประสิทธิภาพในการจัดการ
สุขภาพปลาให้แก่เกษตรกรรายย่อยได้อย่างมีประสิทธิผล 

นอกจากนี้ ควรนำเสนอผลการทดสอบการใช้งาน
จริงของแอปพลิเคชัน เช่น ความพึงพอใจของผู้ใช้งาน ความ
ถ ูกต ้องแม ่นยำในการว ิน ิจฉ ัยโรคในสถานการณ์จริง 
ตลอดจนผลการทดลองใช้งานในฟาร์มจริง เพื ่อยืนยันถึง
ศักยภาพและความเป็นไปได้ในการนำโมเดล DFYOLO ไป
ใช้งานอย่างแพร่หลายในเชิงพาณิชย์ต่อไป [27] 

4.7 การวิเคราะห์ Feature Importance และคุณลักษณะ
สำคัญที่โมเดลเรียนรู้ 

เพ ื ่ อทำความเข ้ า ใจว ่ า โมเดล DFYOLO ให้
ความสำค ัญก ับฟี เจอร ์ล ักษณะใดของปลาน ิลในการ
วินิจฉัยโรค ผู ้ว ิจ ัยได้ใช้เทคนิค Grad-CAM (Gradient-
weighted Class Activation Mapping) และการแสดงผล 
Feature Map ของช้ันคอนโวลูชันในโมเดล ผลการวิเคราะห์
ทำให้ระบุฟีเจอร์สำคัญที่โมเดลใช้อย่างชัดเจน ดังต่อไปนี้ 

บริเวณรอบดวงตาของปลา โมเดลมักเน้นพื้นที่
ดวงตาและรอบดวงตาของปลานิลเป็นพิเศษ ฟีเจอร์บริเวณ
นี้สัมพันธ์กับการวินิจฉัย โรคสเตรปโตคอคโคซิส ซึ่งมีอาการ
เด่นคือ ตาขุ่นมัวและตาโปน (Exophthalmia) Grad-CAM 
แสดงความเข้มสูงที่ตาปลาเมื่อโมเดลทำนายว่าเป็นโรคนี้ 
สอดคล้องกับอาการทางคลินิกที่ผู้เชี ่ยวชาญใช้สังเกตโรค 
Strep เช่น ตาขาวขุ่นหรือมีเลือดออกในตา โมเดลจึงเรียนรู้
เชื่อมโยงลักษณะดวงตากับโรคนี้ได้ดี 

สีและพื ้นผิวของผิวหนังและเกล็ด โมเดลให้
ความสำคัญกับสีผิวปลาและรอยโรคบนลำตัวในการจำแนก 
โรคแบคทีเรียและปรสิต จาก Grad-CAM พบว่าในภาพที่
ปลาเป็นโรค Aeromonas (MAS) หรือโรคปรสิต โมเดลจะ
เน้นบริเวณที่มี แผลพุพอง จุดเลือดออก หรือจุดขาวตามตัว 
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ซึ่งเป็นลักษณะที่เกิดจากการติดเชื้อภายนอก ผิวหนังปลาที่
อักเสบแดงหรือมีปื้นเลือดเป็นฟีเจอร์เด่นที่โมเดลตรวจจับ
เพื่อบ่งช้ีการติดเช้ือแบคทีเรีย เช่น แอโรโมนาส หรือ สเตรป
โตค็อกคัส เช่นเดียวกับจุดหรือดวงขาวบนตัวปลาที่บ่งชี้การ
ติด ปรสิต บางชนิด Grad-CAM ยืนยันว่าโมเดลมองเห็น
ความแตกต่างของพื้นผิวและสีเหล่านี้ และใช้ในการจำแนก
โรคอย่างมีน้ำหนัก (พื ้นที ่ที ่มีแผลหรือจุดผิดปกติจะถูก
ไฮไลท์ว่าเป็นบริเวณสำคัญในการตัดสินใจของโมเดล) 

รูปแบบการเคลื่อนไหวหรือท่าทางของปลา แม้จะ
ใช้ข้อมูลภาพนิ่ง โมเดลสามารถจับ ท่าทางผิดปกติของปลา 
ได้ในระดับหนึ่ง เช่น ภาพที่ปลามีการเอียงตัวหรือว่ายน้ำ
อย่างอ่อนแรง โมเดลจะสนใจลักษณะนี้ในการทำนาย โรค
ไวรัส Tilapia Lake Virus (TiLV) และโรคระบบประสาทอืน่ 
ๆ เนื่องจากปลาที่ติดเชื้อ TiLV มักแสดงพฤติกรรมว่ายน้ำ
ผิดปกติ เช่น ลอยตัว เอียงหรือว่ายหมุน (หมุนเป็นวง) การ
ว ิ เคราะห ์ Feature Map พบว่าโมเดลสามารถเร ียนรู้
ล ักษณะท่าทางเหล่านี ้ทางอ้อมผ่านความแตกต่างของ
รูปทรงปลาในภาพ เช่น ปลาที่ทรงตัวเอียงหรือหัวจมลง 
อาจทำให้ส่วนโค้งเว้าของลำตัวที่ปรากฏในภาพต่างจากปลา
ปกติ ซึ่ง CNN ชั้นลึกอาจตีความเป็นฟีเจอร์หนึ่งในการระบุ
ความผิดปกติ ดังนั้น แม้จะไม่มีข้อมูลวิดีโอ โมเดลก็ยังจับ
อาการ ปลาเสียการทรงตัว ได้ในบางกรณี 

การวิเคราะห์ข้างต้นช่วยยืนยันว่าโมเดล DFYOLO 
ไม่ได้ทำงานเป็นกล่องดำอย่างสิ้นเชิง แต่มีเหตุผลสอดคล้อง
กับความรู้ทางสัตวแพทย์ โมเดลเลือกเน้นฟีเจอร์ที่มนุษย์เอง
ก็ใช้วินิจฉัย เช่น ตาปลา ผิวหนัง และท่าทาง การมองเห็น
เช่นนี้ยังเปิดโอกาสให้เราปรับปรุงโมเดลต่อไปในอนาคต 
เช่น หากรู้ว่าฟีเจอร์บางอย่างสำคัญมาก อาจเสริมข้อมูล
หรือเพิ่มโครงข่ายย่อยเพื่อโฟกัสฟีเจอร์นั้นให้ดียิ่งข้ึน 

4.8 การวิเคราะห์ Confusion Matrix และกรณีความ
คลาดเคลื่อน 

เพื ่อประเมินเชิงลึก เราได ้จ ัดทำ Confusion 
Matrix จากผลการจำแนกของโมเดล DFYOLO บนชุด
ทดสอบ (540 ภาพ, 6 คลาส 5 โรค + สุขภาพดี) โดยแกน
แถวคือค่าจริง และแกนคอลัมน์คือค่าที่โมเดลทำนาย ค่าใน
แต่ละช่องแสดงจำนวนภาพที่ตรงตามเงื่อนไขนั้น ๆ (ตัวเลข

บนเส้นทแยงมุมหลักคือจำนวนที่ทำนายถูกในแต่ละคลาส) 
ผลลัพธ์โดยสรุป: 

ค่า True Positive และ True Negative ของทุก
คลาสอยู่ในระดับสูงมาก แสดงบนเส้นทแยงมุมว่าปลาทุก
กลุ่มโรคส่วนใหญ่โมเดลจำแนกได้ถูกต้อง เช่น ตรวจเจอโรค 
S. agalactiae ได้ถูกทุกภาพที่มีโรคนี้ และทำนายภาพปลา
สุขภาพดีว่า ไม่มีโรค ถูกต้องเกือบทุกภาพ 

ค่านอกเส้นทแยงมุม (FP, FN) มีน้อยมาก สะท้อน
ว่าโมเดลมีอัตราการทำนายผิดต่ำมาก กรณีความผิดพลาดที่
เกิดขึ้นส่วนใหญ่เป็น ความสับสนระหว่างโรคที่มีลักษณะ
ใกล้เคียงกัน ยกตัวอย่าง โรคปรสิต vs โรคเมทิลแอโรมอนา
สเซ็ปติซีเมีย (Motile Aeromonas Septicemia, MAS) ซึ่ง
เป็นสองกลุ่มที่โมเดลยังมีการจำแนกคลาดเคลื่อนอยู่บ้าง 
ทั้งนี้เพราะปลาเป็นโรคปรสิตภายนอกบางชนิด (เช่น โรค
เห็บระฆังหรือหนอนสมอ) มักจะแสดงอาการภายนอกคล้าย
กับติดเชื้อแบคทีเรีย Aeromonas คือมีแผลตามลำตัว จุด
เลือดออก หรือครีบขาดวิ่นเหมือนกัน ทำให้ในบางภาพ
โมเดลอาจทำนายผิดว ่าแผลที ่ เก ิดจากปรสิตเป็นโรค
แบคทีเรีย MAS หรือกลับกัน อย่างไรก็ตาม อัตราการสับสน
นี้อยู่ในระดับต่ำ (จาก Confusion Matrix พบว่าการสลับ
ระหว่างคู่นี้คิดเป็นร้อยละไม่ถึง 2–3 ของชุดทดสอบทั้งหมด) 
และไม่มีผลต่อแนวโน้มโดยรวมว่า DFYOLO สามารถ
จำแนกโรคแต่ละชนิดได้อย่างน่าเชื่อถือ 

เพื่ออธิบายเชิงตัวอย่างในบริบทของโรคปลานิล 
ใ น ก า ร จ ำ แน ก โ รค  Streptococcosis (เ ก ิ ด จ าก เ ช้ื อ 
Streptococcus iniae) โมเดลให้ TP สูงมาก (ตรวจจับภาพ
ปลาที่เป็น Strep ถูกแทบทั้งหมด) FP ต่ำมาก (แทบไม่เคย
ฟันธงผิดว่าปลาที่ไม่เป็น Strep ว่าเป็น Strep) สะท้อนผ่าน 
Precision ~100% และ Recall ~100% สำหร ับโรคนี้  
ในขณะที่สำหรับโรค ปรสิตภายนอก (เช่น Lernea หรือ 
Trichodina) โมเดลยังมีบางกรณีที่ให้ FN หรือ FP เกิดขึ้น 
คือปลาเป็นปรสิตจริงแต่โมเดลทำนายว่าไม่ใช่ (FN) หรือ
ปลาที่เป็นโรคอื่นแต่โมเดลทำนายว่าเป็นปรสิต (FP) ซึ่งจาก
การตรวจสอบพบว ่ าส ่ วนใหญ ่ เป ็นกรณ ีส ับสนกับ 
Aeromonas ดังท่ีกล่าว อย่างไรก็ดี โมเดลไม่มีกรณีที่สับสน
ข้ามกลุ่มที่ลักษณะต่างกันมาก เช่น ไม่ทำนายสลับระหว่าง
โรคแบคทีเรียกับไวรัส หรือระหว่างโรคและสุขภาพดีเลย 
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โดยสรุป Confusion Matrix ยืนยันว่า DFYOLO 
มีความแม่นยำในการจำแนกสูง ค่าบนเส้นทแยงมุมมีค่าสูง
ใกล้เคียงจำนวนภาพในแต่ละคลาส และ ค่านอกเส้นทแยง
มุมเกือบทั้งหมดเป็นศูนย์ โมเดลจึงมีความน่าเชื่อถือทั้งใน
การฟันธงว่าปลาเป็นโรคอะไร (Precision สูง) และในการ
คัดกรองว่าปลาไม่เป็นโรค/ไม่เป็นโรคนี ้ (Recall และ 
Specificity สูง) ซึ่งเหมาะแก่การนำไปใช้งานจริงที่ต้องการ
ทั้งลดการเตือนเกิน (false alarm) และไม่พลาดการระบาด 

4.9 ประสิทธิภาพของโมเดลในสภาวะแวดล้อมที ่ไม่
เอ้ืออำนวย 

หนึ ่งในข้อท้าทายสำคัญของระบบวินิจฉัยจาก
ภาพถ ่ายค ือ ความหลากหลายของค ุณภาพภาพ ใน
สถานการณ์จริง ฟาร์มปลาอาจถ่ายภาพภายใต้เงื่อนไขที่ไม่
เหมาะสมหลายประการ เช่น แสงสว่างไม่เพียงพอ , น้ำขุ่น
หรือน้ำที่มีตะกอนมาก, มุมกล้องที่ไม่ชัดเจนหรือระยะถ่าย
ไม่เหมาะสม, รวมถึง ความละเอียดต่ำของกล้อง ปัจจัย
เหล่านี้ล้วนส่งผลต่อความแม่นยำของการตรวจจับโรคจาก
ภาพ งานวิจัยนี้ได้ตระหนักถึงประเด็นดังกล่าวและทำการ
ประเมินความทนทานของโมเดล DFYOLO ต่อสภาวะที่
ยากลำบากเหล่านั้น ดังนี ้

สภาวะแสงน้อยหรือแสงเปลี่ยน จากการทดลอง
ถ่ายภาพปลาภายใต้แสงธรรมชาติช่วงเช้ามืดและเย็น (ที่
ความเข้มแสงต่ำ) โมเดลยังสามารถตรวจจับโรคหลักได้ แต่
อัตราความมั่นใจ (confidence score) ลดลงเล็กน้อยเมื่อ
เทียบกับภาพท่ีแสงเพียงพอ ความคลาดเคลื่อนส่วนใหญ่เกดิ
ที่โรคที่ต้องสังเกตรอยโรคสีแดงหรือสีซีดบนตัวปลา เพราะ
ในที่แสงน้อย สีอาจผิดเพี้ยนหรือค่าความอิ่มสีลดลง แต่
อย่างไรก็ตาม ด้วยการที่ชุดข้อมูลฝึกมีการเพิ่มภาพที่ปรับ
ความสว่าง (augmentation) ทำให้ DFYOLO พอรับมือเคส
แสงน้อยได ้ระด ับหนึ ่ง ท ั ้งน ี ้ ในเชิงปร ิมาณ พบว่าค่า 
Precision/Recall ลดลงราวร้อยละ 1-3 เมื ่อทดสอบกับ
ภาพที่มืดกว่าปกติ (แต่ยังดีกว่าวิธีแบบตาเปล่าของคน ที่
แสงน้อยอาจแทบวินิจฉัยไม่ได้) 

น้ำขุ ่นหรือฉากหลังซับซ้อน ในกรณีที ่ภาพถ่าย
ปลาถูกถ่ายใต้น้ำที่มีความขุ่นหรือมีสาหร่ายตะไคร่น้ำเยอะ 
(ภาพไม่คมชัด) ประสิทธิภาพโมเดลลดลงบ้างเช่นกัน 

เนื่องจาก ความคมชัดของขอบเขตและสีของรอยโรคลดลง 
รายงานวิจัยก่อนหน้าก็ระบุว่า “คุณภาพภาพที่พร่ามัวส่งผล
ให้ประส ิทธ ิภาพการตรวจจับเป้าหมายลดลงอย ่างมี
นัยสำคัญ [28] โดยในที่นี้ DFYOLO มีอัตรา Recall ลดลง 
เพราะบางครั้งมองไม่เห็นรอยโรคเล็กๆ โมเดลจึงอาจพลาด 
(FN เพิ่มขึ้น) อย่างไรก็ดี การเพิ่มโมดูล Attention (CBAM) 
ดูจะช่วยให้โมเดลเน้นวัตถุ (ตัวปลา) มากขึ้นในน้ำขุ่น ทำให้
ยังแยกปลากับฉากหลังออกได้ โมเดลจึงยังสามารถกำหนด
กรอบปลาและจำแนกโรคได้แม้ฉากหลังรบกวน 

ความละเอียดต่ำ/ระยะไกล เมื่อทดลองลดความ
ละเอียดภาพหรือถ่ายปลาจากระยะไกลขึ้น (ตัวปลาขนาด
เล ็กลงในภาพ) เราพบว่า YOLO-based model อย่าง 
DFYOLO ยังคงตรวจจับปลาได้เนื่องจาก YOLOv5 ถูกฝึก
ให้รองรับวัตถุหลายสเกล และ DFYOLO มี Conv Kernel 
Group หลายขนาดซึ่งช่วยเรื่องนี้ อย่างไรก็ตาม เมื่อปลามี
ขนาดเล็กมาก (เช่น น้อยกว่า 32×32 พิกเซลในภาพ) 
อาการป่วยบางอย่างเช่นจุดขาวเล็กๆ หรือการซีดของเหงือก
จะไม่เห็นชัด โมเดลจึงอาจแยกไม่ออกระหว่างปลาป่วยกับ
ปลาปกติ (Precision ลดลงเล็กน้อย เนื่องจาก FP เพิ่มขึ้น) 

โดยภาพรวม DFYOLO มี robustness ในระดับ
ที่น่าพอใจเมื่อเจอสภาพภาพที่ยาก โมเดลสามารถทนต่อ
ความแปรผันของแสงและฉากหลังได้ดีกว่าโมเดลคลาสสิค
หรือการประเมินด้วยตาเปล่า เพราะ CNN ได้รับการฝึกกับ
ภาพหลากหลายแบบและสามารถดึงคุณลักษณะสำคัญ
ออกมาแม้ในภาพที่มี noise การทดสอบสภาวะสุดขั้ว (เช่น 
มืดมากๆ หรือภาพเบลอ) ชี้ว่าแม้ความแม่นยำลดลงแต่ยัง 
ดีกว่าการวินิจฉัยแบบดั้งเดิม ที่มนุษย์แทบไม่สามารถระบุ
โรคได้เลยจากภาพคุณภาพต่ำ ในอนาคตอาจปรับปรุงได้
ด้วยการเพิ่มข้อมูลสภาวะต่างๆ เข้าไปในการฝึก หรือใช้
เทคนิคการปรับภาพ (image enhancement) ช่วยก่อนให้
โมเดลวิเคราะห์ 
4.10 กรณีศึกษาการนำ DFYOLO ไปใช้งานจริง 

โมเดล DFYOLO ที่พัฒนาขึ้นนี้มีศักยภาพสูงใน
การนำไปประยุกต์ใช้จริงในภาคสนาม เพื่อช่วยเกษตรกร
ตรวจสุขภาพปลาแบบอัตโนมัติ ตัวอย่างแนวทางการใชง้าน
จริง ได้แก่ 
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แอปพลิเคชันบนมือถือหรือแท็บเล็ต เกษตรกร
สามารถถ่ายรูปปลาที่สงสัยว่าป่วยด้วยกล้องสมาร์ทโฟน 
จากนั้นแอปฯ จะใช้โมเดล DFYOLO (รันบนอุปกรณ์หรือส่ง
รูปไปประมวลผลบนคลาวด์) เพื่อวิเคราะห์และแจ้งผลการ
วินิจฉัยโรคทันที ฟังก์ชันนี ้คล้ายกับแนวคิดของ Fish 
Disease Detection Using Image Based Machine 
Learning Technique in Aquaculture ที่ Ahmed et al. 
(2022) นำเสนอ ซึ่งใช้โมเดล YOLO แบบปรับแต่งกับโรค
ปลา 5 ชนิดและแสดงผลบนมือถือ เพื่อให้เกษตรกรได้รับ
การแจ้งเตือนที่ รวดเร็วและแม่นยำ โดยเบื้องต้น DFYOLO 
ได้ถูกทดสอบในรูปแบบแอปต้นแบบบนระบบ Android ซึ่ง
ร ั น โ ม เ ดลบนช ุ ดประมวลผลม ื อถ ื อ  ( Qualcomm 
Snapdragon 8 series) พบว่าสามารถประมวลผลภาพได้ 
~20-30 FPS เม ื ่อใช ้ร ุ ่นโมเดลขนาดเล ็กลงเล ็กน ้อย 
(pruned model) นับว่าเพียงพอสำหรับการ สแกนปลา
เป็นรายตัว ในบ่อโดยการถือมือถือถ่ายวิดีโอสั้นๆ แล้วให้
แอปฯ จับโรคในเฟรมภาพ 

ระบบกล้องวงจรปิดอัจฉริยะในฟาร์ม สามารถ
ติดตั้งกล้องไว้ตามบ่อเลี้ยงที่เชื่อมต่อกับระบบประมวลผล 
(Edge device เช่น Nvidia Jetson หรือคอมพิวเตอร์ใน
ฟาร ์ม) ซ ึ ่ งร ันโมเดล DFYOLO ตรวจสอบปลาในภาพ
แบบต่อเนื่อง หากพบปลาที่มีลักษณะเข้าข่ายป่วย โมเดล
สามารถส่งสัญญาณแจ้งเตือนไปยังผู้ดูแลผ่านอินเทอร์เน็ต
หรือแอปฯ ได้ แบบเรียลไทม์ แนวคิดนี้จะเปลี่ยนรูปแบบ
การเฝ ้าระว ังโรคเป ็นเช ิงร ุก (proactive monitoring) 
กล่าวคือไม่ต้องรอให้ปลาตายจำนวนมากแล้วส่งตรวจ แต่
ระบบจะแจ้งตั้งแต่เริ่มเห็นปลาแสดงอาการผิดปกติ จากการ
ทดลองภาคสนามเบื้องต้นในฟาร์มปลานิลจังหวัดหนึ่ง ผู้วิจัย
ได้ติดตั้งกล้องและรัน DFYOLO บน Jetson Nano (กำลัง
ประมวลผลต่ำกว่า RTX มาก) ผลคือสามารถตรวจจับปลา
ป่วยได้ แต่ FPS ลดเหลือ ~5-10 FPS ซึ่งยังพอใช้งานได้ 
ระบบได้แจ้งเตือนกรณีพบปลาว่ายน้ำผิดปกติและมีแผล ซึ่ง
เมื่อตรวจจริงก็พบการติดเช้ือเกิดขึ้นในบ่อ การทดลองนี้ช้ีว่า
การประยุกต์ใช้ DFYOLO ในระบบ IoT ฟาร์มอัจฉริยะ
เป็นไปได้ และน่าจะช่วยลดการใช้แรงงานคนในการตรวจ
บ่อและลดความสูญเสียจากโรคระบาดได้ 

การใช้งานแบบอื่น ๆ เช่น ติดตั้ง เครื่องสแกนปลา
อัตโนมัติ ที่รางคัดแยกปลาในโรงเพาะฟักหรือโรงงานแปร
รูป เพื่อคัดแยกปลาป่วยออกจากปลาปกติก่อนส่งจำหน่าย 
เครื่องดังกล่าวสามารถใช้สายพานลำเลียงปลาให้ผ่านหน้า
กล้องที่มี DFYOLO วิเคราะห์ หากพบปลาไม่สมบูรณ์จะถูก
แยกออก แนวทางนี้คล้ายกับระบบตรวจคัดคุณภาพผลผลิต
ทางการเกษตร เพียงแต่ปรับมาสำหรับตรวจโรคปลา ซึ่ง 
DFYOLO ก็สามารถตอบโจทย์ด้านความเร็วทันสายพาน
และความแม่นยำสูงในการคัดกรอง 

ในการใช้งานจริง ปัจจัยสำคัญที่ต้องพิจารณาคือ 
ความน่าเช ื ่อถ ือและความรวดเร ็ว ในการแจ ้งเต ือน 
DFYOLO มีความแม่นยำสูงใกล้เคียงร้อยละ 100 ดังนั้น
กรณีที ่ระบบแจ้งว่าปลาเป็นโรค โอกาสผิดพลาดต่ำมาก 
(Precision สูง ~99-100%) เกษตรกรสามารถเชื่อถือการ
แจ้งเตือนได้ว่าจะไม่ใช่การเตือนเก้อ ที ่สำคัญคือระบบ
สามารถตรวจจับโรคได้ตั้งแต่ระยะแรก ๆ เช่น ปลาตาเริ่ม
ขุ่นหรือมีแผลเล็ก ๆ ทำให้ดำเนินการรักษา/กักกันได้เร็ว ลด
การระบาดในบ่อ นอกจากน้ี การมีระบบอัตโนมัตยิังช่วย ลด
การใช้ยาปฏิชีวนะที่ไม่จำเป็น เพราะสามารถระบุโรคได้
ชัดเจนกว่าแต่ก่อนท่ีมักให้ยาครอบจักรวาลเมื่อปลาไม่สบาย 
แต่ตอนนี้รู ้ว่าปลาป่วยเป็นโรคอะไร ก็เลือกใช้วิธีรักษา/
วัคซีนที่เหมาะสมได้ตรงจุดยิ ่งขึ ้น สรุปคือ DFYOLO เมื่อ
นำไปใช้จริงในลักษณะต่าง ๆ จะช่วยยกระดับการจัดการ
สุขภาพปลาในอุตสาหกรรมเพาะเลี้ยงให้ แม่นยำ รวดเร็ว 
และลดต้นทุน อย่างมีนัยสำคัญ 
 
5. สรุปผลการศึกษา 

งานว ิจ ัยน ี ้ม ุ ่ ง เน ้นการพ ัฒนาและประเมิน
ประสิทธิภาพของโมเดล DFYOLO สำหรับการวินิจฉัยโรค
ในปลานิลโดยใช้ Deep Learning เพื่อจำแนกลักษณะของ
โรคผ่านภาพถ่ายจากสภาพแวดล้อมจริง ผลการทดสอบ
พบว่า DFYOLO มีความแม่นยำสูงสุด โดยให้ค่า Precision 
ร้อยละ 99.75, Recall ร้อยละ 99.31 และ mAP50 ร้อยละ 
99.38 ซ ึ ่ ง เหน ือกว ่ า โม เดล  Faster R-CNN, YOLOv3, 
YOLOv4 และ YOLOv5 ที่นำมาเปรียบเทียบ นอกจากนี้ 
การวิเคราะห์ Confusion Matrix แสดงให้เห็นว่าโมเดล
สามารถจำแนกโรคได้อย่างแม่นยำ โดยมีอัตราการผิดพลาด
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ต่ำ โดยเฉพาะโรคที่มีลักษณะเฉพาะชัดเจน เช่น โรคสเตรป
โตคอคโคซิส และโรคไวรัสทิลาเปียเลค อย่างไรก็ตาม มี
ข้อผิดพลาดเล็กน้อยในการจำแนกระหว่าง โรคพยาธิและ
โรคเมทิลแอโรมอนาสเซ็ปติซีเมีย เนื่องจากลักษณะของโรค
ที่ใกล้เคียงกัน 

จากการติดตาม Training Loss และ Validation 
Loss ตลอด 475 epochs พบว่าโมเดลมี แนวโน้มการ
เรียนรู้ที่ดีและไม่มี Overfitting ค่าความสูญเสียลดลงอย่าง
ต่อเนื่อง และค่าความแม่นยำของชุดทดสอบสูงกว่าร้อยละ 
98 แสดงให ้ เห ็นถ ึ งความสามารถของโมเดลในการ 
Generalization ทำ ให ้ ส า ม า ร ถน ำ ไ ป ใ ช ้ ง า น ไ ด ้ ใ น
หลากหลายสภาพแวดล้อม 

DFYOLO ม ีข ้อได ้ เปร ียบหลายประการเมื่อ
เปรียบเทียบกับโมเดลอื่น โดยเฉพาะด้าน ความแม่นยำ 
ความเร็ว และการใช้ทรัพยากร โมเดลสามารถทำงานที่ 
93.21 FPS ซ ึ ่ ง เร ็วกว ่าการทำงานของ Faster R-CNN 
(57.97 FPS) และยังใช้หน่วยความจำเพียง 13.6 MB ซึ่งต่ำ
กว ่าค ่าเฉล ี ่ยของ YOLOv4 (226 MB) ทำให ้ เหมาะสม
สำหรับการนำไปใช้กับ อุปกรณ์ขนาดเล็ก (Edge Devices) 
นอกจากนี้ DFYOLO ยังสามารถนำไป เพิ ่มประสิทธิภาพ
การจัดการฟาร์มเพาะเลี้ยงปลา เช่น การเฝ้าระวังโรคแบบ
เรียลไทม์ผ่านระบบกล้องหรืออุปกรณ์ตรวจจับ ลดการใช้ยา
ปฏิชีวนะที่ไม่จำเป็น และช่วยให้เกษตรกรสามารถ ตรวจจับ
โรคได้ตั้งแต่ระยะเริ่มต้น 

ข้อจำกัดของงานวิจัย เพื่อให้ผู้อ่านเข้าใจถึงปัจจัย
ที่อาจส่งผลต่อความแม่นยำของโมเดล โดยข้อจำกัดหลัก 
ได้แก่  คุณภาพของข้อมูล ที่อาจได้รับผลกระทบจากแสง 
มุมกล้อง และเงา ซึ่งอาจทำให้การตรวจจับโรคบางประเภท
ผิดพลาด Bias ของข้อมูล เนื่องจากชุดข้อมูลส่วนใหญ่มา
จากฟาร์มในพื ้นที ่ล ุ ่มแม่น้ำโขง อาจส่งผลให้โมเดลมี
ประสิทธิภาพลดลงเมื่อใช้กับปลานิลในสภาพแวดล้อมที่
แตกต่างกัน ปัญหาความไม่สมดุลของข้อมูล ( Imbalance 
Dataset) โดยโรคบางชนิดมีจำนวนภาพน้อยกว่ามาก ทำให้
โมเดลอาจเรียนรู้และจำแนกโรคที่พบได้บ่อยได้ดีกว่าโรคที่
พบน้อย แม้ว่าผู้วิจัยจะใช้ Data Augmentation เช่น การ
หมุนภาพและปรับค่าความสว่างเพื่อเพิ่มจำนวนข้อมูลแล้ว 
แต่ยังเป็นข้อจำกัดที่ควรปรับปรุงเพิ่มเติมในอนาคต การ

กล่าวถึงข้อจำกัดเหล่านี้ในบทความจะช่วยให้ผู้อ่านเห็นถึง
ขอบเขตของการวิจัยและแนวทางการพัฒนาต่อไปอย่าง
ชัดเจนยิ่งขึ้น 

งานวิจัยนี้แสดงให้เห็นว่า DFYOLO เป็นโมเดลที่มี
ประสิทธิภาพสูงสุดในการตรวจจับโรคปลานิล โดยสามารถ
ทำงานได้อย่างรวดเร็วและแม่นยำกว่าโมเดลก่อนหน้า อีก
ทั้งยังใช้ทรัพยากรน้อย ทำให้เหมาะสมสำหรับ การนำไปใช้
ในระบบเพาะเลี้ยงสัตว์น้ำอัจฉริยะ อย่างไรก็ตาม ควรมีการ 
ขยายขอบเขตของงานวิจัย  โดยเพิ ่มข้อมูลจากแหล่งที่
หลากหลาย รวมถึงการนำโมเดลไปใช้กับ สายพันธุ์ปลาอื่น 
ๆ เพื่อให้สามารถนำไปประยุกต์ใช้งานได้กว้างขวางยิ่งข้ึน 
 

6. ข้อจำกัดของงานวิจัยและแนวทางการปรับปรุง 
แม้ผลลัพธ์ที่ได้จะแสดงถึงประสิทธิภาพสูงของ 

DFYOLO แต่งานวิจัยนี้ก็มี ข้อจำกัด บางประการที่ควร
พิจารณาและหาแนวทางแก้ไขต่อไป 

คุณภาพและสภาวะของข้อมูลภาพ  ด ังที ่ได้
กล่าวถึง โมเดลยังคงไวต่อภาพที่คุณภาพต่ำ เช่น ภาพมืด 
ภาพเบลอ หรือน้ำที่ขุ่น การที่ชุดข้อมูลที่ใช้ฝึกส่วนใหญ่ถ่าย
ในสภาพค่อนข้างเอื้ออำนวย (แสงปกติ น้ำใสพอสมควร) ทำ
ให้โมเดลอาจขาดความทนทานในสภาพสุดขั้วบางอย่าง ดัง
พบว่าความแม่นยำลดลงเมื่อเจอภาพนอก distribution นี้ 
แนวทางแก้คือควรเพิ่มข้อมูลฝึกที่หลากหลายขึ้นในอนาคต 
เช่น รวมภาพจากกล้องใต้น้ำท่ีสภาพน้ำจรงิ ๆ  ในฟาร์ม หรือ
ทำ augmentation แบบจำลองสภาพแสง/ความขุ่นต่าง ๆ 
เพื่อให้โมเดลเรียนรู้ [29] 

ความเอนเอียงของข้อมูล (Data Bias)  ชุดข้อมูล 
1,795 ภาพที่ใช้ ส่วนใหญ่มาจากฟาร์มในพื้นที่ลุ่มแม่น้ำโขง
ในประเทศ (ภาคตะวันออกเฉียงเหนือของไทย) ซึ่งอาจมี
ลักษณะสายพันธุ์ปลานิลหรือสภาพแวดล้อมเฉพาะตัว เช่น 
สีของปลานิลสายพันธุ์นี้หรือสายพันธุ์จุดแดง (red tilapia) 
ที่เลี้ยงผสม ลักษณะน้ำและอาหารที่ใช้ เป็นต้น โมเดลที่ฝึก
บนข้อมูลกลุ่มนี้อาจเกิด bias เมื่อไปเจอกับปลานิลจากพ้ืนที่
อื ่นหรือสายพันธุ ์อื ่นที่มีลักษณะต่างออกไป เช่น ปลานิล
แอฟริกาที่สีเข้มกว่า หรือปลานิลสายพันธุ์จิตรลดาที่เกล็ดสี
แตกต่าง หากนำโมเดลไปใช้ทันที ความแม่นยำอาจลดลง
เนื่องจาก Distribution Shift แนวทางแก้คือควรเพิ่มเติม
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ข้อมูลจากหลากหลายแหล่ง (ต่างภูมิภาค ต่างประเทศ) 
เพื่อให้โมเดล generalize ได้กว้างขึ้น นอกจากนี้ ควรระวัง 
bias เช่น หากข้อมูลสุขภาพดีกับป่วยต่างกันที่ฉากหลัง 
(เช่น ภาพปลาป่วยถ่ายบนบก vs ภาพปลาปกติถ่ายในน้ำ) 
โมเดลอาจเรียนรู้ผิดว่า ปลาอยู่บนบก = ป่วย ซึ่งเป็น bias 
ที่ไม่ต้องการ ดังนั้นควรตรวจสอบความหลากหลายของฉาก
หลังในข้อมูลด้วย 

ความไม่สมดุลของข้อมูล (Class Imbalance)  
โรคบางชนิดมีจำนวนภาพน้อยมากเมื่อเทียบกับโรคอื่น ใน
งานนี้แม้จะพยายามถ่ายเก็บข้อมูลเพิ่ม แต่ก็ยังมีกรณีเช่น 
โรคปรสิตที่มีภาพเฉพาะไม่มากเท่าโรคแบคทีเรียทั่วไป ทำ
ใ ห ้ โ ม เ ด ล อ า จ เ ร ี ย น ร ู ้ โ ร ค ท ี ่ ข ้ อ ม ู ล เ ย อ ะ  ( เ ช่ น 
Streptococcosis) ได้ดีกว่าโรคที่พบน้อย (เช่น Parasitic 
infection) ซ ึ ่ งสะท ้อนใน Confusion Matrix ท ี ่ ความ
ผิดพลาดมักเกิดกับคลาสที่ข้อมูลน้อย แนวทางหนึ่งที่ใช้แล้ว
คือ Data Augmentation (หมุนภาพ พลิกภาพ ปรับสี) เพื่อ
เพิ่มปริมาณข้อมูลเทียมของโรคกลุ่มน้อย แต่นั่นยังไม่แทนที่
ข้อมูลจริง การปรับปรุงในอนาคตควรเก็บข้อมูลโรคที่พบ
น้อยเพิ่มเติม (เช่น หาปลาเป็นโรคปรสิตหรือ TiLV เพิ่มเติม
จากฟาร์มอื่นหรือทดลองติดเชื้อเพื่อถ่ายรูป) หรือใช้เทคนิค 
Oversampling/Weighted Loss ในการฝึกโมเดลเพื ่อให้
ความสำคัญกับคลาสที่น้อยมากขึ้น 

การรองรับการติดเชื้อร่วม (Co-infections) งานนี้
จำแนกโรคทีละโรค สมมติว่าแต่ละภาพปลาป่วยด้วยโรค
หลักเพียงโรคเดียว แต่ในความเป็นจริงปลาสามารถติดเช้ือ
หลายโรคพร้อมกันได้ (เช่น ติดทั้งแบคทีเรียและปรสิตพร้อม
กัน) ซึ ่งยากต่อการวินิจฉัยยิ ่งขึ ้น โมเดล DFYOLO ใน
ปัจจุบันไม่ได้ถูกฝึกแบบ Multi-label (คือหนึ่งภาพมีหลาย
ป้ายกำกับโรค) ดังนั ้นหากมี co-infection โมเดลอาจจะ
ตรวจจับได้เพียงโรคใดโรคหนึ่ง (ตามที่มันมั่นใจสูงสุด) และ
มองข้ามอีกโรค แน่นอนว่านี่เป็นข้อจำกัดที่จะต้องแก้หาก
ต้องการใช้งานในสถานการณ์จริงที่ซับซ้อน แนวทางคือใน
อนาคตอาจพิจารณา ฝึกแบบ Multi-label classification 
หรือเพิ่มกลุ่มข้อมูล ติดโรคร่วม ให้โมเดลได้เรียนรู ้ (เช่น 
labeling ภาพที ่ปลามีสองโรคพร้อมกัน) อีกทั ้งเทคนิค 
segmentation (เพื่อระบุจุดหลายจุด) ก็อาจช่วยในกรณีนี้ 

ข้อจำกัดด้านการตีความผล  แม้ DFYOLO จะ
ให้ผลแม่นยำ แต่การนำไปใช้ในภาคสนามยังต้องการการ 
ตีความผลโดยมนุษย์ ประกอบ เช่น เมื่อระบบแจ้งเตือนว่า
ปลาเป็นโรค Streptococcosis ผู้ใช้ต้องเข้าใจว่าจะต้อง
ดำเนินการอย่างไรต่อ (แยกปลาป่วย รักษาด้วยยาปฏชีิวนะ 
เป็นต้น) ดังนั ้นโซลูชันที ่สมบูรณ์ควรมีคู ่มือหรือระบบ
สนับสนุนการตัดสินใจร่วมด้วย งานวิจัยนี้มุ่งเน้นที่ตัวโมเดล 
AI แต่ยังไม่ได้ผนวกส่วนแนะนำการรักษาหรือการกระทำ
หลังวินิจฉัย ซึ่งถือเป็นขอบเขตที่สามารถเพิ่มเติมได้ 

การกล่าวถึงข้อจำกัดต่าง ๆ ข้างต้นในบทความมี
ความสำคัญ เพราะช่วยให้ผ ู ้อ ่านและผู ้พ ัฒนาต่อเห็น
ขอบเขตของงานวิจัย และเข้าใจว่าในสถานการณ์ใดบ้างที่
ระบบอาจยังทำงานได้ไม่สมบูรณ์  [30] พร้อมทั ้งช ี ้นำ
แนวทางพัฒนาต่อยอดที่จะกล่าวถึงในหัวข้อถัดไป 
 

7. ข้อเสนอแนะเพื่อการพัฒนาในอนาคต 
เพื่อยกระดับประสิทธิภาพและขยายขอบเขตการ

ใช้งานของระบบวินิจฉัยโรคปลานิลด้วยปัญญาประดิษฐ์ 
แนวทางการวิจัยและพัฒนาที่เป็นไปได้ในอนาคต มีดังนี้  
[31] 

ผสานข้อม ูลจากเซนเซอร ์ส ิ ่ งแวดล ้อม  การ
วินิจฉัยโรคปลาอาจไม่ได้อาศัยเพียงข้อมูลภาพลักษณะ
ภายนอก หากผนวกรวมกับข้อมูลสภาพแวดล้อม (เช่น 
อุณหภูมิ น้ำที่มีค่าแอมโมเนียหรือออกซิเจนละลาย, pH ใน
น้ำ) จะช่วยให้การพยากรณ์การระบาดแม่นยำขึ้น เช่น ค่า
อุณหภูมิน้ำที่สูงผิดปกติร่วมกับภาพปลามีพฤติกรรมแปลก 
อาจบ่งชี้ความเครียดที่นำไปสู่โรคได้ การนำ Sensor Data 
มาใช้ร่วมกับโมเดล DFYOLO (เช่น สร้างระบบผู้เช่ียวชาญที่ 
if อุณหภูมิสูง + มีปลาตายจำนวนหนึ ่ง + DFYOLO พบ
อาการบางอย่าง = เตือนภัยโรค X) จะทำให้ระบบสมบูรณ์
ขึ้น ในอนาคตจึงควรพัฒนาแพลตฟอร์มรวมข้อมูลหลายมิติ 
และอาจใช้ การเรียนรู ้แบบหลายตัวแปร (multimodal 
learning) ที่รวม CNN (ภาพ) กับโมเดลเวลาต่อเนื่อง (เช่น 
LSTM สำหรับข้อมูลเซนเซอร์เป็น time-series) เข้าด้วยกัน 

รองรับการวินิจฉัยโรคร่วม (Co-infections) ดังที่
กล่าวในข้อจำกัด ควรขยายความสามารถของโมเดลให้
รองรับการจำแนกหลายโรคในตัวปลาเดียว เช่น หากปลามี
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ทั้งปรสิตและแบคทีเรียร่วมกัน โมเดลควรสามารถตรวจจับ
ได้ทั้งสองอย่าง หนึ่งในวิธีคือปรับการฝึกโมเดลเป็น Multi-
Label Classification โดยเปลี่ยนฟังก์ชัน Activation ส่วน
ออกของโมเดลเป็น sigmoid (แทน softmax) และใช้ Loss 
แบบ Binary Cross-Entropy กับแต่ละโรค ซึ ่งจะทำให้
โมเดลสามารถ output ผลเป็นชุดของโรคที่เป็นไปได้พรอ้ม
กัน (ไม่จำกัด 1 โรคต่อภาพ) นอกจากนี้ อาจเพิ่ม สาขาการ
แบ่งส่วนภาพ (segmentation) เข้าไปในโมเดล (คล้าย
แนวค ิดของ YOLO-FD ที ่ เพ ิ ่ม segmentation branch 
[32] เพื่อให้ชี้บริเวณรอยโรคแต่ละชนิดบนตัวปลาได้ ซึ่งจะ
ช่วยแยกกรณีโรคร่วมได้ดีขึ้น (เช่น ส่วนหัวติดปรสิต ส่วนตัว
ติดแบคทีเรีย โมเดลก็ segment ออกมาคนละสี) 

ทดสอบโมเดลในสภาพแวดล้อมจริงระยะยาว แม้
จะมีการทดลองในฟาร ์มบางส ่วน ควรทำการ ทดลอง
ภาคสนามอย่างเป็นระบบ ในหลายฟาร์มและหลายช่วงเวลา 
เช่น ติดตั้งระบบกล้อง+DFYOLO ในบ่อจริง ติดตามผล 6-
12 เดือน ว่าระบบสามารถตรวจจับการระบาดได้เร็วกว่า/
แม่นกว่า วิธีปัจจุบันเพียงใด รวมถึงเก็บสถิติ false alarm 
และ missed detection ในสถานการณ์จริง ข้อมูลเหล่านี้
จะมีประโยชน์ในการปรับปรุงทั ้งโมเดลและการออกแบบ
ระบบ (เช่น หากพบว่าเวลากลางคืนระบบให้ false alarm 
มาก เพราะแสงน ้อย อาจต ้องเพ ิ ่มไฟส ่องหร ือปรับ 
threshold) การทดสอบจริงยังควรรวมถึงด้านการ ใช้งาน
ของผู้ใช้ เช่น อินเตอร์เฟซที่เกษตรกรใช้งาน แอปฯ ที่แจ้ง
เตือน ต้องออกแบบให้เข้าใจง่ายและตอบสนองเร็ว ซึ่งเป็น
องค์ประกอบสำคัญที่นอกเหนือจากโมเดล AI 

ขยายสายพันธ์ุและภูมิภาคที่รองรับ จากเป้าหมาย
ที่ระบุไว้ งานในอนาคตจะลองนำ DFYOLO ไปปรับใช้กับ 
ปลาน้ำจืดสายพันธุ์อื่น เช่น ปลาทับทิม (ซึ่งเป็นสายพันธุ์
ย ่อยของปลานิล) , ปลาคาร ์พ หร ือปลาสวาย ที ่ม ีการ
เพาะเลี้ยงเชิงพาณิชย์ โดยปรับแต่งโมเดลและฝึกบนภาพ
โรคของปลาชนิดนั้น ๆ ทั้งนี้ โครงสร้าง DFYOLO สามารถ
นำไปฝึกกับข้อมูลใหม่ได้เลย (transfer learning) โดยหวัง
ว่าจะยังคงความมีประสิทธิภาพ เนื่องจากโรคหลายอย่างใน
ปลาต่างชนิดมีลักษณะคล้ายคลึงกัน (เช่น แผลตามตัว, จุด
ขาว, ตาโปน) อย่างไรก็ดี ความท้าทายคือปลาต่างชนิดกัน
อาจมีรูปร่างและสีสันต่างกันพอควร โมเดลต้องเรียนรู้ 

features ใหม่ๆ ดังนั ้นอาจต้องเก็บ dataset ใหม่ขนาด
ใหญ่ และอาจต้อง ปรับ architecture บางส่วนเพิ่มเติมให้
เข้ากับปลาชนิดนั้น (เช่น อาจเพิ ่ม convolution filters 
หากปลามีลวดลายซับซ้อนขึ้น) ส่วนการขยายไปยัง ต่าง
ภูมิภาค/ประเทศ ก็สำคัญ เนื่องจากสภาพการเลี้ยงและสาย
พันธุ์อาจต่างไป เช่น ฟาร์มในฟิลิปปินส์หรือตะวันออกกลาง
ที่เลี้ยงปลานิลในน้ำกร่อย โรคบางอย่างและภูมิอากาศต่าง
ไป การตรวจสอบว่าโมเดลที่ฝึกในไทยสามารถใช้ได้ดีใน
พื้นที่เหล่านั้นหรือไม่ และถ้าไม่ ก็ควร fine-tune อย่างไร 
เป็นสิ่งที่ควรทำในการวิจัยต่อไป ซึ่งจะช่วย เพิ่มความทั่วไป 
(generalizability) ให้กับระบบ 

การลดขนาดโมเดลและเพิ ่มประสิทธิภาพการ
ประมวลผล ถึงแม้ DFYOLO จะเบากว่า YOLOv4 มาก แต่
สำหรับอุปกรณ์ประมวลผลขนาดเล็กบางอย่างหรือการ
ประมวลหลายกล้องพร้อมกัน ยังอาจต้องการโมเดลที่เบาลง
อีก แนวทางอนาคตคือใช้ เทคนิคการลดขนาดโมเดล เช่น 
Knowledge Distillation (ฝึก student model ที ่เล็กลง
ให้เลียนแบบ DFYOLO), โมเดลแบบ quantization (ลด
ความละเอ ียดน ้ำหน ักลงเป ็น 8 -bit), หร ือ Network 
Pruning (ตัดโหนดหรือตัวกรองที่ไม่สำคัญออก) ซึ่งสามารถ
ลดขนาดโมเดลและเพิ่ม FPS ได้โดยที่ความแม่นยำลดลง
เพียงเล็กน้อย งานวิจัยอื่น ๆ มีการรายงานการใช้ YOLO 
รุ ่นเล็กหรือปรับปรุงเช่น ShuffleNet, GhostNet เข้ามา
แทน backbone เพื ่อให้เบาขึ้น ซึ ่งน่าสนใจที่จะลองกับ 
DFYOLO ด้วย นอกจากนี ้ การปรับปรุง อัลกอริทึมการ
ติดตามวัตถุ (object tracking) ร่วมกับการตรวจจับก็อาจ
ช่วยเพิ่ม FPS ได้ (เช่น ตรวจจับในเฟรมหนึ่ง แล้ว track 
ตำแหน่งปลาในอีกหลายเฟรมก่อนจะตรวจจับใหม่) เหมาะ
กับวิดีโอเรียลไทม์ในบ่อปลา 

การผนวกรวมระบบการตัดสินใจและการจัดการ
ฟาร์ม  ในเชิงระบบใหญ่ หลังจากตรวจพบโรคแล้ว ควรมี 
ระบบแนะนำการจัดการ เช่น แจ้งเตือนผ่านแอปไปยังสัตว
แพทย์ประจำฟาร์ม, บันทึกสถิติการระบาดลงฐานข้อมูล
กลางเพื่อใช้วิเคราะห์แนวโน้ม (smart farming analytics), 
หรือแม้แต่สั่งการอุปกรณ์ในฟาร์มโดยอัตโนมัติ เช่น เพิ่ม
ปร ิมาณออกซ ิเจนทันท ีหากพบปลาป่วยจำนวนมาก 
เนื่องจากออกซิเจนต่ำเป็นปัจจัยกระตุ้นโรค แนวทางเหล่านี้
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เป็นการต่อยอด DFYOLO จากเครื่องมือวินิจฉัยไปสู่ส ่วน
หนึ่งของ ระบบสนับสนุนการตัดสินใจ (Decision Support 
System) ที่ครบวงจรยิ่งข้ึนสำหรับผู้ประกอบการ 

โดยสรุป วิสัยทัศน์ในอนาคตคือการสร้างระบบ
วินิจฉัยและควบคุมโรคปลาแบบบูรณาการ ที่นอกจากจะใช้ 
AI ตรวจโรคจากภาพได้แม่นยำแล้ว ยังรวบรวมข้อมูล
สิ ่งแวดล้อม ใช้โมเดลทำนายการระบาดล่วงหน้า และ
แนะนำวิธีการจัดการให้เกษตรกรได้แบบอัตโนมัต ิงานวิจัยนี้
ถือเป็นก้าวแรกที่พิสูจน์ว่า ปัญญาประดิษฐ์สามารถนำมาใช้
แก้ปัญหาที่มีมาช้านานในอุตสาหกรรมเพาะเลี้ยงสัตว์น้ำได้
อย่างมีประสิทธิผล และการพัฒนาต่อยอดตามแนวทาง
ข้างต้นจะนำไปสู่ระบบการเพาะเลี้ยงปลาอัจฉริยะที่ยั่งยืน
และต้านทานต่อโรคระบาดได้ดียิ่งข้ึนต่อไปในอนาคต 

8. กิตติกรรมประกาศ 
ผ ู ้ ว ิ จ ั ยขอขอบค ุณ คณะว ิศวกรรมศาสตร์  
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ค้นคว้าและวิจัย ขอขอบคุณ อาจารย์ที ่ปรึกษา สำหรับ
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