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Abstract: A local subsemigroup of a semigroup S is a subsemigroup of S of the
form eAe where A is a subsemigroup of S and e is an idempotent of S. It has been
shown that for a finite nonempty set X and an idempotent a of T'(X), aG(X)«a
is a local subsemigroup of T'(X) if and only if either « is the identity mapping
on X or for every a € rana, |aa!| > |rana| where T(X) and G(X) are the full
transformation semigroup and the symmetric group on X, respectively. In this
paper, a parallel result is provided on the semigroup L(V'), under composition,
of all linear transformations of a vector space V. We show that for a finite-
dimensional vector space V and an idempotent « of L(V), aGL(V)a is a local
subsemigroup of L(V) if and only if either « is the identity mapping on V or
dim(ker @) > dim(ran «) where GL(V') is the group of isomorphisms of V.
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1 Introduction

Denote by E(S) the set of all idempotents of a semigroup S, that is,

E(S) = {z € S|2? = z}.
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By a local subsemigroup of a semigroup S we mean a subsemigroup of S of
the form eAe where e € E(S) and A is a subsemigroup of S. Then for every
e € E(S), {e} and eSe are obviously local subsemigroups of S. This given
definition is motivated by [3] and [4].

The cardinality of a set X is denoted by |X|. The domain and the range of
a mapping « are denoted by dom«a and ran «, respectively, and the value of «
at x € dom« is written by za. For A C doma, a), denotes the restriction of «
to A.

The full transformation semigroup and the symmetric group on a nonempty
set X are denoted by T'(X) and G(X), respectively. Then G(X) is the group of
units of T'(X). We also have that

ET(X))={aeT(X)|za=x for all x € rana}

([1], page 12). In [5], the authors provided a neccessary and sufficient condition
for « € E(T(X)), where X is finite, so that aG(X)a is a local subsemigroup
of T(X) as follows:

Theorem 1.1 ([5]). Let X be a finite nonempty set and o € E(T(X)). Then
aG(X)a is a local subsemigroup of T(X) if and only if either

(1) «a =1y, the identity mapping on X, or
(ii) for every a € rana,|aa™!| > |ranal.

In the second case, aG(X)a = oI (rana) = T(rana).

An analogous result of Theorem 1.1 on the semigroup of linear transformations
of a vector space is considered in this paper.
Let V be a vector space over a field F', L(V) the semigroup, under composi-

tion, of all linear transformations of V. Then
E(L(V))={a € L(V)|va = for all v € rana}.

Let GL(V) be the group of all isomorphisms of V' under composition. Then
GL(V) is the group of units of L(V'). Recall that for o € L(V'), « is a monomor-
phism if and only if ker &« = {0} where ker o denotes the kernel of a. Also, if V
is finite-dimensional, then for o € L(V), « is an isomorphism of V if and only if

« is a monomorphism [an epimorphism|. Hence

dimV <00 = GL(V)={a € L(V)| kera = {0}}
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where dim V' denotes the dimension of V' over F'. Recall that ker o and ran«

are subspaces of V' and
dim V' = dim(ker o) + dim(ran o).

The following facts of linear transformations will be used. The proofs are

straightforward.

Proposition 1.2. If « € L(V) and B is a basis of V' such that o, is 1—1 and
Ba is a basis of V', then a € GL(V).

Proposition 1.3. Let a € L(V), B; a basis of kera and By a basis of rana.
If for every v € By, choose v' € va™t, then ByU{v'|v € By} is a basis of V.

Here, U stands for a disjoint union.

Proposition 1.4. If o € E(L(V)), then V =kera @ rana.

Proposition 1.4 yields the following result.

Corollary 1.5. If a € E(L(V)), By is a basis of kera and B is a basis of
ran o, then By U By = BiUBy which is a basis of V.

Hence for every w € kera~ {0}, {w} U By is a linearly independent subset
of V.

The purpose of this paper is to show that for a € E(L(V)), aGL(V)a is a local
subsemigroup of L(V) if and only if either o = 1y or dim(ker @) > dim(ran«).
In the latter case, aGL(V)a = aL(ran«a) 2 L(ran«).

In the remaining of this paper, V is a vector space over a field F'.
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2 Main Results

First, we recall that every element a € L(V) can be defined on a basis B
of V. We may write a € L(V) defined on B by a bracket notation as follows:

az(li) if ua =1’ forall u e B.
u ueB

The following series of lemmas is needed to obtain our main result.

Lemma 2.1. If a € E(L(V)), then aL(ranc) is a subsemigroup of L(V) and

aL(rana) & L(rana) .

Proof. It is evident that aL(rana) C L(V). Since va = v for all v € rana, we
have that Sa = g for all 8 € L(ran«). Thus

(aL(rana))(aL(ran «)) = a(L(ran o)a) L(ran o)
al
oL

ran o) L(ran )

(
(ran «)

and for all 8,v € L(rana),
a(By) = a(Ba)y = (af)(ay),
af = ary implies that for all v € rana, vf = vaf = vay = vy.

This shows that aL(ran«) is a subsemigroup of L(V') and the mapping 8 — af

is an isomorphism from L(rana) onto aL(ranca). O

Lemma 2.2. Assume that V s finite-dimensional and let o € E(L(V)). If
dim(ker @) > dim(ran«), then aGL(V)a = aL(rana).

Proof. If § € GL(V), then ran(fa) C ran o which implies that afa = a((Ba)),...) €
aL(rana). Thus aGL(V)a C aL(rana).
To show that aL(rana) C aGL(V)a, let A € L(ranc«). Then aX € L(V) and

ran(a)) Cran A C rana = dom A. But since dim(ker @) > dim(ran «), we have

dim(ker \) < dim(ran «) < dim(ker ). (1)
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Let B; be a basis of ker A and By a basis of ran A. For each v € By, let v/ € vA™L.
By Proposition 1.3, BjU{v'|v € By} is a basis of rana (= dom \). Let Bs be a
basis of rana containing By. Then

dim(rana) = |BlU{v'|v S Bg}‘ = ‘Bg| = |(B3\BQ)UBQ|

Since dimV < oo and |{v'|v € Ba}| = |Ba|, it follows that |B;| = |B3\Bz|. Let
By be a basis of ker . By Corollary 1.5,

B1U {v'|v € B} UBy is a basis of V (2)

and
B3 U By is a basis of V. (3)

From (1), we have |By| < |By|. Let ¢ : By — B4 be 1 — 1. Then we have
|Bs~Ba| = |Bi1| = [Big|
which implies that
|Bi| = |(Ba~B1p)U Big| = [(Ba\B1p) U (B3 \ B2

since B3 N By =0 (see (3)). Let ¢ : By — (Bs~Bi1p)U (B3~ Bz) be a bijection.
Define 8 € L(V) on the basis By U{v'|v € Ba} UB, of V (see (2)) by

v v w
B = . (4)
up v WY ) ueB,, veB,

weEBy

Since ¢, v’ +— v (v € By) and ¢ are 1—1, By C By, By C By, B3N By =0 and
By = (By~Bi1p) U (B3\Ba), it follows that 3 restricted to the basis By U{v' |v €
By} UBy of Vis 1 —1. Also,

(Bl U {’Ul | S BQ}UB4)/3 = Bl(pUBQ U (B4\B1§D) U (Bg\BQ)
= B3 UBy

which is a basis of V' by (3). By Proposition 1.2, we deduce that 5 € GL(V). We
claim that afa = a). Recall that va = v for all v € ran«. Since By C ker A C
rana, By Crana, {v'|v € By} Crana, Bip C By Ckera and v'A = v, for all
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v € By, from (4), we have

for u € By, wuafa=ufa =upa =0,
uaA = uh =0,

for u € By, v'afBa=1'fa=ua=u, (5)
val= U\ =u,

foru € By, uafa= 0 =ua.

Hence (2) and (5) yield afa = aA.
This proves that aGL(V)a = aL(ran«), as desired. O

Lemma 2.3. Assume that V is finite-dimensional, o € E(L(V)) and o # 1y .
If aGL(V)a is a local subsemigroup of L(V'), then dim(ker o) > dim(ran«).

Proof. Since a # 1y, ua = v for some distinct u,v € V. Then ua = ua? = va,

so « is not a monomorphism. Thus ker o # {0}. Let w € ker o \ {0}.

To show that dim(ker a) > dim(ran o), we are done if dim(ran o) = 0. Assume
that dim(rana) =k > 0. Let {u1,...,ur} be a basis of rana. By Corollary 1.5,
we have that for each i € {1,...,k}, u1,...,%j—1, W, Uit1,...,u; are linearly
independent. Let By be a basis of kera. By Corollary 1.5, BoU{u,...,ux}
is a basis of V. For each i € {1,...,k}, let B; be a basis of V' containing

{u1, .. w1, W, Uiy1,...,ux}. Since dimV < oo,
|Bo| =dimV — k = |B;~{u1, ..., ui—1, W, Uit1,...,up}y| forall ie{l,... k}.

For each i € {1,...,k}, let ¢; : By — Bi~{u1,...,uj—1,w,u;y1,...,ux} be a
bijection and define 8; € L(V) on the basis By U {uy,...,ux} by

8 = ur v U1 Uy U1 o Ug v
2 Ul P ui*l w ui+1 o .. uk ngi UGBO .
By Proposition 1.2, §; € GL(V) for all ¢ € {1,...,k}. Note that u;a = u; for all
i€{l,...,k} and va =0 for all v € By. Then

Uy Uy - U v
afia = 0 0 .
u ... u
2 k vEBo
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In general, for i € {1,...,k},

ul ... u—l u u 1 .« e uk /l}
abio = ( ' OZ o O> .

u PPN Ui Wi “en UL

1 i—1 i+1 k veBo
Notice that
Uy U2 e u v Uy Uz ug - ur v
(aﬁla)(aﬁga) - (O u U O) (u 0 wu U O)
2 k vEBo 1 3 k veBy
<u1 U2 U3 - ur v
N0 0 wg - wup O '
3 k vEBy

By induction, we have

(afra)(afaq) ... (afra) = (uol 'Lz)k g) ) '

Since aGL(V)a is a subsemigroup of L(V), it follows that the zero map 0 on V
belongs to aGL(V)a. Thus aya =0 for some v € GL(V). Consequently,
(rana)y = (Va)y C kera.

Since v € GL(V), dim(ker @) > dim((ran o)) = dim(ran o).

Hence the lemma is proved. O

The following main result is obtained directly from Lemma 2.1, Lemma 2.2
and Lemma 2.3.

Theorem 2.4. Let V be finite-dimensional and o € E(L(V)). Then aGL(V)a
is a local subsemigroup of L(V) if and only if either

(i) a=1ly, or
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(ii) dim(ker o) > dim(rana).
In the second case, aGL(V)a = aL(rana) & L(ran ).

If dimV < oo, then we have

dim(ran ) < dim(ker @) < dim(ran ) < dim V' — dim(ran )
< 2dim(rana) < dim V.

Hence Theorem 2.4 can be restated as follows:

Theorem 2.5. Let V be finite-dimensional and o € E(L(V)). Then aGL(V)«
is a local subsemigroup of L(V) if and only if either

(i) a=1ly, or
(ii) 2dim(rana) < dimV'.
In the second case, aGL(V)a = aL(rana) = L(ran«).

It is clear that for « € E(L(V)),

a=0or ly if dmV =1,
a=0, 1y or dim(rana) =1 if dimV = 2.

Hence by Theorem 2.5, we have

Corollary 2.6. If dimV < 2, then for every a € E(L(V)), aGL(V)a is a local
subsemigroup of L(V).

Let n be a positive integer and M,,(F') the semigroup of n x n matrices over a
field F' under the usual matrix multiplication and let G,,(F') be the group of non-
sigular n x n matrices over F'. Then there is an isomorphism 0 : L(V) — M, (F)
which preserves ranks, that is, dim(ran o) (= rank o) = rank(a6) for all o« € L(V)
([2], page 330, 339). Then GL(V)§ = G,(F) and 1y0 = I, the identity n x n

matrix over F'. Hence from Theorem 2.5 we have
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Theorem 2.7. Let n be a positive integer, F a field and A € E(M,(F)). Then
AG,(F)A is a local subsemigroup of M, (F) if and only if either

(i) A=1,, or
(ii) 2rank(A4) <n.

Example. Let F be a field. Consider the vector space F* over F with usual
addition and scalar multiplication. Define o : F'* — F* by

(x,y,z,w) = (x,0,2,0) for all z,y,z,w € F.

Then o € E(L(F*)) and dim(rana) = 2, so 2dim(rana) = 4 = dim F*. By
Theorem 2.5, aGL(F*)a is a local subsemigroup of L(F*?).
Next, let z,y,z € F',

1 0 00 1 0 0 0
A |® 0 0 0 and B — 01 00
0 01 0 00 0 =
0 0 y O 00 01

Then A? = A, B2 = B, rank A = 2 and rank B = 3. Thus 2rank A = 4 and
2rank B = 6 > 4. By Theorem 2.7, AG,(F)A is a local subsemigroup of M,(F)
but BG,(F)B is not. Note that z,y, z can be any elements of F'.
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