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บทคดัย่อ 
 

ในการประมาณค่าสัมประสิทธิก์ารถดถอยเชิงเส้นพหุ เมื่อตัวแปรอิสระมีความสัมพันธ์เชิง เส้นพหุ 
(Multicollinearity) จะส่งผลใหก้ารประมาณค่าตวัแปรตามทีไ่ดไ้ม่เหมาะสม อกีทัง้มผีลท าใหค้า่ประมาณสมัประสทิธิก์าร
ถดถอยเชงิเส้นพหุด้วยวธิกี าลงัสองน้อยที่สุดมคีวามเอนเอียงและค่าคลาดเคลื่อนก าลงัสองเฉลี่ยมคี่าสูง เพื่อแก้ไข
ปัญหาดงักล่าวขา้งตน้จงึไดม้ผีูเ้สนอวธิกีาร และพฒันาวธิกีารประมาณคา่สมัประสทิธิก์ารถดถอยเชงิเสน้พหุเมือ่ตวัแปร
อสิระมพีหุสมัพนัธ์กนั Liu Keijian (1993) ได้เสนอตวัประมาณใหม่ เรยีกว่าตวัประมาณค่า Liu โดยมคี่าพารามเิตอร์
เอนเอียง ( )d  เป็นพารามเิตอร์ที่ส าคญัในการสร้างตวัประมาณ Liu ในงานวจิยันี้ผู้วจิยัจงึศึกษาประสทิธิภาพของ
วธิกีารประมาณคา่พารามเิตอรเ์อนเอยีง ( )d  โดยเกณฑท์ีใ่ชใ้นการเปรยีบเทยีบประสทิธภิาพของวธิกีารประมาณค่าคอื 
ค่าคลาดเคลื่อนก าลงัสองเฉลี่ย (MSE) ผลจากการจ าลองขอ้มูลและขอ้มูลจรงิ พบว่า ตวัประมาณค่า Liu ที่ประมาณ
คา่พารามเิตอรเ์อนเอยีงดว้ย D8, D9, D13 and D15 มปีระสทิธภิาพสงูทีสุ่ด 
 
ค าส าคญั: การถดถอยเชิงเส้น, ตัวแปรอิสระมีความสมัพนัธ์เชิงเส้นพหุคูณ , ค่าคลาดเคลื่อนก าลงัสองเฉลี่ย, ตัว
ประมาณ Liu, พารามเิตอรเ์อนเอยีง 
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Abstract 

 
In multiple linear regression models, the multicollinearity occurs when the explanatory variables in a 

regression model are correlated. The multicollinearity effects on the ordinary least squares estimation method 

since the estimated regression coefficients become unstable and difficult to interpret in the presence of 

multicollinearity. In order to mitigate the problem of multicollinearity, Liu regression is widely used as a biased 

method of estimation with biasing parameter d . The purpose of this research is to investigate the performance of 

some biasing parameter estimates in Liu regression in the presence of moderate to high correlation among the 

explanatory variables. The simulation study and application using real data  have been performed to evaluate the 

performance of these biasing parameter estimation methods due to the mean squared errors (MSE). Based on the 

results from the simulation and application using real data, it can be concluded that the estimators D8, D9, D13 and 

D15 have a better performance for Liu regression. 

 

Keywords: linear regression, multicollinearity, mean square error, Liu estimator, biasing parameter 
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1. Introduction 

Multiple Linear regression is the statistical procedure to predict the values of a response variable from a 

collection of predictor explanatory variables values. The multiple linear regression model is known as  

Y X = +         (1) 

where Y  is an 1n  vector of the response variable, X  is a known n p  full rank matrix of explanatory 

variables,   is an 1p   vector of unknown regression parameters,   is an 1n  vector of errors such that 

( ) 0E  = , and ( ) 2

nV I = , nI  is an n n  identity matrix. The commonly used method of estimation in 

multiple linear regression models is the method of ordinary least squares (OLS). The ordinary least squares 

estimator of   in equation (1) is written as 

( )
1ˆ

OLS X X X Y
−

 =        (2) 

As known, using the OLS method for estimating the parameter in the regression when the assumption of 

linear independence among the regressors is violated which caused multicollinearity is problematic. The results 

obtained through this method might be misleading when the problem of multicollinearity is present among the 

explanatory variables (Damodar N., 2009). Many methods exist in literature to combat the multicollinearity 

problem. Biased estimators with one biasing parameter include the ridge regression (RR) estimator by Hoerl and 

Kennard (Hoerl et al., 1970) and the Liu estimator by Liu Kejian (Liu, 1993), among others. In addition, since the 

RR estimator is not linear in terms of this tuning parameter, tuning parameter is difficult to choose. Therefore, Liu 

estimator (LE) as an alternative to RR estimator which also has a tuning parameter affecting the performance of 

the model. LE can deal with multicollinearity and provides easier and solid ways on the selection of tuning 

parameters. LE is usually preferred over RR, because it is the linear function of its biasing parameter d (Qasim et 

al., 2020). The LE of   in equation (1) is written as 

( ) ( )
1ˆ ˆ ; 0 1LE X X I X Y d d 
−

 = + +      (3) 

The advantage of the LE, compared with the traditional RR method proposed by Hoerl and Kennard [4], 

is that the estimated coefficients are a linear function of the biasing parameter d  (Liu, 1993) instead of a non-

linear function as in the case of RR. This leads to a more stable biasing of the vector of estimated coefficients. 

The optimal value of biasing parameter d  in Liu regression plays an important role in minimizing the variance. 

Many researchers have suggested several Liu regression estimators for estimating d . Different studies proposed 

and investigated the biasing parameter estimators for the LE such as Liu (Liu, 1993), Qasim (Qasim et al., 2020), 

Khalaf (Khalaf G. et al., 2005), Shukur (Shukur et al., 2015), and Muhammad Suhail (Suhail et al., 2021).  

Therefore, we investigate and examine different methods for estimating the biasing parameter d  of the 

LE in the linear regression model. The sections of this paper are arranged as follows: the statistical methodology 

that includes the model estimation and existing LEs are discussed in Section 2. The design of the experiment is 

described in Section 3. Simulation Results in Section 4. Real data are analyzed in Section 5 . At last, a brief 

summary and conclusions in Section 6.  

 
2. Some existing Liu estimators 

The popular canonical form of the model in equation (1) is  

     ,Y Z = +       (4) 

where Z XD=  and ( )1 2, , , ,p D    


= =  D  is an orthogonal matrix such that D D I =  and  

,Z Z D X XD   = =  ( )1 2, , , pdiag   =  consists of the eigenvalues of the X X matrix. The OLS estimator 

can be defined in canonical form as follows: 
1

ˆ ,OLS Z y 
−

=       (5) 

and the mean square error matrix (MSEM) is 

( ) 2 1
ˆ .MSEM   

−
=      (6) 

 The RR estimator of  (Hoerl et al., 1970) is 

     ˆ ˆ ,RR OLSW =       (7) 

where ( )
1

W kI
−

= +  and the mean square error matrix (MSEM) is 

   ( ) ( ) ( )2
ˆ .RRMSEM W W W I W I       = + − −     (8) 

The LE is defined as 

https://www.sciencedirect.com/topics/social-sciences/multiple-regression
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     ˆ ˆ ,LE OLSF =       (9) 

 

where ( ) ( )
1

,F I dI 
−

= + +  and the mean square error matrix (MSEM) is 

( ) ( ) ( ) ( )
2 1 12 1

ˆ 1 .LEMSEM F F d I I     
− −−

 = + − + +    (10) 

 
The first estimator for d  was suggested by Liu (1993) and is given below:  

    

2 2

21
j

j

j

j

d
 




−
=

+

      (11) 

where j  is the j th eigenvalue of the matrix of cross-products X X  and 
2

  is the true residual variance. In 

order to estimate the optimal value of d  in equation (1), several methods will be proposed in this paper. The idea 

behind these proposed estimators is taken from the work by Hoerl and Kennard (Hoerl et al., 1970), where several 

different methods of estimating the biasing parameter for ridge regression were proposed. As in those papers, jd  

will be estimated by a single value d . The first estimator applied is: 

2 2

max
1

2

max

max

max 0,
1

D
 




−
=

+

 
 
 
 
 
 

     (12) 

 

where we define 
2

max̂  is a maximum element of 
2
ˆ

j , where max̂  is the maximum eigenvalue of j , and 
2

̂  is 

the sample residual variance. Replacing the values of the unknown parameters with the maximum value of the 

unbiased estimators is an idea taken from Hoerl and Kennard (Hoerl et al., 1970). 

 
 Shukur et al., (Shukur et al., 2015) considered the idea of Khalaf G. et al. (2005) and Kibria (2003) and 

suggested the following six estimators: 

 

2 2

2
2

ˆ ˆ
max 0,

1
ˆ

ˆ

j

j

j

D median
 




−
=

+

  
  
  
  
  

  

                 (13) 

    
( )

2 2

3 2
1

ˆ ˆ1
max 0,

ˆ1

p
j

j
j j

D
p

 

 =

−
= 

+

  
  

  
  

    (14)

                                           

    
( )

2 2

4 2

ˆ ˆ
max 0,max

ˆ1

j

j j

D
 

 

−
=

+

  
  

  
  

     (15)                             

               

    ( )( )5
ˆmax 0, jD median q=      (16)

                                            

( )6
1

1
ˆmax 0,

p

j
j

D q
p =

= 
 
 
 

      (17)
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( )( )7
ˆmax 0,max jD q=       (18)

                                                      

where   
( )

2

2

ˆ 1
ˆ

ˆmax 1

j

j

j j

q


 

−
=

+
                       (19) 

 

Suhail et al. (Suhail et al., 2021) propose the biasing parameter estimator depends on the quantile 

probability whose value is selected according to the degrees of multicollinearity, also suggested the following 

estimators: 

 

( )( )

( )( )( ) ( )( )

2

0.00
8

2 2

0.00 0.00

ˆ ˆ

max 0,

ˆˆ

j

j j

D

 

  

−

=

+

 
 
 
 
 

              (20) 

( )( )

( )( )( ) ( )( )

2

0.25
9

2 2

0.25 0.25

ˆ ˆ

max 0,

ˆˆ

j

j j

D

 

  

−

=

+

 
 
 
 
 

               (21) 

( )( )

( )( )( ) ( )( )

2

0.50
10

2 2

0.50 0.50

ˆ ˆ

max 0,

ˆˆ

j

j j

D

 

  

−

=

+

 
 
 
 
 

             (22) 

( )( )

( )( )( ) ( )( )

2

0.75
11

2

0.75 0.75

ˆ ˆ

max 0,
2
ˆˆ

j

j j

D

 

  

−

=

+

 
 
 
 
 

              (23) 

( )( )

( )( )( ) ( )( )

2

1.00
12

2 2

1.00 1.00

ˆ ˆ

max 0,

ˆˆ

j

j j

D

 

  

−

=

+

 
 
 
 
 

              (24) 

 

Babar et al. (Babar, 2021) present the role of quantile probability, choose some specific values for 

quantile probability as: 0 (minimum), 0.25 (first quartile) and 0.50 (median), is given below: 

 

( )
( ) ( )

2

0.00
13 2 2

ˆ ˆ
max 0,

ˆˆmax max

j

j j

D
 

  

−
=

+

 
 
 
 

                 (25) 

( )
( ) ( )

2

0.25
14 2 2

ˆ ˆ
max 0,

ˆˆmax max

j

j j

D
 

  

−
=

+

 
 
 
 

                 (26) 

( )
( ) ( )

2

0.50
15 2 2

ˆ ˆ
max 0,

ˆˆmax max

j

j j

D
 

  

−
=

+

 
 
 
 

                 (27) 
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3. The Design of an Experiment 

 This section covers the Monte Carlo simulation experiment and performance criterion measures. 
 

 3.1 The Monte Carlo Simulation 

The performance of LE is compared in this section through the simulation study.  Following 

(McDonald et al., 2021) the explanatory variables are generated as 

( )
1 2

2

, 11 ,ij ij i px z z  += − +     1,2, ,i n=  , 1,2, ,j p=    (28) 

where   is the degree or level of multicollinearity between the explanatory variables ( p ), which are given as 

0.80, 0.90, and 0.99. ijz  are the random numbers obtained from the standard normal distribution. Considering 

4p=  and 8p=  in simulation where the variables are standardized. The response variable iy  are defined as: 

   0 1 1 2 2 ,i i i p ip iy x x x    = + + + + +       1,2, ,i n=    (29) 

where ( )2
0, ,i N   

2
  is the error variance are given as 1, 5 and 10. 0  is considered to be identically zero. 

Sample size ( n ) are given as 10, 30, 50, 100, 150 and 200. Following Kibria (2003), the eigenvector 

corresponding to maximum eigenvalue of the X X  matrix is taken as the vector of regression coefficients.    
 

3.2. Performance Evaluation Criteria 

The estimated MSE of estimators are measured in each replicate and  

computed as: 

    
( ) ( )

1

ˆ ˆ

1, 000

M

d d
iMSE

   
=


− −

=      (30) 

where ˆd  is the LE estimated value of  . The experiment is replicated 1000 times. The MSE simulation results 

for p = 4 and 8,  = 0.80, 0.90, and 0.99, 
2

 = 1, 5 and 10 are presented in Tables 1–6 for n  = 10, 30, 50, 100, 

150 and 200, respectively. The results are discussed in the following section. 

 
4. Simulation Results 

In this section present the results of our Monte Carlo experiment concerning the MSEs of the different 

estimation methods can be found in Table 1-6. The factors influencing the estimated MSE are the degree of 

correlation ( ) ,  error variance ( )2 , sample size ( )n , and the explanatory variables ( )p . A general remark from 

the literature is that these factors have the significant effect on the simulation design. The effect of each factor on 

MSE of estimators is discussed below: 

The effect of n  increase leads to a lower MSE of all the estimators. The estimator D13 exhibit lowest 

MSE in n= 10. When n= 30, 100, 150 and 200, the estimators D3 D8, D9 and D15 are the closest competitor to 

D13 

The effect of p increasing while holding n , ,  and 
2

  fixed is most commonly to increase the 

estimated MSE. It is evident from these tables that the LE is always superior to the OLS estimator. LE with biasing 

parameter D13 exhibits the lowest MSE. 

The MSE of the estimators increases with the increase in the value of 
2

 . However, the performance of 

LE is better than OLS estimator.  

The increase of  gives an increase of the estimated MSE values. LE with biasing parameter D13 

performs better than the other estimators.  

The concluded remarks from Tables 1–6 are that the estimators D13 have shown better performance than 

the other existing LEs in terms of smaller MSE. However, when n= 30, 100, 150 and 200, the estimators D3, D8, 

D9, D13 and D15 are almost equivalent. Therefore, based on MSE criterion, we can infer that the estimator D13 is 

more efficient and is the best choice for the practitioners in the presence of high and severe multicollinearity. The 

least robust option among the different methods of estimating the biasing parameter are the D1 and D12.  

 
5. Applications Using Real Data 

 In this section, we used the Portland cement data that adopted by Woods et al. (Woods H. et al., 1932) is 

used to examine the Liu estimator performance with the different biasing parameter proposed estimators of d . 

Then, this data was applied in various studies as Kaciranlar et al. (Kaciranlar et al., 1999), Li et al., 1932 (Li et 
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al., 2012), Lukman et al. (Lukman et al., 2019) and recently Dawouda et al. (Dawouda et al., 2022), among others. 

The dataset consists of 13 observations. The response variable ( y ) is to study the heat evolved after 180 days of 

curing and measured in calories/gram of cement with 40% water at 35°C (95°F). Besides, the response variable  

( y ), the four explanatory variables considered are the clinker compounds (CALCD) defined as 

1 :X  Tricalcium aluminate (3CaO ∗Al2 O3) 

2 :X  Tricalcium silicate (3CaO ∗ SiO2) 

 3 :X  Tetracalcium aluminoferrite (4CaO ∗ Al2 O3 ∗ Fe2 O3) 

 4 :X  Dicalcium silicate (2CaO ∗ SiO2) 

This data regression model is given as 

   
0 1 1 2 2 3 3 4 4

y X X X X     = + + + + +      (31) 

 Condition number (CN) is used to measure the severity of multicollinearity among predictor. It can be 

defined as (Kibria, 2017) 

     max

min
,CN




=       (32) 

where max  and min are represent the maximum and minimum eigenvalue of the X X  matrix, respectively, if 

the value of CN < 10 this means there is no problem of multicollinearity between the explanatory variables and if 

it is 10< CN <30 then there is a problem of moderate multicollinearity between the explanatory variables and if 

the value of CN > 30 this means that there is a strong multicollinearity problem between the explanatory variables 

(Inan et al., 2013). The eigenvalues of X X  matrix are 2.2357, 1.5761, 0.1866 and 0.0016. Then, the condition 

number is 37.38064. Therefore, multicollinearity exists among the predictors. The Shapiro-Wilk (W) normality 

test is used to test the normality of response variable. We obtain the value test statistic W = 0.96967 and p-value 

= 0.8903, which shows that the response variable is normal at 5% level of significance. 

 MSE of OLS and Liu estimators from Liu (1993) can be written as 

 

( ) 2

1

1
ˆ ,

p

j
j

MSE  
=

=       (33) 

( )
( )

( )
( )

( )

2
2

22

2 2
1

ˆ
ˆ 1 .

11 1

p pj j

j
j j j j

d
MSE d

j

 
 

   =

+
= + − 

=+ +

   (34) 

 
The estimated values for d , coefficients and MSE of estimators are presented in Table 7. This table 

shows that the LE is better than the OLS estimator. However, the Liu estimator, estimators D10 and D15 outperform 

others; therefore, they are highly efficient among others. Estimators D5, D6, D7, D8, D9, D13 and D14 were the close 

competitors to D10 and D15.  

 
6. Conclusions 

In this paper, we investigate the performance of some biasing parameter estimates in Liu regression. 

Within different biasing parameter methods, D1 to D15, we focus on determining the ones that outperform better 

by a simulation study and a real data application. The simulations were carried out by varying the values of 

correlation, error variance, sample sizes, and different numbers of the explanatory variables. Results from the 

simulation results demonstrate that biasing parameter estimator D13 produces the lowest MSE in all cases and 

performs the best among the considered estimators. However, the estimators D3 D8, D9, D13 and D15 achieve 

comparable MSE results. For the real data application, among the estimators, D10 and D15 perform better than the 

other considered estimators, while the estimators D5, D6, D7, D8, D9, D13 and D14 were the close competitors to 

D10 and D15. Finally, from the simulation study and the real data results, the LE is shown to be consistently more 

robust than the OLS when the multicollinearity is present. It can also be concluded that D8, D9, D13 and D15 were 

the ones to be recommended for practitioners when the LE is used. 
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Table 1 MSE with 10n=  

 

 

1 5 10 

 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

OLS 3.672 8.550 90.813 97.794 199.829 2128.749 371.728 793.124 9107.695 

D1 2.615 6.985 88.074 74.148 166.793 2072.666 277.907 664.922 8883.769 

D2 0.529 0.696 2.244 13.255 15.929 294.819 50.358 60.339 1861.549 

D3 0.537 0.717 2.579 12.904 14.027 22.425 49.258 53.101 75.933 

D4 1.059 1.873 13.228 62.459 130.315 1499.157 264.045 615.054 8021.994 

D5 0.490 0.551 0.376 18.382 20.463 55.205 108.471 150.136 929.859 

D6 0.535 0.657 0.841 25.347 33.754 164.162 128.619 196.949 1372.055 

D7 0.809 1.320 5.899 74.921 143.833 1387.537 338.587 708.152 7917.600 

D8 0.489 0.550 0.348 12.773 13.538 8.908 49.235 52.826 34.887 

D9 0.510 0.602 0.730 12.826 13.892 15.796 49.253 53.285 66.397 

D10 0.621 0.798 3.384 13.640 16.017 77.492 50.993 60.924 304.930 

D11 1.719 4.767 80.764 41.412 102.542 1883.321 150.156 410.664 8111.919 

D12 2.652 7.016 88.095 70.715 161.673 2061.186 264.113 644.023 8835.881 

D13 0.489 0.549 0.347 12.773 13.536 8.908 49.235 52.826 34.887 

D14 1.059 1.873 13.228 62.459 130.315 1499.157 264.045 615.054 8021.994 

D15 0.496 0.558 0.393 12.819 13.634 9.780 49.349 53.135 38.525 

 

 1 5 10 

 0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

OLS 184.645 374.730 4057.833 4443.360 9219.762 99238.358 17043.967 35672.742 383526.203 

D1 182.096 371.950 4054.942 4387.546 9159.852 99175.579 16817.239 35408.446 383263.949 

D2 1.790 3.736 35.829 275.440 739.854 21610.765 1676.151 4815.823 162591.215 

D3 3.167 6.773 74.457 118.084 208.731 3187.724 535.778 715.969 9657.095 

D4 47.667 95.620 1063.896 3282.043 6885.701 78306.929 15274.631 32178.062 355557.742 

D5 1.147 1.196 0.453 31.520 31.521 20.719 157.314 188.973 509.481 

D6 1.452 1.706 4.902 118.184 197.647 1583.108 772.997 1423.282 12510.913 

D7 14.190 25.383 257.761 3025.144 6147.465 65341.738 14884.652 30961.493 329486.295 

D8 1.148 1.197 0.462 29.716 29.330 11.012 115.609 120.143 44.851 

D9 3.257 8.609 37.613 60.716 79.614 676.286 306.171 286.075 2254.298 

D10 13.852 29.660 304.381 239.995 487.483 6934.724 1066.274 1797.644 24953.107 

D11 64.451 146.164 1726.570 1608.845 3453.314 43321.319 5886.617 12898.477 155012.147 

D12 182.116 371.955 4054.944 4380.467 9152.628 99168.127 16788.230 35375.726 383231.564 

D13 1.146 1.195 0.449 29.713 29.327 11.010 115.594 120.130 44.850 

D14 47.667 95.620 1063.896 3282.043 6885.701 78306.929 15274.631 32178.062 355557.742 

D15 1.150 1.200 0.462 29.811 29.457 11.325 115.873 120.506 46.318 

Bold values indicate the minimum MSE. 

 

 

 

 

 

 

 

 

 

 
  

4p=

2



8p=

2

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Table 2 MSE with 30n=  

4p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

OLS 0.490 0.941 9.431 12.356 24.564 240.990 49.667 98.514 1001.038 

D1 0.365 0.603 7.308 8.959 15.757 194.470 35.921 63.668 817.666 

D2 0.343 0.493 0.683 8.661 12.900 29.759 34.680 50.722 157.710 

D3 0.344 0.495 0.726 8.661 12.900 14.696 34.680 50.722 60.274 

D4 0.358 0.536 1.214 8.910 15.096 118.311 35.859 62.782 692.892 

D5 0.343 0.492 0.594 9.065 14.348 34.120 39.426 64.631 284.156 

D6 0.343 0.492 0.632 9.273 14.999 41.087 39.820 66.406 287.693 

D7 0.346 0.504 0.815 10.663 19.186 115.678 46.801 89.397 764.452 

D8 0.343 0.491 0.574 8.661 12.900 14.696 34.680 50.722 60.274 

D9 0.343 0.491 0.583 8.661 12.900 14.970 34.680 50.722 61.102 

D10 0.344 0.493 0.659 8.661 12.901 16.862 34.680 50.730 69.781 

D11 0.349 0.532 4.935 8.664 13.204 125.870 34.684 52.150 531.838 

D12 0.366 0.605 7.314 8.917 15.456 187.667 35.729 62.320 789.016 

D13 0.343 0.491 0.574 8.661 12.900 14.696 34.680 50.722 60.274 

D14 0.358 0.536 1.214 8.910 15.096 118.311 35.859 62.782 692.892 

D15 0.343 0.492 0.596 8.661 12.901 15.270 34.680 50.725 62.746 

8p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

OLS 1.476 2.973 31.791 36.469 72.290 806.864 154.439 326.399 3161.653 

D1 1.004 2.031 28.822 25.042 50.134 738.627 107.584 234.782 2888.276 

D2 0.735 0.987 1.463 18.267 24.933 57.438 75.247 103.984 324.107 

D3 0.735 0.988 1.594 18.267 24.933 35.301 75.247 103.984 139.176 

D4 0.817 1.183 3.479 23.189 41.305 432.627 104.756 219.676 2379.909 

D5 0.735 0.987 1.380 18.609 25.849 43.985 83.708 124.771 298.409 

D6 0.735 0.989 1.426 19.693 28.263 63.495 90.184 140.230 426.891 

D7 0.764 1.058 1.896 28.002 48.155 344.769 139.011 279.320 2247.218 

D8 0.735 0.987 1.375 18.267 24.933 35.301 75.247 103.984 139.176 

D9 0.735 0.987 1.382 18.267 24.933 35.372 75.247 103.984 139.439 

D10 0.735 0.987 1.463 18.267 24.933 37.065 75.247 103.985 146.655 

D11 0.738 1.004 2.207 18.277 25.048 57.170 75.247 104.263 216.946 

D12 1.007 2.035 28.831 24.645 49.150 732.066 105.662 230.080 2861.305 

D13 0.735 0.987 1.375 18.267 24.933 35.301 75.247 103.984 139.176 

D14 0.817 1.183 3.479 23.189 41.305 432.627 104.756 219.676 2379.909 

D15 0.735 0.987 1.381 18.267 24.933 35.432 75.247 103.984 139.725 

Bold values indicate the minimum MSE. 

 
Table 3 MSE with 50n=  

4p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

OLS 0.283 0.537 5.060 7.218 13.775 122.830 28.886 53.852 511.374 

D1 0.234 0.387 3.539 5.879 9.795 87.881 23.570 38.352 372.819 

D2 0.230 0.366 0.751 5.840 9.290 20.218 23.360 36.509 92.403 

D3 0.230 0.366 0.779 5.840 9.290 17.472 23.360 36.509 72.675 

D4 0.233 0.379 0.996 5.873 9.673 53.508 23.559 38.198 314.175 

D5 0.230 0.366 0.720 5.929 9.632 24.750 24.737 40.611 163.725 

Bold values indicate the minimum MSE. 
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Table 3 Continued 

 
4p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

D6 0.230 0.366 0.737 5.998 9.900 28.684 24.974 41.561 174.832 

D7 0.230 0.368 0.813 6.445 11.318 57.233 27.431 49.413 376.191 

D8 0.230 0.366 0.713 5.840 9.290 17.472 23.360 36.509 72.675 

D9 0.230 0.366 0.716 5.840 9.290 17.504 23.360 36.509 72.867 

D10 0.230 0.366 0.737 5.840 9.290 17.873 23.360 36.509 74.645 

D11 0.230 0.371 2.261 5.840 9.305 49.995 23.360 36.521 216.820 

D12 0.234 0.388 3.545 5.873 9.735 83.940 23.536 38.099 356.564 

D13 0.230 0.366 0.713 5.840 9.290 17.472 23.360 36.509 72.675 

D14 0.233 0.379 0.996 5.873 9.673 53.508 23.559 38.198 314.175 

D15 0.230 0.366 0.721 5.840 9.290 17.599 23.360 36.509 73.293 

8p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

OLS 1.038 2.110 21.380 24.371 52.023 547.807 96.638 215.966 2142.686 

D1 0.724 1.416 18.690 16.781 34.954 485.349 67.265 147.416 1892.963 

D2 0.624 0.883 1.437 14.718 22.031 45.271 58.616 89.330 208.894 

D3 0.624 0.883 1.504 14.718 22.031 37.222 58.616 89.330 148.191 

D4 0.654 0.980 2.341 16.054 29.269 239.194 66.275 137.828 1441.023 

D5 0.624 0.883 1.412 14.824 22.421 41.899 61.558 98.222 225.412 

D6 0.624 0.883 1.435 15.302 23.794 52.347 64.719 107.588 306.190 

D7 0.631 0.911 1.642 18.730 33.940 194.643 85.693 178.214 1339.611 

D8 0.624 0.883 1.410 14.718 22.031 37.222 58.616 89.330 148.191 

D9 0.624 0.883 1.412 14.718 22.031 37.239 58.616 89.330 148.257 

D10 0.624 0.883 1.431 14.718 22.031 37.813 58.616 89.330 150.497 

D11 0.624 0.887 1.647 14.718 22.038 43.855 58.616 89.353 173.656 

D12 0.725 1.418 18.694 16.635 34.357 479.740 66.674 144.723 1869.722 

D13 0.624 0.883 1.410 14.718 22.031 37.222 58.616 89.330 148.191 

D14 0.654 0.980 2.341 16.054 29.269 239.194 66.275 137.828 1441.023 

D15 0.624 0.883 1.412 14.718 22.031 37.274 58.616 89.330 148.398 

Bold values indicate the minimum MSE. 

 
Table 4 MSE with 100n=  

4p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

OLS 0.132 0.266 2.992 3.288 6.851 71.482 13.299 27.556 281.991 

D1 0.119 0.214 1.946 2.942 5.465 47.697 11.906 21.954 188.767 

D2 0.118 0.210 0.684 2.942 5.416 17.229 11.906 21.791 65.893 

D3 0.118 0.210 0.695 2.942 5.416 16.976 11.906 21.791 64.982 

D4 0.119 0.213 0.768 2.942 5.449 28.815 11.906 21.938 149.897 

D5 0.118 0.210 0.677 2.948 5.456 18.694 12.085 22.539 87.108 

D6 0.118 0.210 0.682 2.958 5.532 20.719 12.167 22.985 99.363 

D7 0.118 0.211 0.706 3.036 5.877 31.012 12.723 25.330 183.529 

D8 0.118 0.210 0.677 2.942 5.416 16.976 11.906 21.791 64.982 

D9 0.118 0.210 0.677 2.942 5.416 16.979 11.906 21.791 64.982 

D10 0.118 0.210 0.680 2.942 5.416 17.025 11.906 21.791 65.096 

Bold values indicate the minimum MSE. 
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Table 4 Continued 

 
4p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

D11 0.118 0.211 1.232 2.942 5.416 27.460 11.906 21.791 104.507 

D12 0.119 0.214 1.947 2.942 5.458 45.673 11.906 21.931 180.352 

D13 0.118 0.210 0.677 2.942 5.416 16.976 11.906 21.791 64.982 

D14 0.119 0.213 0.768 2.942 5.449 28.815 11.906 21.938 149.897 

D15 0.118 0.210 0.677 2.942 5.416 16.988 11.906 21.791 65.009 

8p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

OLS 0.438 0.905 8.883 10.824 22.411 219.302 44.017 92.288 858.795 

D1 0.355 0.651 6.872 8.756 15.986 172.378 35.425 66.381 673.121 

D2 0.349 0.575 1.535 8.611 14.271 37.406 34.751 58.007 148.245 

D3 0.349 0.575 1.554 8.611 14.271 37.109 34.751 58.007 146.377 

D4 0.353 0.593 1.798 8.704 15.179 78.634 35.342 64.857 466.725 

D5 0.349 0.575 1.533 8.618 14.324 38.457 35.124 59.544 167.928 

D6 0.349 0.575 1.539 8.683 14.617 41.648 35.850 62.110 195.670 

D7 0.349 0.579 1.594 9.287 16.742 73.191 40.421 78.937 480.256 

D8 0.349 0.575 1.533 8.611 14.271 37.109 34.751 58.007 146.377 

D9 0.349 0.575 1.533 8.611 14.271 37.109 34.751 58.007 146.379 

D10 0.349 0.575 1.534 8.611 14.271 37.132 34.751 58.007 146.458 

D11 0.349 0.575 1.565 8.611 14.271 37.732 34.751 58.007 148.858 

D12 0.355 0.651 6.874 8.744 15.882 169.229 35.368 65.881 660.367 

D13 0.349 0.575 1.533 8.611 14.271 37.109 34.751 58.007 146.377 

D14 0.353 0.593 1.798 8.704 15.179 78.634 35.342 64.857 466.725 

D15 0.349 0.575 1.533 8.611 14.271 37.111 34.751 58.007 146.386 

Bold values indicate the minimum MSE. 

 
Table 5 MSE with 150n=  

4p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

OLS 0.097 0.177 1.778 2.226 4.537 45.638 9.615 18.110 179.283 

D1 0.090 0.153 1.089 2.060 3.873 28.742 8.901 15.489 112.558 

D2 0.089 0.151 0.612 2.060 3.866 15.499 8.901 15.469 62.237 

D3 0.089 0.151 0.617 2.060 3.866 15.486 8.901 15.469 62.122 

D4 0.090 0.153 0.650 2.060 3.871 19.968 8.901 15.487 94.946 

D5 0.089 0.151 0.611 2.061 3.877 16.268 8.968 15.716 73.243 

D6 0.089 0.151 0.612 2.063 3.902 17.311 9.007 15.904 79.852 

D7 0.089 0.152 0.621 2.089 4.025 21.910 9.258 16.824 118.776 

D8 0.089 0.151 0.611 2.060 3.866 15.486 8.901 15.469 62.122 

D9 0.089 0.151 0.611 2.060 3.866 15.486 8.901 15.469 62.122 

D10 0.089 0.151 0.611 2.060 3.866 15.493 8.901 15.469 62.153 

D11 0.089 0.152 0.783 2.060 3.866 18.221 8.901 15.469 72.036 

D12 0.090 0.153 1.089 2.060 3.872 27.663 8.901 15.486 108.281 

D13 0.089 0.151 0.611 2.060 3.866 15.486 8.901 15.469 62.122 

D14 0.090 0.153 0.650 2.060 3.871 19.968 8.901 15.487 94.946 

D15 0.089 0.151 0.611 2.060 3.866 15.488 8.901 15.469 62.130 

Bold values indicate the minimum MSE. 
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Table 5 Continued 

 
8p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

OLS 0.269 0.563 5.660 6.814 13.421 143.900 26.454 55.546 597.072 

D1 0.235 0.438 4.082 5.922 10.410 106.530 23.114 42.988 446.800 

D2 0.234 0.422 1.429 5.912 10.102 36.603 23.098 41.600 147.927 

D3 0.234 0.422 1.438 5.912 10.102 36.582 23.098 41.600 147.882 

D4 0.235 0.428 1.569 5.918 10.263 55.418 23.112 42.715 319.872 

D5 0.234 0.422 1.428 5.913 10.112 37.274 23.203 42.085 159.915 

D6 0.234 0.422 1.430 5.927 10.197 39.084 23.404 42.991 178.107 

D7 0.234 0.423 1.456 6.123 10.865 54.071 24.780 48.829 339.702 

D8 0.234 0.422 1.428 5.912 10.102 36.582 23.098 41.600 147.882 

D9 0.234 0.422 1.428 5.912 10.102 36.582 23.098 41.600 147.882 

D10 0.234 0.422 1.428 5.912 10.102 36.583 23.098 41.600 147.886 

D11 0.234 0.422 1.435 5.912 10.102 36.724 23.098 41.600 148.506 

D12 0.235 0.438 4.082 5.921 10.390 104.490 23.112 42.892 438.207 

D13 0.234 0.422 1.428 5.912 10.102 36.582 23.098 41.600 147.882 

D14 0.235 0.428 1.569 5.918 10.263 55.418 23.112 42.715 319.872 

D15 0.234 0.422 1.428 5.912 10.102 36.582 23.098 41.600 147.883 

Bold values indicate the minimum MSE. 

 

Table 6 MSE with 200n=  

4p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

OLS 0.075 0.140 1.476 1.799 4.076 38.312 7.270 15.348 147.345 

D1 0.071 0.125 0.878 1.700 3.609 23.816 6.868 13.584 90.203 

D2 0.071 0.125 0.587 1.700 3.609 15.231 6.868 13.584 59.009 

D3 0.071 0.125 0.592 1.700 3.609 15.229 6.868 13.584 58.969 

D4 0.071 0.125 0.616 1.700 3.609 17.783 6.868 13.584 77.889 

D5 0.071 0.125 0.586 1.700 3.615 15.747 6.898 13.742 66.262 

D6 0.071 0.125 0.587 1.701 3.630 16.427 6.917 13.857 70.879 

D7 0.071 0.125 0.591 1.714 3.703 19.311 7.043 14.431 96.174 

D8 0.071 0.125 0.586 1.700 3.609 15.229 6.868 13.584 58.969 

D9 0.071 0.125 0.586 1.700 3.609 15.229 6.868 13.584 58.969 

D10 0.071 0.125 0.586 1.700 3.609 15.230 6.868 13.584 58.975 

D11 0.071 0.125 0.685 1.700 3.609 16.586 6.868 13.584 63.529 

D12 0.071 0.125 0.879 1.700 3.609 23.065 6.868 13.584 87.304 

D13 0.071 0.125 0.586 1.700 3.609 15.229 6.868 13.584 58.969 

D14 0.071 0.125 0.616 1.700 3.609 17.783 6.868 13.584 77.889 

D15 0.071 0.125 0.586 1.700 3.609 15.229 6.868 13.584 58.971 

8p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

OLS 0.164 0.359 3.557 4.184 9.037 87.655 17.338 33.813 353.269 

D1 0.151 0.300 2.443 3.839 7.486 61.018 15.848 28.142 247.274 

D2 0.150 0.295 1.196 3.839 7.421 29.557 15.848 27.994 119.962 

D3 0.150 0.295 1.199 3.839 7.421 29.557 15.848 27.994 119.962 

D4 0.151 0.297 1.267 3.839 7.456 36.621 15.848 28.109 187.637 

Bold values indicate the minimum MSE. 
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Table 6 Continued 

 
8p=  

2
  1 5 10 

  0.8 0.9 0.99 0.8 0.9 0.99 0.8 0.9 0.99 

D5 0.150 0.295 1.196 3.839 7.423 29.826 15.870 28.125 125.353 

D6 0.150 0.295 1.196 3.840 7.454 30.754 15.950 28.460 134.617 

D7 0.151 0.295 1.209 3.896 7.761 37.742 16.552 30.674 209.583 

D8 0.150 0.295 1.196 3.839 7.421 29.557 15.848 27.994 119.962 

D9 0.150 0.295 1.196 3.839 7.421 29.557 15.848 27.994 119.962 

D10 0.150 0.295 1.196 3.839 7.421 29.557 15.848 27.994 119.962 

D11 0.150 0.295 1.197 3.839 7.421 29.570 15.848 27.994 120.024 

D12 0.151 0.300 2.444 3.839 7.481 59.908 15.848 28.127 242.814 

D13 0.150 0.295 1.196 3.839 7.421 29.557 15.848 27.994 119.962 

D14 0.151 0.297 1.267 3.839 7.456 36.621 15.848 28.109 187.637 

D15 0.150 0.295 1.196 3.839 7.421 29.557 15.848 27.994 119.962 

Bold values indicate the minimum MSE. 

 
Table 7 Estimated coefficients and mean squared error (MSE) values of the estimators. 

 

Estimators d  
1̂  

2̂  
3̂  

4̂  MSE 

OLS - -0.657 -0.008 0.303 0.388 14.624 

D1 0.464 -0.644 -0.008 0.253 0.184 3.260 

D2 0.006 -0.634 -0.008 0.210 0.010 0.268 

D3 0.110 -0.636 -0.008 0.220 0.049 0.403 

D4 0.464 -0.644 -0.008 0.253 0.184 3.260 

D5 0.000 -0.633 -0.008 0.209 0.007 0.270 

D6 0.000 -0.633 -0.008 0.209 0.007 0.270 

D7 0.000 -0.633 -0.008 0.209 0.007 0.270 

D8 0.000 -0.633 -0.008 0.209 0.007 0.270 

D9 0.003 -0.633 -0.008 0.210 0.009 0.269 

D10 0.007 -0.634 -0.008 0.210 0.010 0.268 

D11 0.842 -0.653 -0.008 0.288 0.328 10.390 

D12 0.923 -0.655 -0.008 0.296 0.359 12.470 

D13 0.000 -0.633 -0.008 0.209 0.007 0.270 

D14 0.003 -0.633 -0.008 0.210 0.009 0.269 

D15 0.007 -0.634 -0.008 0.210 0.010 0.268 

Bold values indicate the minimum MSE. 
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