

Certain Local Subsemigroups of Semigroups of Linear Transformations

Ruangvarin Intarawong Sararnrakskul*,
Amorn Wasanawichit and Yupaporn Kemprasit

Received 1 July 2008

Revised 2 April 2009

Accepted 16 May 2009

Abstract: A *local subsemigroup* of a semigroup S is a subsemigroup of S of the form eAe where A is a subsemigroup of S and e is an idempotent of S . It has been shown that for a finite nonempty set X and an idempotent α of $T(X)$, $\alpha G(X)\alpha$ is a local subsemigroup of $T(X)$ if and only if either α is the identity mapping on X or for every $a \in \text{ran } \alpha$, $|a\alpha^{-1}| \geq |\text{ran } \alpha|$ where $T(X)$ and $G(X)$ are the full transformation semigroup and the symmetric group on X , respectively. In this paper, a parallel result is provided on the semigroup $L(V)$, under composition, of all linear transformations of a vector space V . We show that for a finite-dimensional vector space V and an idempotent α of $L(V)$, $\alpha GL(V)\alpha$ is a local subsemigroup of $L(V)$ if and only if either α is the identity mapping on V or $\dim(\ker \alpha) \geq \dim(\text{ran } \alpha)$ where $GL(V)$ is the group of isomorphisms of V .

Keywords: Local subsemigroup, semigroup of linear transformations

2000 Mathematics Subject Classification: 20M20

1 Introduction

Denote by $E(S)$ the set of all idempotents of a semigroup S , that is,

$$E(S) = \{x \in S \mid x^2 = x\}.$$

* Corresponding author

By a *local subsemigroup* of a semigroup S we mean a subsemigroup of S of the form eAe where $e \in E(S)$ and A is a subsemigroup of S . Then for every $e \in E(S)$, $\{e\}$ and eSe are obviously local subsemigroups of S . This given definition is motivated by [3] and [4].

The cardinality of a set X is denoted by $|X|$. The domain and the range of a mapping α are denoted by $\text{dom } \alpha$ and $\text{ran } \alpha$, respectively, and the value of α at $x \in \text{dom } \alpha$ is written by $x\alpha$. For $A \subseteq \text{dom } \alpha$, $\alpha|_A$ denotes the restriction of α to A .

The full transformation semigroup and the symmetric group on a nonempty set X are denoted by $T(X)$ and $G(X)$, respectively. Then $G(X)$ is the group of units of $T(X)$. We also have that

$$E(T(X)) = \{\alpha \in T(X) \mid x\alpha = x \text{ for all } x \in \text{ran } \alpha\}$$

([1], page 12). In [5], the authors provided a necessary and sufficient condition for $\alpha \in E(T(X))$, where X is finite, so that $\alpha G(X)\alpha$ is a local subsemigroup of $T(X)$ as follows:

Theorem 1.1 ([5]). *Let X be a finite nonempty set and $\alpha \in E(T(X))$. Then $\alpha G(X)\alpha$ is a local subsemigroup of $T(X)$ if and only if either*

- (i) $\alpha = 1_X$, the identity mapping on X , or
- (ii) for every $a \in \text{ran } \alpha$, $|a\alpha^{-1}| \geq |\text{ran } \alpha|$.

In the second case, $\alpha G(X)\alpha = \alpha T(\text{ran } \alpha) \cong T(\text{ran } \alpha)$.

An analogous result of Theorem 1.1 on the semigroup of linear transformations of a vector space is considered in this paper.

Let V be a vector space over a field F , $L(V)$ the semigroup, under composition, of all linear transformations of V . Then

$$E(L(V)) = \{\alpha \in L(V) \mid v\alpha = v \text{ for all } v \in \text{ran } \alpha\}.$$

Let $GL(V)$ be the group of all isomorphisms of V under composition. Then $GL(V)$ is the group of units of $L(V)$. Recall that for $\alpha \in L(V)$, α is a monomorphism if and only if $\ker \alpha = \{0\}$ where $\ker \alpha$ denotes the kernel of α . Also, if V is finite-dimensional, then for $\alpha \in L(V)$, α is an isomorphism of V if and only if α is a monomorphism [an epimorphism]. Hence

$$\dim V < \infty \Rightarrow GL(V) = \{\alpha \in L(V) \mid \ker \alpha = \{0\}\}$$

where $\dim V$ denotes the dimension of V over F . Recall that $\ker \alpha$ and $\text{ran } \alpha$ are subspaces of V and

$$\dim V = \dim(\ker \alpha) + \dim(\text{ran } \alpha).$$

The following facts of linear transformations will be used. The proofs are straightforward.

Proposition 1.2. *If $\alpha \in L(V)$ and B is a basis of V such that $\alpha|_B$ is 1–1 and $B\alpha$ is a basis of V , then $\alpha \in GL(V)$.*

Proposition 1.3. *Let $\alpha \in L(V)$, B_1 a basis of $\ker \alpha$ and B_2 a basis of $\text{ran } \alpha$. If for every $v \in B_2$, choose $v' \in v\alpha^{-1}$, then $B_1 \dot{\cup} \{v' \mid v \in B_2\}$ is a basis of V .*

Here, $\dot{\cup}$ stands for a disjoint union.

Proposition 1.4. *If $\alpha \in E(L(V))$, then $V = \ker \alpha \oplus \text{ran } \alpha$.*

Proposition 1.4 yields the following result.

Corollary 1.5. *If $\alpha \in E(L(V))$, B_1 is a basis of $\ker \alpha$ and B_2 is a basis of $\text{ran } \alpha$, then $B_1 \cup B_2 = B_1 \dot{\cup} B_2$ which is a basis of V .*

Hence for every $w \in \ker \alpha \setminus \{0\}$, $\{w\} \cup B_2$ is a linearly independent subset of V .

The purpose of this paper is to show that for $\alpha \in E(L(V))$, $\alpha GL(V)\alpha$ is a local subsemigroup of $L(V)$ if and only if either $\alpha = 1_V$ or $\dim(\ker \alpha) \geq \dim(\text{ran } \alpha)$. In the latter case, $\alpha GL(V)\alpha = \alpha L(\text{ran } \alpha) \cong L(\text{ran } \alpha)$.

In the remaining of this paper, V is a vector space over a field F .

2 Main Results

First, we recall that every element $\alpha \in L(V)$ can be defined on a basis B of V . We may write $\alpha \in L(V)$ defined on B by a bracket notation as follows:

$$\alpha = \begin{pmatrix} u \\ u' \end{pmatrix}_{u \in B} \quad \text{if } u\alpha = u' \text{ for all } u \in B.$$

The following series of lemmas is needed to obtain our main result.

Lemma 2.1. *If $\alpha \in E(L(V))$, then $\alpha L(\text{ran } \alpha)$ is a subsemigroup of $L(V)$ and $\alpha L(\text{ran } \alpha) \cong L(\text{ran } \alpha)$.*

Proof. It is evident that $\alpha L(\text{ran } \alpha) \subseteq L(V)$. Since $v\alpha = v$ for all $v \in \text{ran } \alpha$, we have that $\beta\alpha = \beta$ for all $\beta \in L(\text{ran } \alpha)$. Thus

$$\begin{aligned} (\alpha L(\text{ran } \alpha))(\alpha L(\text{ran } \alpha)) &= \alpha(L(\text{ran } \alpha)\alpha)L(\text{ran } \alpha) \\ &= \alpha L(\text{ran } \alpha)L(\text{ran } \alpha) \\ &= \alpha L(\text{ran } \alpha) \end{aligned}$$

and for all $\beta, \gamma \in L(\text{ran } \alpha)$,

$$\alpha(\beta\gamma) = \alpha(\beta\alpha)\gamma = (\alpha\beta)(\alpha\gamma),$$

$\alpha\beta = \alpha\gamma$ implies that for all $v \in \text{ran } \alpha$, $v\beta = v\alpha\beta = v\alpha\gamma = v\gamma$.

This shows that $\alpha L(\text{ran } \alpha)$ is a subsemigroup of $L(V)$ and the mapping $\beta \mapsto \alpha\beta$ is an isomorphism from $L(\text{ran } \alpha)$ onto $\alpha L(\text{ran } \alpha)$. \square

Lemma 2.2. *Assume that V is finite-dimensional and let $\alpha \in E(L(V))$. If $\dim(\ker \alpha) \geq \dim(\text{ran } \alpha)$, then $\alpha GL(V)\alpha = \alpha L(\text{ran } \alpha)$.*

Proof. If $\beta \in GL(V)$, then $\text{ran}(\beta\alpha) \subseteq \text{ran } \alpha$ which implies that $\alpha\beta\alpha = \alpha((\beta\alpha)_{|\text{ran } \alpha}) \in \alpha L(\text{ran } \alpha)$. Thus $\alpha GL(V)\alpha \subseteq \alpha L(\text{ran } \alpha)$.

To show that $\alpha L(\text{ran } \alpha) \subseteq \alpha GL(V)\alpha$, let $\lambda \in L(\text{ran } \alpha)$. Then $\alpha\lambda \in L(V)$ and $\text{ran}(\alpha\lambda) \subseteq \text{ran } \lambda \subseteq \text{ran } \alpha = \text{dom } \lambda$. But since $\dim(\ker \alpha) \geq \dim(\text{ran } \alpha)$, we have

$$\dim(\ker \lambda) \leq \dim(\text{ran } \alpha) \leq \dim(\ker \alpha). \tag{1}$$

Let B_1 be a basis of $\ker \lambda$ and B_2 a basis of $\text{ran } \lambda$. For each $v \in B_2$, let $v' \in v\lambda^{-1}$. By Proposition 1.3, $B_1 \dot{\cup} \{v' \mid v \in B_2\}$ is a basis of $\text{ran } \alpha$ ($= \text{dom } \lambda$). Let B_3 be a basis of $\text{ran } \alpha$ containing B_2 . Then

$$\dim(\text{ran } \alpha) = |B_1 \dot{\cup} \{v' \mid v \in B_2\}| = |B_3| = |(B_3 \setminus B_2) \dot{\cup} B_2|.$$

Since $\dim V < \infty$ and $|\{v' \mid v \in B_2\}| = |B_2|$, it follows that $|B_1| = |B_3 \setminus B_2|$. Let B_4 be a basis of $\ker \alpha$. By Corollary 1.5,

$$B_1 \dot{\cup} \{v' \mid v \in B_2\} \dot{\cup} B_4 \text{ is a basis of } V \quad (2)$$

and

$$B_3 \dot{\cup} B_4 \text{ is a basis of } V. \quad (3)$$

From (1), we have $|B_1| \leq |B_4|$. Let $\varphi : B_1 \rightarrow B_4$ be 1–1. Then we have

$$|B_3 \setminus B_2| = |B_1| = |B_1 \varphi|$$

which implies that

$$|B_4| = |(B_4 \setminus B_1 \varphi) \dot{\cup} B_1 \varphi| = |(B_4 \setminus B_1 \varphi) \dot{\cup} (B_3 \setminus B_2)|$$

since $B_3 \cap B_4 = \emptyset$ (see (3)). Let $\psi : B_4 \rightarrow (B_4 \setminus B_1 \varphi) \dot{\cup} (B_3 \setminus B_2)$ be a bijection. Define $\beta \in L(V)$ on the basis $B_1 \dot{\cup} \{v' \mid v \in B_2\} \dot{\cup} B_4$ of V (see (2)) by

$$\beta = \begin{pmatrix} u & v' & w \\ u\varphi & v & w\psi \end{pmatrix}_{\substack{u \in B_1, v \in B_2 \\ w \in B_4}}. \quad (4)$$

Since $\varphi, v' \mapsto v$ ($v \in B_2$) and ψ are 1–1, $B_1 \varphi \subseteq B_4$, $B_2 \subseteq B_3$, $B_3 \cap B_4 = \emptyset$ and $B_4 \psi = (B_4 \setminus B_1 \varphi) \dot{\cup} (B_3 \setminus B_2)$, it follows that β restricted to the basis $B_1 \dot{\cup} \{v' \mid v \in B_2\} \dot{\cup} B_4$ of V is 1–1. Also,

$$\begin{aligned} (B_1 \dot{\cup} \{v' \mid v \in B_2\} \dot{\cup} B_4)\beta &= B_1 \varphi \dot{\cup} B_2 \dot{\cup} (B_4 \setminus B_1 \varphi) \dot{\cup} (B_3 \setminus B_2) \\ &= B_3 \dot{\cup} B_4 \end{aligned}$$

which is a basis of V by (3). By Proposition 1.2, we deduce that $\beta \in GL(V)$. We claim that $\alpha\beta\alpha = \alpha\lambda$. Recall that $v\alpha = v$ for all $v \in \text{ran } \alpha$. Since $B_1 \subseteq \ker \lambda \subseteq \text{ran } \alpha$, $B_2 \subseteq \text{ran } \alpha$, $\{v' \mid v \in B_2\} \subseteq \text{ran } \alpha$, $B_1 \varphi \subseteq B_4 \subseteq \ker \alpha$ and $v'\lambda = v$, for all

$v \in B_2$, from (4), we have

$$\begin{aligned}
 \text{for } u \in B_1, \quad u\alpha\beta\alpha = u\beta\alpha = u\varphi\alpha = 0, \\
 u\alpha\lambda = u\lambda = 0, \\
 \text{for } u \in B_2, \quad u'\alpha\beta\alpha = u'\beta\alpha = u\alpha = u, \\
 u'\alpha\lambda = u'\lambda = u, \\
 \text{for } u \in B_4, \quad u\alpha\beta\alpha = 0 = u\alpha\lambda.
 \end{aligned} \tag{5}$$

Hence (2) and (5) yield $\alpha\beta\alpha = \alpha\lambda$.

This proves that $\alpha GL(V)\alpha = \alpha L(\text{ran } \alpha)$, as desired. \square

Lemma 2.3. *Assume that V is finite-dimensional, $\alpha \in E(L(V))$ and $\alpha \neq 1_V$. If $\alpha GL(V)\alpha$ is a local subsemigroup of $L(V)$, then $\dim(\ker \alpha) \geq \dim(\text{ran } \alpha)$.*

Proof. Since $\alpha \neq 1_V$, $u\alpha = v$ for some distinct $u, v \in V$. Then $u\alpha = u\alpha^2 = v\alpha$, so α is not a monomorphism. Thus $\ker \alpha \neq \{0\}$. Let $w \in \ker \alpha \setminus \{0\}$.

To show that $\dim(\ker \alpha) \geq \dim(\text{ran } \alpha)$, we are done if $\dim(\text{ran } \alpha) = 0$. Assume that $\dim(\text{ran } \alpha) = k > 0$. Let $\{u_1, \dots, u_k\}$ be a basis of $\text{ran } \alpha$. By Corollary 1.5, we have that for each $i \in \{1, \dots, k\}$, $u_1, \dots, u_{i-1}, w, u_{i+1}, \dots, u_k$ are linearly independent. Let B_0 be a basis of $\ker \alpha$. By Corollary 1.5, $B_0 \dot{\cup} \{u_1, \dots, u_k\}$ is a basis of V . For each $i \in \{1, \dots, k\}$, let B_i be a basis of V containing $\{u_1, \dots, u_{i-1}, w, u_{i+1}, \dots, u_k\}$. Since $\dim V < \infty$,

$$|B_0| = \dim V - k = |B_i \setminus \{u_1, \dots, u_{i-1}, w, u_{i+1}, \dots, u_k\}| \quad \text{for all } i \in \{1, \dots, k\}.$$

For each $i \in \{1, \dots, k\}$, let $\varphi_i : B_0 \rightarrow B_i \setminus \{u_1, \dots, u_{i-1}, w, u_{i+1}, \dots, u_k\}$ be a bijection and define $\beta_i \in L(V)$ on the basis $B_0 \cup \{u_1, \dots, u_k\}$ by

$$\beta_i = \begin{pmatrix} u_1 & \cdots & u_{i-1} & u_i & u_{i+1} & \cdots & u_k & v \\ u_1 & \cdots & u_{i-1} & w & u_{i+1} & \cdots & u_k & v\varphi_i \end{pmatrix}_{v \in B_0}.$$

By Proposition 1.2, $\beta_i \in GL(V)$ for all $i \in \{1, \dots, k\}$. Note that $u_i\alpha = u_i$ for all $i \in \{1, \dots, k\}$ and $v\alpha = 0$ for all $v \in B_0$. Then

$$\alpha\beta_1\alpha = \begin{pmatrix} u_1 & u_2 & \cdots & u_k & v \\ 0 & u_2 & \cdots & u_k & 0 \end{pmatrix}_{v \in B_0}.$$

In general, for $i \in \{1, \dots, k\}$,

$$\alpha\beta_i\alpha = \begin{pmatrix} u_1 & \cdots & u_{i-1} & u_i & u_{i+1} & \cdots & u_k & v \\ u_1 & \cdots & u_{i-1} & 0 & u_{i+1} & \cdots & u_k & 0 \end{pmatrix}_{v \in B_0}.$$

Notice that

$$\begin{aligned} (\alpha\beta_1\alpha)(\alpha\beta_2\alpha) &= \begin{pmatrix} u_1 & u_2 & \cdots & u_k & v \\ 0 & u_2 & \cdots & u_k & 0 \end{pmatrix}_{v \in B_0} \begin{pmatrix} u_1 & u_2 & u_3 & \cdots & u_k & v \\ u_1 & 0 & u_3 & \cdots & u_k & 0 \end{pmatrix}_{v \in B_0} \\ &= \begin{pmatrix} u_1 & u_2 & u_3 & \cdots & u_k & v \\ 0 & 0 & u_3 & \cdots & u_k & 0 \end{pmatrix}_{v \in B_0}. \end{aligned}$$

By induction, we have

$$(\alpha\beta_1\alpha)(\alpha\beta_2\alpha) \dots (\alpha\beta_k\alpha) = \begin{pmatrix} u_1 & \cdots & u_k & v \\ 0 & \cdots & 0 & 0 \end{pmatrix}_{v \in B_0}.$$

Since $\alpha GL(V)\alpha$ is a subsemigroup of $L(V)$, it follows that the zero map 0 on V belongs to $\alpha GL(V)\alpha$. Thus $\alpha\gamma\alpha = 0$ for some $\gamma \in GL(V)$. Consequently,

$$(\text{ran } \alpha)\gamma = (V\alpha)\gamma \subseteq \ker \alpha.$$

Since $\gamma \in GL(V)$, $\dim(\ker \alpha) \geq \dim((\text{ran } \alpha)\gamma) = \dim(\text{ran } \alpha)$.

Hence the lemma is proved. \square

The following main result is obtained directly from Lemma 2.1, Lemma 2.2 and Lemma 2.3.

Theorem 2.4. *Let V be finite-dimensional and $\alpha \in E(L(V))$. Then $\alpha GL(V)\alpha$ is a local subsemigroup of $L(V)$ if and only if either*

- (i) $\alpha = 1_V$, or

(ii) $\dim(\ker \alpha) \geq \dim(\text{ran } \alpha)$.

In the second case, $\alpha GL(V)\alpha = \alpha L(\text{ran } \alpha) \cong L(\text{ran } \alpha)$.

If $\dim V < \infty$, then we have

$$\begin{aligned} \dim(\text{ran } \alpha) \leq \dim(\ker \alpha) &\Leftrightarrow \dim(\text{ran } \alpha) \leq \dim V - \dim(\text{ran } \alpha) \\ &\Leftrightarrow 2 \dim(\text{ran } \alpha) \leq \dim V. \end{aligned}$$

Hence Theorem 2.4 can be restated as follows:

Theorem 2.5. *Let V be finite-dimensional and $\alpha \in E(L(V))$. Then $\alpha GL(V)\alpha$ is a local subsemigroup of $L(V)$ if and only if either*

(i) $\alpha = 1_V$, or

(ii) $2 \dim(\text{ran } \alpha) \leq \dim V$.

In the second case, $\alpha GL(V)\alpha = \alpha L(\text{ran } \alpha) \cong L(\text{ran } \alpha)$.

It is clear that for $\alpha \in E(L(V))$,

$$\begin{aligned} \alpha = 0 \text{ or } 1_V \text{ if } \dim V = 1, \\ \alpha = 0, 1_V \text{ or } \dim(\text{ran } \alpha) = 1 \text{ if } \dim V = 2. \end{aligned}$$

Hence by Theorem 2.5, we have

Corollary 2.6. *If $\dim V \leq 2$, then for every $\alpha \in E(L(V))$, $\alpha GL(V)\alpha$ is a local subsemigroup of $L(V)$.*

Let n be a positive integer and $M_n(F)$ the semigroup of $n \times n$ matrices over a field F under the usual matrix multiplication and let $G_n(F)$ be the group of non-singular $n \times n$ matrices over F . Then there is an isomorphism $\theta : L(V) \rightarrow M_n(F)$ which preserves ranks, that is, $\dim(\text{ran } \alpha)$ ($= \text{rank } \alpha$) $= \text{rank}(\alpha \theta)$ for all $\alpha \in L(V)$ ([2], page 330, 339). Then $GL(V)\theta = G_n(F)$ and $1_V\theta = I_n$, the identity $n \times n$ matrix over F . Hence from Theorem 2.5 we have

Theorem 2.7. *Let n be a positive integer, F a field and $A \in E(M_n(F))$. Then $AG_n(F)A$ is a local subsemigroup of $M_n(F)$ if and only if either*

- (i) $A = I_n$, or
- (ii) $2 \operatorname{rank}(A) \leq n$.

Example. Let F be a field. Consider the vector space F^4 over F with usual addition and scalar multiplication. Define $\alpha : F^4 \rightarrow F^4$ by

$$(x, y, z, w) = (x, 0, z, 0) \quad \text{for all } x, y, z, w \in F.$$

Then $\alpha \in E(L(F^4))$ and $\dim(\operatorname{ran} \alpha) = 2$, so $2 \dim(\operatorname{ran} \alpha) = 4 = \dim F^4$. By Theorem 2.5, $\alpha GL(F^4)\alpha$ is a local subsemigroup of $L(F^4)$.

Next, let $x, y, z \in F$,

$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ x & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & y & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & z \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Then $A^2 = A$, $B^2 = B$, $\operatorname{rank} A = 2$ and $\operatorname{rank} B = 3$. Thus $2 \operatorname{rank} A = 4$ and $2 \operatorname{rank} B = 6 > 4$. By Theorem 2.7, $AG_n(F)A$ is a local subsemigroup of $M_4(F)$ but $BG_n(F)B$ is not. Note that x, y, z can be any elements of F .

References

- [1] P.M. Higgins, *Techniques of Semigroup Theory*, Oxford University Press, New York, 1992.
- [2] T.W. Hungerford, *Algebra*, Springer-Verlag, New York, 1974.
- [3] P. Jampachon, *Locally Factorizable Transformation Semigroups*, Master Thesis, Chulalongkorn University, 1984.
- [4] P. Jampachon, M. Saicharee and R.P. Sullivan, Locally factorisable transformation semigroups, *SEA Bull. Math.* **25**(2)(2001), 233–244.

- [5] R.I. Sararnrakskul, S. Pianskool and Y. Kemprasit, Some local subsemigroups of the full transformation semigroup on a set, *East-West J., Spec. Issue for ICDMA 2008*, (2008), 163–169.

Ruangvarin Intarawong Sararnrakskul¹,
Amorn Wasanawichit² and Yupaporn Kemprasit³
Department of Mathematics, Faculty of Science,
Chulalongkorn University, Bangkok 10330, Thailand.
Email: ¹ruangvarin@gmail.com, ²Amorn.Wa@Chula.ac.th
and ³Yupaporn.K@Chula.ac.th

Aims and Scope

Chamchuri Journal of Mathematics is an international open access journal devoted to peer-reviewed original research articles containing significant results in all areas of mathematics. In addition to publishing high-quality, mathematically-correct and well-written articles, we may occasionally solicit survey papers from well-established experts in their fields.

Instructions for Authors

By submitting a manuscript to this journal, authors acknowledge that the work is original, has not been submitted to another journal, and has not been published elsewhere. Every manuscript is forwarded to anonymous referees for their comments. In the situation when the referees' decisions are not unanimous, the final acceptance decision is subject to the approval by the editorial board.

The manuscript must be written in English and typeset with L^AT_EX using the journal's template which can be downloaded from

<http://www.math.sc.chula.ac.th/cjm>.

All manuscripts must be submitted as PDF or Postscript files by sending e-mail to

cjm@chula.ac.th.

The corresponding author should be clearly marked in the manuscript and is encouraged to suggest a few referees for reviewing purposes. There are no page charges. The authors may produce reprints by printing off the PDF file formatted exactly as appear in the print issue provided at the web site. Upon request, the authors of a published article shall receive copies of the print issue in which the article appears.

Why Chamchuri?

Historically and emotionally, the **Chamchuri** (raintree or Albizia saman) has always been an important symbol of Chulalongkorn university.