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Abstract

This study aims to predict the water level at the Bang Sai Arts and Crafts Center (C.29A) gauge station located in
the Chao Phraya River Basin, Amphoe Bang Sai. PhraNakhon Si Ayuttaya Province using NARX Network. The daily
water level data at the C.13, C.3, C.7A, C.35, S.5, S.26, and C.29A gauge stations from Apr 2012 - Dec 2016 were used
to develop the water level forecasting model. Data was separated in to three sets: training set, validation set. and testing
set. The one-step ahead forecasting model was evaluated using mean square error (MSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE). The results showed that the NARX Network using only the upstream
water level gauge stations and gauge station to be predicted obtained the lowest forecasting error. Moreover, the NARX
model outperformed Holt-Winters forecasting method.
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1. Introduction

Natural disasters that frequently occur in Thailand include floods, tropical storms and forest
fires. Flooding, the most frequent, occurs during the monsoon season, June-September. The risks to
Bangkok, in the flood plain of the Chao Phraya River, are high. with the potential for huge
economic loss [1]. In 2011, Thailand witnessed its worst flooding in half a century, when the
monsoon season brought unusually heavy rains, with floods spreading through the northern and
central provinces of Thailand. In Bangkok, 30 districts, 27 communities, and 621,355 households
were affected [2]. In the wake of the severe flooding, the government proposed strategies to prevent
their reoccurrence. One of the strategies was to improve information technology (IT) to obtain real-
time or frequently updated data. The IT system needs to monitor water levels to determine and
maintain equilibrated water levels [3]. This data should also be shared with the public to raise
awareness of water levels and the potential for flooding.

Thailand’s Royal Irrigation Department (RID) is responsible for flood prevention and disaster
relief. As part of this responsibility. RID monitors the water level at the Bang Sai Arts and Crafis
Center Station (C.29A) gauge station in PhraNakhon Si Ayuttaya Province. As water levels at this
station are keys to warmning Bangkok of flood risks. an early wamning system is critical.

Previous studies have applied hydrological models such as MIKEIl and Artificial Neural
Network (ANN) [4, 5], for runoff forecasting. Vangpaisal and Threenat [4] showed that the
performance of the ANN model depended on learming algorithms, input variables, and the number
of hidden nodes. Chaipimoplin and Vangpaisal [5] found that the Levenberg-Marquardt (LM)
leaning method provides better results than the Beyesian Regularization (BR) learning method.
They also suggested that the water level at the upstream gauge station of the main river, as well as
the water level at the gauge station to be predicted should be included as inputs in the model.
However, ANN structure also depends on the data set. because different runoff behavior in the
basin may require different model.
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This study aims to use Nonlinear Autoregressive with eXogeneous input (NARX) model, an
ANN technique, to model and forecast the water level at the Bang Sai Arts and Crafts Center
Station (C.29A) and to compare our NARX model with time series models using smoothing

technique.

2. Research Methodology

2.1 Data and Study Area

Figure 1 shows a map of central Thailand and the Chao Phraya River. The Chao Phraya River
originates at the confluence of the Ping, Wang, Yom and Nan rivers at Nakhon Sawan. The river
flows through the central plain through Bangkok into the Gulf of Thailand. At Ayutthaya, about 55
km north of Bangkok, the Pasak River joins the Chao Phraya River. Floods in Thailand are
generally caused by overflowing rivers, which results in widespread flooding [6]. In 2011, the
flooding began in late July, triggered by the landfall of tropical storm Nock-ten. These floods
spread through the provinces of northern, northeastern, and central Thailand. Water flows in the
Chao Phraya River exceeded its capacity, causing severe flooding in Bangkok. Therefore, at daily
warning system is critical to forecasting runoff and preventing flooding in the lower Chao Phraya
River. The flood management system monitors daily water levels at nine gauge stations. This
research considered only the gauge stations in the main stream of the Chao Phraya River, thus
excluding the C.36 and C.37 gauge stations. A schematic representation of the basin and the
location of the seven gauge stations considered in this study are shown in Figure 2.
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Figure 1: Map of the Chao Phraya River, the main river of Thailand [6].
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Figure 2: The basin and the location of the 7 gauge stations.

The water level data collected at the selected gauge stations in this study were defined as:

WL¢y3 — Water level at C.13 gauge station, Chao Phraya dam, Amphoe Sanphaya,
Chai Nat Province

WLe3 — Water level at C.3 gauge station, Ban Bang Putcha, Amphoe Muang, Sing
Buri Province

WLe7a — Water level at C.7A gauge station, Ban Bang Kaew, Amphoe Muang,
Ang Thong Province

WLess — Water level at C.35 gauge station, Ban Pom, Amphoe PhraNakhon Si
Avyuttaya, PhraNakhon Si Ayuttaya Province

WLss — Water level at S.5 gauge station, Panchamathirat Uthit School, Amphoe
PhraNakhon Si AyuttayaPhra, PhraNakhon Si Ayuttaya Province

WLs2s — Water level at S.26 gauge station, Rama VI Dam, Amphoe ThaRua,
PhraNakhon Si Ayuttaya Province

WLeoa — Water level at C.29A gauge station, Bang Sai Arts and Crafts Center,
Amphoe Bang Sai, PhraNakhon Si Ayuttaya Province

The data were collected for 1,736 consecutive days — from Apr 1, 2012 to Dec 31, 2016.
Normally, it takes approximately 24 hours for water to flow from the C.13 gauge station to the C.35
gauge station, and 60 hours flow from the C.13 gauge station to the C.29A gauge station. The water
level data was collected by Hydrology Irrigation Center for Central Region (RID) [7].

2.2 Artificial Neural Network (ANNs)

Artificial neural networks (ANNs) have been successfully applied to a number of time series
prediction. ANNs are nonlinear models that are relatively crude electronic networks of neurons
based on the neural structure of the brain. The neural network consists of three layers — the input,
hidden, and output layers. ANNs architecture is shown in Figure 3. This study employed a
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Multilayer Perceptron Algorithm (MLP) algorithm. The training function used in the network was
the Levenberg-Marquardt (LM) backpropagation method [8-10].

Hidden
Layer

Output

Figure 3: Multilayer Perceptron Architecture

Normally, ANNs predict one-step-ahead, or estimate the next period of a time series, without
feeding back the output to the model’s input data. This research focused on an incremental learning
method, as the model was trained when the actual value of target variable was known. Therefore,
we employed a Nonlinear Autoregressive with eXogeneous input (NARX) model, because the
NARX model’s input is built through two tapped-delay lines: one sliding over the input regressor
and another sliding over the output regressor [8]. This research followed the equation and symbols
presented in [8]. The NARX model is a discrete-time nonlinear system that can be mathematically
represented as:

y(t+1) = fy(®), . y(t —dy + 1);u(®), u(t = 1), ..., u(t — dy, + 1)), (1)

where u(t)eR and y(t)eR denote the input and output of the model at discrete time step n,
respectively, while d,, and d,, are the number of input delay and output delay. In vector form, it can
be written as

y(t+1) = fly@®);u®)], @

where y(t) and u(t) denote the output and input regressors, respectively. The nonlinear mapping
f(.) is generally unknown and can be approximated, for example, by a Multilayer Perceptron
(MLP) network. The resulting network architecture is then called a NARX network [8]. The NARX
network architecture is shown in Figure 4.
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Figure 4: NARX network with dy, delayed inputs and dy delayed outputs.

3. Experimental Setup

We evaluated the performance of the NARX network at predicting the daily water level at the
C.29A gauge station. We also compared the performance of the NARX model with a time series
model. We assessed trend and seasonality by using an autocorrelation plot. Since, the data contain
both trend and scasonality, thus Holt-Winters forecasting technique will be used as a time series
forecasting method.

3.1 Holt-Winters Forecasting Method

Holt - Winters’s method can be extended to deal with time series which contain both trend and
seasonal variations. In this work, we use the multiplicative Holt-Winters method and the general
forecasting function is shown in equation (3).

?Hp = (T + Bt)gt—mn 3)
where
YHp is the forecast made in period ¢ for period ¢ + p.
T, is the smoothed constant-process value for period ¢,
f; is the smoothed trend value for period €.
S¢ is the smoothed seasonal value for period ¢,
t is the period in which the forecast is made,
m is the number of seasonal, in this work, the seasonal pattern occurs within
15 days, thus m = 15,
p is the number of periods ahead to be forecast and is one-step ahead.

In Holt - Winters exponential smoothing [11], the model has the smoothing constants which are
a, v, and 8. The value of a, v, and § are ranged from 0 to 1. T, f:. and S; are formulated as follows:
Tt - ’Aai+ (1 - (‘()Tt_l

St-m

Bi= y(Te - Tt-l) + (1= 1)fer
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a &Y, 8
Se=7F+(1=0)S¢-m
t
where « is the level smoothing constant, 7 is the trend smoothing constant, and § is the seasonal
smoothing constant.

To get started, initial values of the level, trend and seasonality [12], Tinitiatr Pimitiar a4 Sinitiat

are formulated as follows:

Tinitiat = T2 Yi/m, 1=1,2,.,m

[ ;’itn"il n _2?:1 Yi]

3z Ji=12,..,mj=m+1m+2,...m+m

ﬂlm’tinl =

Smitiar St = Yi/Tmitiar i =12, ...,m

For a fair comparison, we develop an adaptive Holt-Winters model in which the parameter of the
model is recomputed every time the new daily water level at gauge station C.29A is available. In an
incremental learning task, we employed the concept of sliding window in which new data will be
added to the training data and the oldest data will be discarded. The window size is fixed and set as
the number of seasonal, m = 15.

3.2 Preprocessing

The data set was divided into three sets: the training set contained 1,216 days (Apr 1, 2012 — Jul 29,
2015), the validation set contained 260 days (Jul 30, 2015 — Apr 15, 2016). and the testing set
contained 260 days (Apr 16 — Dec 31, 2016).

3.3 Parameters Selting

We have set the parameters of the NARX model as follows:
Input delay and output delay varied from 1. 2. 3. 4, 5. 10, 15, 20, 25, 30, 35 to 40 days.
- Number of hidden layers was set to 1.
Number of hidden nodes varied from 3, 5, 7. 10, 15, 20, 25 to 30.

3.4 Experiments
In this study. we conducted three experiments using different numbers of input variables:

Case I Case I used all gauge stations. Hence, there are seven input variables — the water levels at
the C.13, C.3, C.7A, C.35. 8.5, 8.26 and C.29A gauge stations.

Case II: Case II used only selected variables. The variables were selected by considering Pearson’s
correlation coefficient () between the water level at each gauge stations and the water level at the
C.29A gauge station. The correlation coefficient between the water levels at the C.13, C.3, C.7A,
S.5, 8.26 and C.29A stations were computed (Table 1). We selected the water level at the gauge
stations that were highly related to the water level at the C.29A gauge station (7 is greater than 0.8),
in addition to the water level at the gauge station to be predicted (C.29A).
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Case ITI: Case III used only three input variables — the water level at the upstream gauge stations of
the main river (C.35 and S.5) and the water level at the gauge station to be predicted (C.29A).

Table 1 Pearson’s correlation coefficient between the water level at other stations and the water
level at the C.29A station.

Gauge station Pearson ‘s correlation coefficient (r) Decision
C.13 0.808 Include in the model
C3 0.827 Include in the model
C.7A 0.804 Include in the model
C35 0.550 Not include in the model
S.5 0.921 Include in the model
S.26 0.829 Include in the model

The forecasting equations for the three cases are:

WLe9a(), oov) WLC.Z‘)A(" -d,+ 1):
Whea3(£),Wheas(t = 1), ..., Wheq3(t — dy + 1);
Wles(£), Wies(t = 1), ., Whes(t = dy +1);
WLeaa(t), Whega(t = 1), ... Whga(t = dy + 1);
Wlhes(£), Whess(t = 1), .., Whess(t — dy + 1);
WL s(t), WLss(t = 1),..., WLs5(t — dy + 1);
Wihs26(1), Wha(t = 1), s Wisoo(t —dyy + 1)

Case :Wleaoa(t+1) = f

Wlea9a(8), o) Wheoa(t — dy + 1);
Wiea3(t), Wheaa(t = 1), ..., WL 13(t = dyy + 1);
WLes(£),Whes(t = 1), .., Whes(t—dy + 1);
WLeza(0),Wheza(t = 1), ., Whez4(t —dy + 1);
Wigs(t), Whs(t —1),..., WLss(t — d, + 1);
Wle6(t), WLz (t = 1), ..., Whsoe(t —d, + 1)

Case I Wllc_ng(t + 1) = f

WI‘C.Z‘)A(t)ﬂ vy WI:c'ng(t -— dy + 1):
Case Ill: WLe 04 (t+1) = f|WLe5(t), W gs(t = 1), o, Whes(t = dy + 1);
Wiss(t), Wlss(t = 1), ..., WLss(t = dy, + 1);

3.5 Evaluation Measure

MSE, MAE, and MAPE were employed to measure the one-step ahead forecasting error of the
model. MSE, MAE, and MAPE are given by equation (4), (5) and (6), respectively.

MSE = ZLL.(Z:-?c)Z' o)

MAE - 2?_11:,[-?!' (5)
p=dyn |t

mapE =237, [ x 100 ©)

where Y is the actual value in period t,
Y, is the forecast value in period ¢,
n is the number of periods.
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4. Experimental Results

Table 2 shows the optimal number of hidden nodes and delay for each case. The number of
input/output delay when considering the water level at all gauge stations (Case I) was 15 days. The
number of input/output delay when using only the water level at selected gauge stations (Case II)
was 3 days. The number of input/output delay when using water levels at only upstream gauge
stations and gauge station to be predicted (Case III) was 15 days. In summary, the results showed
that using the water levels at only upstream gauge stations and gauge station to be predicted (Case
IIT) gave the lowest forecasting error for all measures. In addition, the training time was lower than
other cases, because the number of input nodes was less.

Table 2: Water level forecasting using NARX network
Input/output | Number of MSE MAE MAPE Training time

Case

delay hidden nodes (minute)
| 15 7 0.0188 0.1060 | 32.15% 0.09
11 3 25 0.0191 | 0.1052 | 30.69% 0.02
111 15 3 0.0180 0.1036 | 28.37% <0.01
Table 3 Comparison of MSE. MAE and MAPE between NARX and Holt-Winters
Forecasting techniques MSE MAE MAPE
NARX network
o Casel 0.0188 0.1060 32.15%
e Casell 0.0191 0.1052 30.69%
e Caselll 0.0180 0.1036 28.37%
Holt-Winters exponential smoothing 0.0988 0.1934 36.08%

Table 3 shows the comparison of water level forecasting between the NARX model and the
Holt-Winters model. All three NARX networks outperformed the Holt-Winters method, with lower
MSE. MAE. and MAPE than the Holt-Winters. In order to show the difference between the
predicted and the actual water level of all methods, we used only daily water level during 1 Sep —
15 Dec, 2016, because fluctuation appeared during this period. Figure 5 displays the predicted
water level using the NARX network and the actual value of the water level at the C.29A gauge
station whereas Figure 6 displays the comparison of predicted water level between the NARX
model, the Holt-Winters model, and the actual value of the water level at the C.29A gauge station.
Morcover, Figure 6 shows that the NARX model gave a better fit compared to the Holt-Winters
model.
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Figure 5: The water level forecast using three NARX network cases compared to the actual water
level at the C.29A gauge station on the Chao Phraya River.
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Figure 6: The water level forecast using NARX - Case III compared to the Holt-Winters model.

5. Conclusion

We applied an NARX network to forecast water levels and compared this to the traditional
smoothing techniques. The results showed that the NARX model provided a lower forecasting error
than the Holt-Winters model. The most appropriate structure for the NARX models was to use only
the upstream water level gauge stations and gauge station to be predicted as discussed in [4]. Our
results showed that the NARX network outperformed Holt-Winters forecasting method.
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