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Abstract

In multiple linear regression models, the multicollinearity occurs when the explanatory variables in a
regression model are correlated. The multicollinearity effects on the ordinary least squares estimation method
since the estimated regression coefficients become unstable and difficult to interpret in the presence of
multicollinearity. In order to mitigate the problem of multicollinearity, Liu regression is widely used as a biased
method of estimation with biasing parameter d . The purpose of this research is to investigate the performance of
some biasing parameter estimates in Liu regression in the presence of moderate to high correlation among the
explanatory variables. The simulation study and application using real data have been performed to evaluate the
performance of these biasing parameter estimation methods due to the mean squared errors (MSE). Based on the
results from the simulation and application using real data, it can be concluded that the estimators Dg, Dg, D13 and
D15 have a better performance for Liu regression.
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1. Introduction
Multiple Linear regression is the statistical procedure to predict the values of a response variable from a
collection of predictor explanatory variables values. The multiple linear regression model is known as
Y=Xf+¢ 1)
where Y is an nx1 vector of the response variable, X is a known nxp full rank matrix of explanatory
variables, S is an px1 vector of unknown regression parameters, & is an nx1 vector of errors such that

E(g):O , and V(8)=62|n c

multiple linear regression models is the method of ordinary least squares (OLS). The ordinary least squares
estimator of S in equation (1) is written as

is an nxn identity matrix. The commonly used method of estimation in

Bows =(XX) " XY @)

As known, using the OLS method for estimating the parameter in the regression when the assumption of
linear independence among the regressors is violated which caused multicollinearity is problematic. The results
obtained through this method might be misleading when the problem of multicollinearity is present among the
explanatory variables (Damodar N., 2009). Many methods exist in literature to combat the multicollinearity
problem. Biased estimators with one biasing parameter include the ridge regression (RR) estimator by Hoerl and
Kennard (Hoerl et al., 1970) and the Liu estimator by Liu Kejian (Liu, 1993), among others. In addition, since the
RR estimator is not linear in terms of this tuning parameter, tuning parameter is difficult to choose. Therefore, Liu
estimator (LE) as an alternative to RR estimator which also has a tuning parameter affecting the performance of
the model. LE can deal with multicollinearity and provides easier and solid ways on the selection of tuning
parameters. LE is usually preferred over RR, because it is the linear function of its biasing parameter d (Qasim et
al., 2020). The LE of g in equation (1) is written as

Be =(XX+1)"(XY+dB) ; 0<d<1 @)

The advantage of the LE, compared with the traditional RR method proposed by Hoerl and Kennard [4],
is that the estimated coefficients are a linear function of the biasing parameter d (Liu, 1993) instead of a non-
linear function as in the case of RR. This leads to a more stable biasing of the vector of estimated coefficients.
The optimal value of biasing parameter d in Liu regression plays an important role in minimizing the variance.
Many researchers have suggested several Liu regression estimators for estimating d . Different studies proposed
and investigated the biasing parameter estimators for the LE such as Liu (Liu, 1993), Qasim (Qasim et al., 2020),
Khalaf (Khalaf G. et al., 2005), Shukur (Shukur et al., 2015), and Muhammad Suhail (Suhail et al., 2021).

Therefore, we investigate and examine different methods for estimating the biasing parameter d of the
LE in the linear regression model. The sections of this paper are arranged as follows: the statistical methodology
that includes the model estimation and existing LEs are discussed in Section 2. The design of the experiment is
described in Section 3. Simulation Results in Section 4. Real data are analyzed in Section 5 . At last, a brief
summary and conclusions in Section 6.

2. Some existing Liu estimators
The popular canonical form of the model in equation (1) is
Y=Za+e, (4)

where Z=XD and az(al,az,,..,ap) =D'p, D is an orthogonal matrix such that D'D=I and

Z'Z=D'XXD=A, A=diag (ﬂl,/lz,...,ﬂp) consists of the eigenvalues of the XX matrix. The OLS estimator

can be defined in canonical form as follows:

do s=A"ZY, )
and the mean square error matrix (MSEM) is
MSEM (&)=c4"". (6)
The RR estimator of « (Hoerl et al., 1970) is
dpg =W Adg, g, )

where W =(A+kI )71 and the mean square error matrix (MSEM) is

MSEM (digg )=0 "W AW '+(W A1) aer’ (W A-1) 8)

The LE is defined as
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dﬁ:F&my 9)

-1
where F:(A+I) (A+d|), and the mean square error matrix (MSEM) is

MSEM (¢ )=0F A F'+(1-d)" (4+1) " aa’ (4+1) . (10)

The first estimator for d was suggested by Liu (1993) and is given below:
d e 11
A

]
/11'

where /11. is the j th eigenvalue of the matrix of cross-products XX and o is the true residual variance. In

order to estimate the optimal value of d in equation (1), several methods will be proposed in this paper. The idea
behind these proposed estimators is taken from the work by Hoerl and Kennard (Hoerl et al., 1970), where several

different methods of estimating the biasing parameter for ridge regression were proposed. As in those papers, d i
will be estimated by a single value d . The first estimator applied is:

2 2
o —O
D, = max O,lmL (12)
2
7+amax
'max

. A2 . . ~ A . . . A2 .
where we define a,, is a maximum element of a? , Where A, is the maximum eigenvalue of 4;,and ¢° is

X

the sample residual variance. Replacing the values of the unknown parameters with the maximum value of the
unbiased estimators is an idea taken from Hoerl and Kennard (Hoerl et al., 1970).

Shukur et al., (Shukur et al., 2015) considered the idea of Khalaf G. et al. (2005) and Kibria (2003) and
suggested the following six estimators:

| ét-6°
D, = max| 0, median 1 (13)
7 +dj2
i
10 G’ -62
Dy=max| 0,— X | — (14)
p il (1/2;)+d]
D 0 @ 6" (15)
, = max| 0,max ( —
]//1-)+a
J J
Dy = max(O, median (qj )) (16)
1p /.
D = max 0,—Z(qj) (17)
p =t
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D, = max(O,max(cjj)) (18)

&’ -1
where g =— 1 (19)

I max (]7//1j )+d?

Suhail et al. (Suhail et al., 2021) propose the biasing parameter estimator depends on the quantile
probability whose value is selected according to the degrees of multicollinearity, also suggested the following
estimators:

(d. ) _g?
D, =max| 0, > 0w (20)
ClCHIMECHN
~ ~2
(“(i))o,zs“’
D, =max | 0, . - (21)
ACHMECH
(“ /( () Jo2s ) \4(0) Jos
~ A2
(“m) 7
D,, = max| 0, 080 (22)
A2 A
(O- /(ﬂ(j))o.so)Jr(a(‘))o.so
(),
(j) 0.75
D,, = max| 0, . 5 (23)
(" / (%))o.ys)*(“m)o -
()
(j) 1.00
D, =max| 0, — - (24)
(“ / (%))1.00)*(“(1))1.00
Babar et al. (Babar, 2021) present the role of quantile probability, choose some specific values for
quantile probability as: 0 (minimum), 0.25 (first quartile) and 0.50 (median), is given below:
~ ~2
D,, = max| 0, (O;j)o'oo_a > (25)
max(& //11.)+max(021)
a A2
D,, =max| 0 (Azj)o'z‘r’_a 5 (26)
max(o— /11-)+max(aj)
. ) a2
Dy = max| 0, Hos T (27)
max(cr //1])+max(aj)
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3. The Design of an Experiment
This section covers the Monte Carlo simulation experiment and performance criterion measures.

3.1 The Monte Carlo Simulation
The performance of LE is compared in this section through the simulation study. Following
(McDonald et al., 2021) the explanatory variables are generated as

2\¥2 . .
X; :(1—p ) 2492y 1=L2.0 L j=12,.p (28)
where p is the degree or level of multicollinearity between the explanatory variables ( p ), which are given as

0.80, 0.90, and 0.99. z;; are the random numbers obtained from the standard normal distribution. Considering
p=4 and p=8 insimulation where the variables are standardized. The response variable y; are defined as:
Yi= Bo+BiXy+BoXip e+ BpXp+&,  1=12,....n (29)
where &[N (0,0-2 ) o is the error variance are givenas 1, 5and 10. S, is considered to be identically zero.
Sample size (n) are given as 10, 30, 50, 100, 150 and 200. Following Kibria (2003), the eigenvector
corresponding to maximum eigenvalue of the XX matrix is taken as the vector of regression coefficients.

3.2. Performance Evaluation Criteria
The estimated MSE of estimators are measured in each replicate and
computed as:
M . AV
> (8s-8) (B-8)

MSE = 1= (30)
1,000

where ﬁd is the LE estimated value of S . The experiment is replicated 1000 times. The MSE simulation results

for p =4and 8, p =0.80, 0.90, and 0.99, o’ = 1, 5 and 10 are presented in Tables 1-6 for n =10, 30, 50, 100,
150 and 200, respectively. The results are discussed in the following section.

4. Simulation Results
In this section present the results of our Monte Carlo experiment concerning the MSEs of the different
estimation methods can be found in Table 1-6. The factors influencing the estimated MSE are the degree of

correlation (p) , error variance (0'2) , sample size (n), and the explanatory variables (p) . A general remark from

the literature is that these factors have the significant effect on the simulation design. The effect of each factor on
MSE of estimators is discussed below:

The effect of n increase leads to a lower MSE of all the estimators. The estimator D13 exhibit lowest
MSE in n= 10. When n= 30, 100, 150 and 200, the estimators D3 Dg, Dg and D15 are the closest competitor to

D13

The effect of p increasing while holding n, p, and o’ fixed is most commonly to increase the

estimated MSE. It is evident from these tables that the LE is always superior to the OLS estimator. LE with biasing
parameter D13 exhibits the lowest MSE.

The MSE of the estimators increases with the increase in the value of o . However, the performance of
LE is better than OLS estimator.

The increase of p gives an increase of the estimated MSE values. LE with biasing parameter D13
performs better than the other estimators.

The concluded remarks from Tables 1-6 are that the estimators D13 have shown better performance than
the other existing LEs in terms of smaller MSE. However, when n= 30, 100, 150 and 200, the estimators D3, Ds,
Dy, D13 and Dys are almost equivalent. Therefore, based on MSE criterion, we can infer that the estimator D3 is
more efficient and is the best choice for the practitioners in the presence of high and severe multicollinearity. The
least robust option among the different methods of estimating the biasing parameter are the D; and D1s».

5. Applications Using Real Data

In this section, we used the Portland cement data that adopted by Woods et al. (Woods H. et al., 1932) is
used to examine the Liu estimator performance with the different biasing parameter proposed estimators of d .
Then, this data was applied in various studies as Kaciranlar et al. (Kaciranlar et al., 1999), Li et al., 1932 (Li et
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al., 2012), Lukman et al. (Lukman et al., 2019) and recently Dawouda et al. (Dawouda et al., 2022), among others.
The dataset consists of 13 observations. The response variable (Y ) is to study the heat evolved after 180 days of

curing and measured in calories/gram of cement with 40% water at 35°C (95°F). Besides, the response variable
(y), the four explanatory variables considered are the clinker compounds (CALCD) defined as

X, : Tricalcium aluminate (3CaO *Al, Os)

X, . Tricalcium silicate (3CaO * SiO5)

X, : Tetracalcium aluminoferrite (4CaO = Al2 Os * Fe; Os)

X, - Dicalcium silicate (2Ca0O * SiO,)
This data regression model is given as
Y =Byt B X+ By X+ PaXg+fy Xy +e (31)

Condition number (CN) is used to measure the severity of multicollinearity among predictor. It can be
defined as (Kibria, 2017)

CN= [Amax (32)
Amin
where 4., and A, are represent the maximum and minimum eigenvalue of the XX matrix, respectively, if

the value of CN < 10 this means there is no problem of multicollinearity between the explanatory variables and if
it is 10< CN <30 then there is a problem of moderate multicollinearity between the explanatory variables and if
the value of CN > 30 this means that there is a strong multicollinearity problem between the explanatory variables
(Inan et al., 2013). The eigenvalues of XX matrix are 2.2357, 1.5761, 0.1866 and 0.0016. Then, the condition
number is 37.38064. Therefore, multicollinearity exists among the predictors. The Shapiro-Wilk (W) normality
test is used to test the normality of response variable. We obtain the value test statistic W = 0.96967 and p-value
= 0.8903, which shows that the response variable is normal at 5% level of significance.
MSE of OLS and Liu estimators from Liu (1993) can be written as

MSE (é)=0 3. ©, (33)
2,
2
A;+d 72
MSE (4)=0" 3, (J+)2+(d ) S (34)
25 (441) = (4+1)

The estimated values for d , coefficients and MSE of estimators are presented in Table 7. This table
shows that the LE is better than the OLS estimator. However, the Liu estimator, estimators D1o and D15 outperform
others; therefore, they are highly efficient among others. Estimators Ds, Dg, D7, Dg, Do, D13 and D14 were the close
competitors to D1g and Dis.

6. Conclusions

In this paper, we investigate the performance of some biasing parameter estimates in Liu regression.
Within different biasing parameter methods, D; to D1s, we focus on determining the ones that outperform better
by a simulation study and a real data application. The simulations were carried out by varying the values of
correlation, error variance, sample sizes, and different numbers of the explanatory variables. Results from the
simulation results demonstrate that biasing parameter estimator D13 produces the lowest MSE in all cases and
performs the best among the considered estimators. However, the estimators Dz Ds, Dg, D13 and Dis achieve
comparable MSE results. For the real data application, among the estimators, Do and D15 perform better than the
other considered estimators, while the estimators Ds, Ds, D7, Ds, D9, D13 and D14 Were the close competitors to
D1 and Dss. Finally, from the simulation study and the real data results, the LE is shown to be consistently more
robust than the OLS when the multicollinearity is present. It can also be concluded that Ds, Dg, D13 and D15 were
the ones to be recommended for practitioners when the LE is used.
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Table 1 MSE with n=10

p=4

o2 1 5 10
P 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99

OLS | 3.672 8.550 90.813 97.794 199.829 | 2128.749 371.728 793.124 9107.695
D: | 2615 | 6.985 | 88.074 | 74.148 | 166.793 | 2072.666 | 277.907 | 664.922 | 8883.769
D: | 0529 | 0.696 2.244 13.255 | 15929 [ 294.819 50.358 60.339 1861.549
Ds | 0537 | 0717 2.579 12.904 | 14.027 22.425 49.258 53.101 75.933
D4 1.059 1.873 13.228 62.459 130.315 1499.157 264.045 615.054 8021.994
Ds 0.490 0.551 0.376 18.382 20.463 55.205 108.471 150.136 929.859
Ds | 0535 | 0.657 0.841 25.347 | 33754 | 164.162 | 128.619 | 196.949 | 1372.055
D | 0809 | 1.320 5.899 74.921 | 143.833 | 1387.537 | 338.587 | 708.152 | 7917.600
Ds | 0489 | 0.550 0.348 12.773 | 13.538 8.908 49.235 52.826 34.887
Dy 0.510 0.602 0.730 12.826 13.892 15.796 49.253 53.285 66.397
D1o 0.621 0.798 3.384 13.640 16.017 77.492 50.993 60.924 304.930
Du | 1719 | 4767 | 80.764 | 41.412 | 102.542 | 1883.321 | 150.156 | 410.664 | 8111.919
D1 | 2652 | 7.016 | 88.095 | 70.715 | 161.673 | 2061.186 | 264.113 | 644.023 | 8835.881
Dis | 0.489 | 0549 0.347 12.773 | 13536 8.908 49.235 52.826 34.887
D4 1.059 1.873 13.228 62.459 130.315 1499.157 264.045 615.054 8021.994
Dis 0.496 0.558 0.393 12.819 13.634 9.780 49.349 53.135 38.525

p=8

o2 1 5 10
P 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99

OLS | 184.645 | 374.730 | 4057.833 | 4443.360 | 9219.762 | 99238.358 | 17043.967 | 35672.742 | 383526.203
D1 182.096 | 371.950 | 4054.942 | 4387.546 | 9159.852 | 99175.579 | 16817.239 | 35408.446 | 383263.949
D: | 1790 | 3.736 | 35829 | 275440 | 739.854 | 21610.765 | 1676.151 | 4815.823 | 162591215
Ds | 3167 | 6773 | 74457 | 118.084 | 208.731 | 3187.724 | 535778 | 715969 | 9657.095
D4 47.667 95.620 | 1063.896 | 3282.043 | 6885.701 | 78306.929 | 15274.631 | 32178.062 | 355557.742
Ds | 1.147 | 1.196 0.453 31.520 | 31.521 20.719 157.314 | 188.973 509.481
Ds | 1452 | 1.706 4.902 | 118.184 | 197.647 | 1583.108 | 772.997 | 1423.282 | 12510.913
Dr | 14.190 | 25.383 | 257.761 | 3025.144 | 6147.465 | 65341.738 | 14884.652 | 30961.493 | 329486.295
Ds | 1148 | 1197 0.462 29.716 | 29.330 11.012 115.609 | 120.143 44.851
Dy 3.257 8.609 37.613 60.716 79.614 676.286 306.171 286.075 2254.298
D1o 13.852 29.660 | 304.381 | 239.995 | 487.483 | 6934.724 1066.274 1797.644 24953.107
Duu | 64.451 | 146.164 | 1726.570 | 1608.845 | 3453.314 | 43321.319 | 5886.617 | 12898.477 | 155012.147
Di» | 182.116 | 371.955 | 4054.944 | 4380.467 | 9152.628 | 99168.127 | 16788.230 | 35375.726 | 383231.564
Dis | 1146 | 1.195 0.449 29.713 | 29.327 11.010 115.594 | 120.130 44.850
D4 47.667 95.620 | 1063.896 | 3282.043 | 6885.701 | 78306.929 | 15274.631 | 32178.062 | 355557.742
Dis | 1150 | 1.200 0.462 29.811 | 29.457 11.325 115.873 | 120.506 46.318

Bold values indicate the minimum MSE.
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Table 2 MSE with n=30

p=4
o2 1 5 10
P 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99
OLS | 0.490 0.941 9.431 12.356 24.564 240.990 49.667 98.514 1001.038
D1 0.365 0.603 7.308 8.959 15.757 194.470 35.921 63.668 817.666
D2 0.343 | 0.493 0.683 8.661 12.900 29.759 34.680 50.722 157.710
D3 0.344 | 0.495 0.726 8.661 12.900 14.696 34.680 50.722 60.274
D4 0.358 | 0.536 1.214 8.910 15.096 | 118.311 35.859 62.782 692.892
Ds 0.343 0.492 0.594 9.065 14.348 34.120 39.426 64.631 284.156
Ds 0.343 0.492 0.632 9.273 14.999 41.087 39.820 66.406 287.693
Dy 0.346 | 0.504 0.815 10.663 | 19.186 | 115.678 46.801 89.397 764.452
Ds 0.343 0.491 0.574 8.661 12.900 14.696 34.680 50.722 60.274
Do 0.343 | 0.491 0.583 8.661 12.900 14.970 34.680 50.722 61.102
D1o 0.344 | 0.493 0.659 8.661 12.901 16.862 34.680 50.730 69.781
D1 0.349 0.532 4,935 8.664 13.204 125.870 34.684 52.150 531.838
D12 0.366 | 0.605 7.314 8.917 15.456 | 187.667 35.729 62.320 789.016
D13 0.343 0.491 0.574 8.661 12.900 14.696 34.680 50.722 60.274
D14 0.358 | 0.536 1.214 8.910 15.096 | 118.311 35.859 62.782 692.892
Dis 0.343 0.492 0.596 8.661 12.901 15.270 34.680 50.725 62.746
p=8
s 1 5 10
P 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99
OLS | 1476 | 2973 | 31.791 | 36.469 | 72.290 | 806.864 | 154.439 | 326.399 | 3161.653
D: 1.004 | 2.031 | 28.822 | 25.042 | 50.134 | 738.627 | 107.584 | 234.782 | 2888.276
D2 0.735 | 0.987 1.463 18.267 | 24.933 57.438 75.247 103.984 324.107
Ds 0.735 0.988 1.594 18.267 24.933 35.301 75.247 103.984 139.176
D4 0.817 1.183 3.479 23.189 41.305 432.627 104.756 219.676 2379.909
Ds 0.735 0.987 1.380 18.609 25.849 43.985 83.708 124,771 298.409
Ds 0.735 | 0.989 1.426 19.693 | 28.263 63.495 90.184 140.230 426.891
Dy 0.764 | 1.058 1.896 28.002 | 48.155 | 344.769 | 139.011 | 279.320 | 2247.218
Ds 0.735 0.987 1.375 18.267 24.933 35.301 75.247 103.984 139.176
Do 0.735 0.987 1.382 18.267 24.933 35.372 75.247 103.984 139.439
D1o 0.735 0.987 1.463 18.267 24.933 37.065 75.247 103.985 146.655
Du 0.738 | 1.004 2.207 18.277 | 25.048 57.170 75.247 104.263 216.946
D12 1.007 | 2.035 | 28.831 | 24.645 | 49.150 | 732.066 | 105.662 | 230.080 | 2861.305
D13 0.735 0.987 1.375 18.267 24.933 35.301 75.247 103.984 139.176
D4 0.817 1.183 3.479 23.189 41.305 432.627 104.756 219.676 2379.909
Dis 0.735 0.987 1.381 18.267 24.933 35.432 75.247 103.984 139.725
Bold values indicate the minimum MSE.
Table 3 MSE with n=50
p=4
s 1 5 10
P 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99
OLS | 0.283 | 0.537 5.060 7.218 13.775 122.830 28.886 53.852 511.374
D: 0.234 | 0.387 3.539 5.879 9.795 87.881 23.570 38.352 372.819
D2 0.230 | 0.366 0.751 5.840 9.290 20.218 23.360 36.509 92.403
D3 0.230 | 0.366 0.779 5.840 9.290 17.472 23.360 36.509 72.675
D4 0.233 0.379 0.996 5.873 9.673 53.508 23.559 38.198 314.175
Ds 0.230 0.366 0.720 5.929 9.632 24.750 24.737 40.611 163.725

Bold values indicate the minimum MSE.
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p=4
ol 1 5 10
P 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99
Ds 0.230 | 0.366 0.737 5.998 9.900 28.684 24.974 41.561 174.832
D7 0.230 0.368 0.813 6.445 11.318 57.233 27.431 49.413 376.191
Ds 0.230 | 0.366 0.713 5.840 9.290 17.472 23.360 36.509 72.675
Do 0.230 | 0.366 0.716 5.840 9.290 17.504 23.360 36.509 72.867
D1o 0.230 0.366 0.737 5.840 9.290 17.873 23.360 36.509 74.645
Du 0.230 | 0.371 2.261 5.840 9.305 49,995 23.360 36.521 216.820
D12 0.234 | 0.388 3.545 5.873 9.735 83.940 23.536 38.099 356.564
D13 0.230 | 0.366 0.713 5.840 9.290 17.472 23.360 36.509 72.675
D14 0.233 0.379 0.996 5.873 9.673 53.508 23.559 38.198 314.175
D1s 0.230 0.366 0.721 5.840 9.290 17.599 23.360 36.509 73.293
p=8
o2 1 5 10
P 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99
OLS | 1.038 | 2.110 | 21.380 | 24.371 | 52.023 | 547.807 | 96.638 | 215.966 | 2142.686
D1 0.724 1.416 18.690 16.781 34.954 485.349 67.265 147.416 1892.963
D2 0.624 | 0.883 1.437 14.718 | 22.031 45,271 58.616 89.330 208.894
Ds 0.624 0.883 1.504 14.718 22.031 37.222 58.616 89.330 148.191
D4 0.654 0.980 2.341 16.054 29.269 239.194 66.275 137.828 1441.023
Ds 0.624 0.883 1.412 14.824 22.421 41.899 61.558 98.222 225.412
Ds 0.624 | 0.883 1.435 15.302 | 23.794 52.347 64.719 107.588 306.190
D7 0.631 0.911 1.642 18.730 33.940 194.643 85.693 178.214 1339.611
Ds 0.624 0.883 1.410 14.718 22.031 37.222 58.616 89.330 148.191
Do 0.624 0.883 1.412 14.718 22.031 37.239 58.616 89.330 148.257
D1o 0.624 | 0.883 1.431 14.718 | 22.031 37.813 58.616 89.330 150.497
D1 0.624 0.887 1.647 14.718 22.038 43.855 58.616 89.353 173.656
D12 0.725 1.418 18.694 16.635 34.357 479.740 66.674 144,723 1869.722
DI 0.624 0.883 1.410 14.718 22.031 37.222 58.616 89.330 148.191
D14 0.654 0.980 2.341 16.054 29.269 239.194 66.275 137.828 1441.023
Dis 0.624 | 0.883 1.412 14.718 | 22.031 37.274 58.616 89.330 148.398
Bold values indicate the minimum MSE.
Table 4 MSE with n=100
p=4
o2 1 5 10
P 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99
OLS | 0.132 0.266 2.992 3.288 6.851 71.482 13.299 27.556 281.991
D1 0.119 0.214 1.946 2.942 5.465 47.697 11.906 21.954 188.767
D2 0.118 0.210 0.684 2.942 5.416 17.229 11.906 21.791 65.893
Ds 0.118 0.210 0.695 2.942 5.416 16.976 11.906 21.791 64.982
D4 0.119 0.213 0.768 2.942 5.449 28.815 11.906 21.938 149.897
Ds 0.118 0.210 0.677 2.948 5.456 18.694 12.085 22.539 87.108
Ds 0.118 0.210 0.682 2.958 5.532 20.719 12.167 22.985 99.363
Dy 0.118 0.211 0.706 3.036 5.877 31.012 12.723 25.330 183.529
Ds 0.118 0.210 0.677 2.942 5.416 16.976 11.906 21.791 64.982
Do 0.118 0.210 0.677 2.942 5.416 16.979 11.906 21.791 64.982
D1o 0.118 0.210 0.680 2.942 5.416 17.025 11.906 21.791 65.096

Bold values indicate the minimum MSE.
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p=4
52 1 5 10
P 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99
Du 0.118 0.211 1.232 2.942 5.416 27.460 11.906 21.791 104.507
D12 0.119 0.214 1.947 2.942 5.458 45,673 11.906 21.931 180.352
DJE 0.118 0.210 0.677 2.942 5.416 16.976 11.906 21.791 64.982
D4 0.119 0.213 0.768 2.942 5.449 28.815 11.906 21.938 149.897
Dis 0.118 0.210 0.677 2.942 5.416 16.988 11.906 21.791 65.009

p=8
o2 1 5 10
Y 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99

OLS | 0.438 0.905 8.883 10.824 22.411 219.302 44,017 92.288 858.795
D: 0.355 0.651 6.872 8.756 15.986 172.378 35.425 66.381 673.121
D2 0.349 0.575 1.535 8.611 14.271 37.406 34.751 58.007 148.245
Ds 0.349 0.575 1.554 8.611 14.271 37.109 34.751 58.007 146.377
D4 0.353 0.593 1.798 8.704 15.179 78.634 35.342 64.857 466.725
Ds 0.349 0.575 1.533 8.618 14.324 38.457 35.124 59.544 167.928
Ds 0.349 0.575 1.539 8.683 14.617 41.648 35.850 62.110 195.670
D7 0.349 0.579 1.594 9.287 16.742 73.191 40.421 78.937 480.256
Ds 0.349 0.575 1.533 8.611 14.271 37.109 34.751 58.007 146.377
Do 0.349 0.575 1.533 8.611 14.271 37.109 34,751 58.007 146.379
D1o 0.349 0.575 1.534 8.611 14.271 37.132 34,751 58.007 146.458
D1 0.349 0.575 1.565 8.611 14.271 37.732 34.751 58.007 148.858
D12 0.355 0.651 6.874 8.744 15.882 169.229 35.368 65.881 660.367
DI 0.349 0.575 1.533 8.611 14.271 37.109 34.751 58.007 146.377
D14 0.353 0.593 1.798 8.704 15.179 78.634 35.342 64.857 466.725
Dis 0.349 0.575 1.533 8.611 14.271 37.111 34.751 58.007 146.386
Bold values indicate the minimum MSE.
Table 5 MSE with n=150

p=4
ol 1 5 10
P 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99

OLS 0.097 0.177 1.778 2.226 4537 45,638 9.615 18.110 179.283

D: 0.090 0.153 1.089 2.060 3.873 28.742 8.901 15.489 112.558
D2 0.089 0.151 0.612 2.060 3.866 15.499 8.901 15.469 62.237
Ds 0.089 0.151 0.617 2.060 3.866 15.486 8.901 15.469 62.122
D4 0.090 0.153 0.650 2.060 3.871 19.968 8.901 15.487 94.946
Ds 0.089 0.151 0.611 2.061 3.877 16.268 8.968 15.716 73.243
Ds 0.089 0.151 0.612 2.063 3.902 17.311 9.007 15.904 79.852
D7 0.089 0.152 0.621 2.089 4.025 21.910 9.258 16.824 118.776
Ds 0.089 0.151 0.611 2.060 3.866 15.486 8.901 15.469 62.122
Do 0.089 0.151 0.611 2.060 3.866 15.486 8.901 15.469 62.122
Do 0.089 0.151 0.611 2.060 3.866 15.493 8.901 15.469 62.153
Du 0.089 0.152 0.783 2.060 3.866 18.221 8.901 15.469 72.036
D12 0.090 0.153 1.089 2.060 3.872 27.663 8.901 15.486 108.281
D13 0.089 0.151 0.611 2.060 3.866 15.486 8.901 15.469 62.122
D 0.090 0.153 0.650 2.060 3.871 19.968 8.901 15.487 94.946
Dis 0.089 0.151 0.611 2.060 3.866 15.488 8.901 15.469 62.130

Bold values indicate the minimum MSE.
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p=8
o2 1 5 10
Y 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99
OLS | 0.269 0.563 5.660 6.814 13.421 143.900 26.454 55.546 597.072
D: 0.235 0.438 4,082 5.922 10.410 106.530 23.114 42,988 446.800
D2 0.234 0.422 1.429 5.912 10.102 36.603 23.098 41.600 147.927
Ds 0.234 0.422 1.438 5.912 10.102 36.582 23.098 41.600 147.882
D4 0.235 0.428 1.569 5.918 10.263 55.418 23.112 42.715 319.872
Ds 0.234 0.422 1.428 5.913 10.112 37.274 23.203 42.085 159.915
Ds 0.234 0.422 1.430 5.927 10.197 39.084 23.404 42,991 178.107
D~ 0.234 0.423 1.456 6.123 10.865 54.071 24,780 48.829 339.702
Ds 0.234 0.422 1.428 5.912 10.102 36.582 23.098 41.600 147.882
Do 0.234 0.422 1.428 5.912 10.102 36.582 23.098 41.600 147.882
Do 0.234 0.422 1.428 5.912 10.102 36.583 23.098 41.600 147.886
Du 0.234 0.422 1.435 5.912 10.102 36.724 23.098 41.600 148.506
D12 0.235 0.438 4,082 5.921 10.390 104.490 23.112 42.892 438.207
D13 0.234 0.422 1.428 5.912 10.102 36.582 23.098 41.600 147.882
D4 0.235 0.428 1.569 5.918 10.263 55.418 23.112 42.715 319.872
Dis 0.234 0.422 1.428 5.912 10.102 36.582 23.098 41.600 147.883
Bold values indicate the minimum MSE.
Table 6 MSE with n=200
p=4
s 1 5 10
P 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99
OLS | 0.075 0.140 1.476 1.799 | 4.076 38.312 7.270 15.348 147.345
D1 0.071 0.125 0.878 1.700 3.609 23.816 6.868 13.584 90.203
D2 0.071 0.125 0.587 1.700 3.609 15.231 6.868 13.584 59.009
Ds 0.071 0.125 0.592 1.700 3.609 15.229 6.868 13.584 58.969
D4 0.071 0.125 0.616 1.700 3.609 17.783 6.868 13.584 77.889
Ds 0.071 0.125 0.586 1.700 3.615 15.747 6.898 13.742 66.262
Ds 0.071 0.125 0.587 1.701 3.630 16.427 6.917 13.857 70.879
Dy 0.071 0.125 0.591 1.714 3.703 19.311 7.043 14431 96.174
Ds 0.071 0.125 0.586 1.700 3.609 15.229 6.868 13.584 58.969
D9 0.071 0.125 0.586 1.700 3.609 15.229 6.868 13.584 58.969
Do 0.071 0.125 0.586 1.700 3.609 15.230 6.868 13.584 58.975
Du 0.071 0.125 0.685 1.700 3.609 16.586 6.868 13.584 63.529
D12 0.071 0.125 0.879 1.700 3.609 23.065 6.868 13.584 87.304
D13 0.071 0.125 0.586 1.700 3.609 15.229 6.868 13.584 58.969
Dia 0.071 0.125 0.616 1.700 3.609 17.783 6.868 13.584 77.889
Dis 0.071 0.125 0.586 1.700 3.609 15.229 6.868 13.584 58.971
p=8
. 1 5 10
P 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99
OLS 0.164 0.359 3.557 4,184 9.037 87.655 17.338 33.813 353.269
D: 0.151 0.300 2.443 3.839 7.486 61.018 15.848 28.142 247.274
D2 0.150 0.295 1.196 3.839 7.421 29.557 15.848 27.994 119.962
D3 0.150 0.295 1.199 3.839 7.421 29.557 15.848 27.994 119.962
D4 0.151 0.297 1.267 3.839 7.456 36.621 15.848 28.109 187.637

Bold values indicate the minimum MSE.
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Table 6 Continued

p=8
o2 1 5 10
p 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99

Ds 0.150 0.295 1.196 3.839 7.423 29.826 15.870 28.125 125.353

Ds 0.150 0.295 1.196 3.840 7.454 30.754 15.950 28.460 134.617

D7 0.151 0.295 1.209 3.896 7.761 37.742 16.552 30.674 209.583

Ds 0.150 0.295 1.196 3.839 7.421 29.557 15.848 27.994 119.962

Dy 0.150 0.295 1.196 3.839 7421 29.557 15.848 27.994 119.962

D1o 0.150 0.295 1.196 3.839 7.421 29.557 15.848 27.994 119.962

Du 0.150 0.295 1.197 3.839 7.421 29.570 15.848 27.994 120.024

D12 0.151 0.300 2.444 3.839 7.481 59.908 15.848 28.127 242.814

D13 0.150 0.295 1.196 3.839 7.421 29.557 15.848 27.994 119.962

D14 0.151 0.297 1.267 3.839 7.456 36.621 15.848 28.109 187.637

D1s 0.150 0.295 1.196 3.839 7.421 29.557 15.848 27.994 119.962

Bold values indicate the minimum MSE.

Table 7 Estimated coefficients and mean squared error (MSE) values of the estimators.

Estimators d ﬁl [?2 /3’3 [3’4 MSE
oLS - -0.657 -0.008 0.303 0.388 14.624
D1 0.464 -0.644 -0.008 0.253 0.184 3.260
D: 0.006 -0.634 -0.008 0.210 0.010 0.268
D3 0.110 -0.636 -0.008 0.220 0.049 0.403
D4 0.464 -0.644 -0.008 0.253 0.184 3.260
Ds 0.000 -0.633 -0.008 0.209 0.007 0.270
Ds 0.000 -0.633 -0.008 0.209 0.007 0.270
Dy 0.000 -0.633 -0.008 0.209 0.007 0.270
Ds 0.000 -0.633 -0.008 0.209 0.007 0.270
Do 0.003 -0.633 -0.008 0.210 0.009 0.269
D1o 0.007 -0.634 -0.008 0.210 0.010 0.268
Du 0.842 -0.653 -0.008 0.288 0.328 10.390
D12 0.923 -0.655 -0.008 0.296 0.359 12.470
D13 0.000 -0.633 -0.008 0.209 0.007 0.270
D14 0.003 -0.633 -0.008 0.210 0.009 0.269
D1s 0.007 -0.634 -0.008 0.210 0.010 0.268

Bold values indicate the minimum MSE.
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