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Abstract: Graph Theory has been realized as one of the most useful branches of

Mathematics of recent origin, finding widest applications in almost all branches of

sciences, social sciences, engineering and computer science.

The introduction of the concepts of Number Theory, particularly, the “Theory

of congruences” in Graph Theory, paved the way for the emergence of a new class

of graphs, namely, “Arithmetic Graphs”.

The quadratic residue Cayley graph G(Zp, Q), that is the Cayley graph asso-

ciated with the set of quadratic residues modulo an odd prime p , which is defined

as follows. Let p be an odd prime, S the set of quadratic residues modulo p

and let S = {s, n − s/s ∈ S} . The quadratic residue Cayley graph G(Zp, Q) is

defined as the graph whose vertex set is Zp = {0, 1, 2, . . . , p− 1} and the edge set

is E = {(x, y)/x − y or y − x is in S} .

Let n ≥ 1 be an integer and let S = {r/r < n and (r, n) = 1} . The Euler

Totient Cayley Graph G(Zp, φ), is defined as the graph whose vertex set is Zn =

{0, 1, 2, . . . , n − 1} and the edge set is E = {(x, y)/x − y or y − x is in S} .

In this paper we present the enumeration of triangles and disjoint Hamilton

cycles for quadratic residue Cayley graph G(Zp, Q) and Euler Totient Cayley

Graph G(Zp, φ).
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1 Introduction

Unitary Cayley graphs, generator Cayley graphs and their cycle structure were

studied by Dejter [3], Berrizbeite, Giudici [1,2]. Significant contributions are made

to this class of graphs in recent times. Determination of Hamilton cycles and

triangles, the longest and shortest cycles in a graph attracts special attention.

Thomassen [4] has studied the number of Hamilton cycles in tournaments. For

complete graphs also this problem has been studied. In this paper we have made

an attempt to study this aspect for the Cayley graphs associated with quadratic

residue modulo an odd prime p . Further the problem of determining the number

of triangles for these graphs is also studied.

2 Quadratic Residue Cayley Graphs and

Its Properties

Definition 2.1. Let p be an odd prime and n a positive integer such that n ≡ 0

(modp). If the quadratic congruence,

x2 ≡ n(modp)

has a solution, then n is called a quadratic residue mod p and it is written as

nRp .

Let p be an odd prime and let S be the set of quadratic residues modulo p .

Consider the set S∗ = {s, p − s/s ∈ S} . Then S∗ is a symmetric subset of the

additive abelian group (Zp,¤) of integers 0, 1, 2, . . . , p − 1 modulo p .

Definition 2.2. The Cayley graph of the group (Zp,¤) associated with the sym-

metric subset S∗ of Zp is called the quadratic residue Cayley graph associated

with the odd prime p and it is denoted by G(Zp, Q).

That is, the quadratic residue Cayley graph G(Zp, Q) has the vertex set V =

Zp = {0, 1, 2, . . . , p− 1} and the edge set E = {(x, y)/x, y ∈ V , x− y ∈ S∗ or y −

x ∈ S∗} .

We now present some of the properties of Quadratic Residue Cayley Graphs.

We state the following theorems without proof.

Theorem 2.3. The quadratic residue Cayley graph G(Zp, Q) is | S∗ | - regular

and the number of edges of G(Zp, Q) is
|Zp| |S∗|

2 .
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Theorem 2.4. The quadratic residue Cayley graph G(Zp, Q) is complete if and

only if p - (a2 + b2) for any positive integers a and b .

Theorem 2.5. The graph G(Zp, Q) is complete if p is of the form 4m + 3 .

Theorem 2.6. If p is of the form 4m + 1 , then the sets Q and S∗ are the same,

so that the graph G(Zp, Q) is not complete.

Theorem 2.7. The graph G(Zp, Q) is Hamiltonian and hence it is connected.

Theorem 2.8. The graph G(Zp, Q) is Eulerian.

2.1 Counting of Disjoint Hamilton Cycles in Quadratic

Residue Cayley Graphs

We shall now enumerate the number of disjoint Hamilton cycles in G(Zp, Q).

Definition 2.9. For s in S∗ , the cycle Cs = (0s 2sK ps = O) is called the

Hamilton cycle corresponding to the element s .

Theorem 2.10. For any s ∈ S∗ , the Hamilton Cycles associated with s and p−s

are one and the same.

Proof. Let s be an element of S∗ . The graph G(Zp, Q) is Hamiltonian and has a

Hamilton cycle, which is given by

Cs : (0s 2s K(p − 2)(p − 1)s ps = 0).

In (Zp,
⊕

) we have

ps = 0,

(p − 1)s = ps − s = p − s,

(p − 2)s = ps − 2s = 2p − 2s = 2(p − s),

(p − 3)s = ps − 3s = 3p − 3s = 3(p − s),

−−− −−− −−− −−−

−−− −−− −−− −−−

−−− −−− −−− −−−

2s = (p − (p − 2))s = KK = (p − 2)(p − s),

s = (p(p − 1))s = KK = (p − 1)(p − s),

0 = p(p − s).
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Hence the cycles C(p−s) corresponding to the element (p− s) is given by C(p−s) :

(0(p−s) 2(p−s) Kp(p − s) = 0), and this is same as Cs .

Theorem 2.11. If s, t ∈ S∗ and t 6= s, (p − s) , then the Hamilton cycles, Cs

and Ct are edge disjoint.

Proof. Let s, t ∈ S∗ and t 6= s, (p − s). Then by Theorem 2.10, Cs = C(p−s) . So

the Hamilton cycles Cs and Ct are given by

Cs : (0s 2sK(p − 1)s ps = 0)

= (0(p − s) 2(p − s)K(p − s)(p − s) p(p − s) = 0)

and

Ct : (0t 2tK(p − 1)t pt = 0).

We shall claim that the Hamiliton cycles Cs and Ct are edge disjoint. If

possible assume that Cs and Ct are not edge disjoint. Then there exists an edge

(it, (i = 1)t) in Ct such that either (it, (i + 1)t) = (js, (j + 1)s) or (it, (i + 1)t) =

(K(p−s), (k−1)(p−s)) for some 0 ≤ j, k ≤ p−1. But (it, (i+1)t) = (js, (j+1)s)

implies that it = js and (i + 1)t = (j + 1)s and this gives t = s , which is a

contradiction.

Also (it, (i + 1)t) = (K(p − s), (k + 1)(p − s)) implies that it = k(p − s) and

(i + 1)t = (k + 1)(p − s) and this gives t = p − s , which is again a contradiction.

Therefore the two Hamilton cycles Cs and Ct are edge disjoint.

Theorem 2.12. The graph G(Zp, Q) can be decomposed into |S∗|
2 edge disjoint

Hamilton cycles.

Proof. Since p is an odd prime, for every s ∈ S∗, s 6= p − s . For, if s = p − s

for some s ∈ S∗ , then p = 2s , which is even, contrary to the fact that p is odd.

Hence S∗ is partitioned into |S∗|
2 disjoint pairs (s, p−s), s ∈ S∗ . By Theorem 2.10,

the Hamilton cycles corresponding to this pair are one and the same. Thus by

Theorem 2.11, these |S∗|
2 distinct pairs produce |S∗|

2 edge disjoint Hamilton cycles.

Since each Hamilton cycle contains | Zp |= p edges, the total number of edges

contributed by these |S∗|
2 edge disjoint Hamilton cycles is | Zp | |S∗|

2 and this is

clearly equal to the total number of edges in the Graph G(Zp, Q).

Hence the graph G(Zp, Q) is decomposed into |S∗|
2 edge disjoint Hamilton

cycles.



Enumeration of Triangles and Hamilton Cycles in Quadratic Residue Cayley Graphs 99

2.2 Counting of Triangles in Quadratic Residue

Cayley Graphs

Now we shall enumerate the number of triangles in the graph G(Zp, Q).

Theorem 2.13. If the prime p is of the form 4m + 3 , then the number T (Q) of

triangles in G(Zp, Q) is given by T (Q) = p(p−1)(p−2)
6 .

Proof. Suppose p is of the form 4m + 3. Then the graph G(Zp, Q) is complete

and the number T (Q) of triangles in this case are given byT (Q)p(p−1)(p−2)
6 .

If the prime p is of the form 4m + 1, then by the graph G(Zp, Q) is not

complete. So it is not that straightforward to obtain the number of triangles in

this case. In this section we obtained the number of triangles in G(Zp, Q) when

p is of the form 4m + 1. The following group theoretic result is needed.

Lemma 2.14. If the prime p is of the form 4m + 1 , then the symmetric set S∗ is

a multiplicative subgroup of order (p−1)
2 of the group (Z∗

p ,¤) , where Z∗
p = Zp−{0}

and ¤ is the multiplication modulo p .

Proof. Suppose p is of the form 4m + 1. Then we can show that

| S∗ |=| Q |=
p − 1

2
.

Moreover, if a, b are any two elements of S∗ , then both a and b are quadratic

residues modulo p . Hence x2 ≡ a(modp) and y2 ≡ a(modp) for some integers x

and y . This implies that x2y2 ≡ ab(modp) or (xy)2 ≡ (ab)(modp).

This shows that a ¤ b is also a quadratic residue modulo p . Hence S∗ is

closed with respect to the multiplication. That is S∗ is a subset of the finite group

(Z∗
p ,¤), which is closed with respect to ¤ . So S∗ is a subgroup of (Z∗

p ,¤).

Definition 2.15. For any b ∈ S , the triplet (0, 1, b) is a triangle if (b − 1) ∈ S∗ .

A triangle of this form is called a fundamental triangle. The set of all fundamental

triangles is denoted by ∆01 . That is,

∆01 = {(0, 1, b)/b ∈ S∗ and (b − 1) ∈ S∗}.

Lemma 2.16. For a given prime p of the form 4m + 1 , the number of funda-

mental triangles in G(Zp, Q) is given by

| ∆01 |= Q(2)(p)
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where Q(2)(p) denotes the number of pairs of consecutive numbers less than p that

are quadratic residues modulo p .

Proof. Let p be a prime of the form 4m + 1. Then S∗ = Q . So the triplet (0, 1, b)

is a fundamental triangle

⇔ b ∈ S∗ and (b − 1) ∈ S∗

⇔ b ∈ Q and (b − 1) ∈ Q

⇔ b and b − 1 are pairs of consecutive numbers less than p and quadratic

residue modulo p.

Thus, there are as many fundamental triangles in G(Zp, Q) as there are pairs of

consecutive numbers less than p and that are quadratic residues modulo p . That

is

| ∆01 |= Q(2)(p).

Definition 2.17. For each µ ∈ S∗ , we define

∆µ = {(0, µ, k)/k, (k − µ) ∈ S∗}.

That is ∆µ is the set of all triangles of the form (0, µ, k).

Lemma 2.18. For any µ ∈ S∗ | ∆µ |= | ∆01 |= Q(2)(p) .

Proof. Let us define a mapping f : ∆01 → ∆µ such that

f(0, 1, b) = (0, µ, µb).

We claim that f is a bijection. First, to see that f is one-to-one, let

f(0, 1, b1) = f(0, 1, b2), for some b1, b2 ∈ S∗ .

Then (0, µ, µb1) = (0, µ, µb2) which gives µb1 = µb2 or b1 = b2 (since(S∗,¤) is a

group). This gives (0, 1, b1) = (0, 1, b2), showing that f is one-to-one.

To see that f is onto, let (0, µ, k) be any element of ∆µ . Then µ, k and (k−µ)

are in S∗ . Since (S∗,¤) is a group, we can find a unique element b in S∗ such

that k = µb . Moreover, (k − µ) ∈ S∗ implies that (µb − µ) ∈ S∗ . Since (S∗,¤)
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is a group and µ ∈ S∗ this gives (b − 1) ∈ S∗ . So (0, 1, b) ∈ ∆01 and for this

(0, 1, b) ∈ ∆01 , we have

f(0, 1, b) = (0, µ, µb) = (0, µ, k).

This shows that f is onto. Therefore f is a bijection and hence

| ∆µ |= | ∆01 |= Q(2)(p).

Lemma 2.19. Let ∆(0) denote the set of all triangles with one vertex at 0 . Then

| ∆(0) |=
1

2

p − 1

2
Q(2)(p).

Proof. Evidently ∆(0) = {(0, µ, k)/µ, k ∈ S and (k − µ) ∈ S} .

Now for fixed µ ∈ S∗ , ∆µ = {(0, µ, k) | k ∈ S and (k − µ) ∈ S} . So,

∆(0) =
⋃

µ∈ s∗ ∆µ .

Further the above union is not a disjoint union. This is because the triangles

(0, µ, k) and (0, k, µ, ) are the same. For if µ, k ∈ S∗ then µ−k ∈ S∗ ⇔ (k−µ) ∈

S∗ . But the triangles (0, µ, k) ∈ ∆µ and (0, k, µ, )) ∈ ∆k . Hence each triangle

(0, µ, k) appears twice in the union, once in ∆µ and once in∆k . So

∆(0) =
1

2

∑

µ∈ s∗

| ∆µ |

=
1

2

∑

µ∈ s∗

Q(2)(p) by the Lemma 2.18

=
1

2
Q(2)(p)

∑

µ∈ s∗

1

=
1

2
Q(2)(p) | S∗ |

=
1

2

p − 1

2
Q(2)(p), since | S∗ |=

p − 1

2
.

Theorem 2.20. Let p be a prime of the form 4m + 1 . Then the number of

triangles T (Q) of the quadratic residue graph G(Zp, Q) is given by

T (Q) =
p(p − 1)

12
Q(2)(p).
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Proof. Let p be a prime of the form 4m + 1. Then the graph G(Zp, Q) is [p−1
2 ]

regular and the number of triangles through each vertex is the same. So, the total

number T (Q) of triangles in G(Zp, Q) is given by

T (Q) = p.[
p − 1

2
].

Q(2)(p)

2
.

However, each triangle in G(Zp, Q) is counted thrice, namely, once by each of its

three vertices. So the number T (Q) of the distinct triangles in G(Zp, Q) is given

by

T (Q) =
p

3
. [

p − 1

2
].

Q(2)(p)

2

=
p(p − 1)

12
Q(2)(p).

From Theorem 2.13 and Theorem 2.20 the following Corollary is immediate.

Corollary 2.21. Let p be an odd prime. Then the number of triangles T (Q) of

the quadratic residue Cayley graph is given by

T (Q) =







p(p−1)(p−2)
6 , if p is of the form 4m + 3

p(p−1)
12 Q(2)(p), if p is of the form 4m + 1.
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