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Abstract

A formula of generating random variable for finite mixture model is proposed. The main contribution of the work is
a representation of random variable for finite cdf mixture model. We illustrate the generating random variable from the
four components including a mixture of normal distribution, logistic distribution, log-normal distribution and gamma
distribution in case of the number of the random variable is different, which present both the density and the cumulative
probability and compare with mixture distribution. The results show that the more numbers of the random variable, the
more the density and the cumulative probability are at the similar values more than small amount of number of the
random variable.
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1. Introduction

A finite mixture model (FMM) is a family of probability density function (pdf) which is a
convex combination of finite pdfs, two or more pdfs. By convex combination property, FMM is a
generalization or approximation of each individual pdf. Accordingly, FMMs are a flexible tool for
analyzing and explaining the complex data. The applications of FMMs were found in several
research fields, especially in statistical analysis and machine learning, such as modeling, clustering,
classification, and segmentation, see [5], [1], and [3]. Also. many researches propose random
variable of mixture model in several formats. For example, Reference [2] described random
variable as a mixture of two normal distributions.

In this section, we shall describe the definitions, notations and assumptions of FMM. Aftermost,
we shall present the main theorem of this paper. In this paper, we assume that all random variables
are defined in a probability space (,F,Pr). Let X be a continuous random variable and
fis fo) v, [ be probability density functions of random variables Xy, X5, ..., X, corresponding to the
parameter vectors 0y, 0, ..., 0, respectively. The random variable X is said to arise from a finite
mixture model if it has a pdf of the form

F0)= ) peful ) M)
k=1

where 0 = (04,0, ..., 0, 01,02, .., Pn) is a vector of parameters and p, > 0for 1< k < n
and 3.37_1 Pr = 1. The number 7 is called the mixture component, p; is called the mixing weight of
i" component. Usually, FMM can be characterized in convex combination form of cumulative
distribution functions (cdfs). Fy, Fs,...,E, corresponding to the pdfs fi, f5,..., fn. respectively.
Consequently, (1) is equivalent to the following form

n

F(x;0) = z Pr Fe (x5 0,). (2)
k=1

Next, we recall an important property mixture model, see [4]. Let x4 denote a indicator function
of event 4, ie., yo(x) =1if x € A, or y,(x) =0 if x € A. A discrete random variable A is
given by Pr(a= k) = p;.. We found that a random variable X is defined by
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n
X= ZX(A:A:]XP:' 3)

a random variable X is a random variable of mixture model (1) such that A is independent of the
random variables Xy, X5, ..., X, with distribution functions Fy, = Fj.
Our goal is to propose a representation of random variable for finite mixture model which differ

from (3) under the following assumption.
Assumption A: Let n > 2 be an integer. A discrete random variable A such that Pr(a= k) = py,
and the finite sequence of random variable {X;: 1 < i < n} are independent.
Under Assumption A, we obtain that for cach x € R and for some k € {1,2,3 ...,n},
Pr(a= k,h(Xqy, Xz, ..., Xn) < x) = Pr(a= k)Pr(h(Xy, Xz, ..., Xp) < x)
for all a measurable function h. This leads to the following theorem.
Theorem 1: Let Assumption A hold. and py,p,,..., P, be nonnegative real numbers such that

Yk=1Px = L If random variable X has the cdf in the form F(x;©) = Xi_1 px Fr(x; 0)), when
Fi.(x;0;) is cdf of X,k = 1,2,3,...,n, then

(n—l)'z( )nm m-— I—I(A =i )Xm 4)

is distributional equality.
2. Proof of Theorem

Proof: 1t X be random variable which has the cdf in the form

F(5,0)= ) peF(x00,x € R ®)

k=1

For each x € Rand k = {1,2, ..., n}, we have

L n
1 1 .
|l =D Y comm (P Ja-pxa=x
m=1 j=
Jj#m
n 1 n 5
= .
= Z Pr =D z (1) (:1 _ 1) r (A =DXm < x,0=k
k=1 m=1 j=
Jj#m
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=ZPr (n_1)|2( i o ﬂ(A—j)XmelA k |Pr(a= 1),

k=1
j#m

Under Assumption A, we assume that A is independent of the random variables X;,X,...
then

n+m <
Zml’r 1)|Z() " ﬂ(k D < |
};em
We obtain that

Z — Z( e (® ]_[(k—nx,,,+( —1ye ]—[(k-;)xl <x [ne
k=1

’"‘,‘ pm /rk

n

=.Zpr —_ Z(—l)"*m (-5 (k-k)n(k-j)xn,+(-1)"** (z:})n(k-j)xk <x [p
m= j= j=

mak jem jek
j#k

n

1 _
=Zpr((n_l),( 1 (27 1) (k= 1)k = 2) - (k= (e = D)k = (k + 1) - (k—n)Xk<x)

k=1

O (G=Dm=R) o1y,
k-lpr(w(—l) A(:—k)(_l) "Xka)pk

n

(NI

= Z Pr(Xy < x)py
k=1

n
= z Pi Fie (% 0;)
k=1

Therefore, we conclude that

Pr(X <x)=Pr

( —11)! me'”’”’" 5 u(A msx |
jem

This completes the proof of the theorem.
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3. Some examples

Next, we consider the FMM with four components
F(x, 0) - pl Fl (x, 61) + szz (x, 02) + png (x, 03) + p4 F4 (x, 04), (6)

where Fy (x;04),F, (x;0,), F; (x; 03) and F; (x; 0,) are cdf of random variable X, X,, X3, and
X4, respectively. By Theorem1, we found that

4 4
X= % Z (-1 (mi ) l_[(A X )
m=1 !:1
j#m

is a random variable of cdf F(x;©) . Particularly, we set X;~Normal(0,2), X,~Logistic(5,1),
X3~ Lognormal(2,1), and X4~ Gamma(10,2), with mixing weight p; = 0.2,p; = 0.35,p3 =
0.15,and p, = 0.3,

F(x;0) = 02 (% [1+ erf(\%)l) +035 (ﬁ) +0.15 I%q- %erf(ln(?{ Z)I +03 (y](‘::)é)) ®)

Xy . . . v . . ~ .
where y(k, 5) is the lower incomplete gamma function, and erf(x) is a special function (non-

elementary) of sigmoid shape that occurs in probability.

One important application of Theorem 1 is the generating random numbers with distribution
function F(x; ©). The simple method of generating random variable is called inversion method, set
x = F(u) where u~ U[0,1], see [6]. From (8), we generate found that F(x;®©) is rather
complicate, and it is not easy to calculate inverse function. From (7), we random numbers for each
random variable, and it are easy to random A. Hence, the generating random numbers of mixture
model from (7) is easy, and the following random result is obtained. Now, we generate random
variable X from (7). This generative representation is explicit: Im(a) € {1,2,3,4}. We illustrate the
density and the cumulative probability derived from both the generating random variable by
Theorem 1 and the direct mixture distribution in case of number of generating random variable (n)
are 100, 500, 1000, and 10000, respectively.
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Figure 1: (Left panel :) Comparison of density derived from both the generating random variable and mixture

distribution. (Right panel :) Comparison of cumulative probability derived from both the generating random variable
and mixture distribution. n=100

02 1
018 09
016 o8
014 z,O.'!

E

z 06

°

a
0s

5

E

=04

E

|

Vo3
02
ol

Figure 2: (Left panel :) Comparison of density derived from both the generating random variable and mixture

distribution. (Right panel :) Comparison of cumulative probability derived from both the generating random variable
and mixture distribution. n=500
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Figure 3: (Left panel :) Comparison of density derived from both the generating random variable and mixture
distribution. (Right panel :) Comparison of cumulative probability derived from both the generating random variable
and mixture distribution. n=1000
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Figure 4: (Left panel :) Comparison of density derived from both the generating random variable and mixture
distribution. (Right panel ;) Comparison of cumulative probability derived from both the generating random variable
and mixture distribution. n=10000

Figure 1 to Figure 4 show that the comparison of density and cumulative probability derived
from both the generating random variable by Theoreml and the directly mixture distribution at
n=100, 500, 1000 and 10000, respectively.

Concerning Figure 1 to Figure 4, it is interesting to note that, when there are many number of the
generating random variable, the density and the cumulative probability derived from the generating
random variable by Theorem1 is similar to the density and the cumulative probability of the direct
mixture distribution. Error values show in Tables 1.

30



Msafiavszenduszinaluladamsauing adun 1 90 3 (2561)

Table 1: Statistical errors for different random variable number of random variable and mixture distributions

Number of random variable Mean Absolute Error (MAE) Mean Square Error (MSE)
100 0.0337 0.00170
500 0.0179 0.00043
1000 0.0127 0.00025
10000 0.0082 0.00015

We have checked error values of random variable and mixture distribution. Tables 1 shows that
the Mean Absolute Error (MAE) and Mean Square Error (MSE) of random variable and mixture
distribution in case of number of random variable are 100, 500, 1000, and 10000, respectively. As
can be observed, random variable numbers as 10,000 has MAE and MSE least and random variable
numbers as 1000, 500, and 100, respectively.

4. Conclusions

A simple formula of the generating random variable for finite cdf mixture model shows the
examples of four components including a mixture of normal distribution, logistic distribution, log-
normal distribution and gamma distribution. The result shows that if there is more amount of the
random variable. it will cause similar value of density and cumulative probability obtained from
random variable and mixture distribution more than a small amount of the random variable. In the
further research will be using a formula of the generating random variable, which obtained from
this research, apply to a real world situation.
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