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Abstract: By an idempotent semiring we mean a commutative semiring (S,+, ·)
with zero 0 and identity 1 such that x + x = x = x2 for all x ∈ S . In 1963, D.E.
Rutherford showed that a square matrix A over an idempotent semiring S of 2
elements is invertible over S if and only if A is a permutation matrix. By making
use of C. Reutenauer and H. Straubing’s theorems, we extend this result to an
idempotent semiring as follows: A square matrix A over an idempotent semiring
S is invertible over S if and only if the product of any two elements in the same
column [row] is 0 and the sum of all elements in each row [column] is 1.
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1 Introduction

A semiring is a system (S, +, ·) such that (S, +) and (S, ·) are semigroups and
x·(y+z) = x·y+x·z and (y+z)·x = y·x+z·x for all x, y, z ∈ S. A semiring (S, +, ·)
is called additively [multiplicatively ] commutative if x+y = y +x [x ·y = y ·x ] for
all x, y ∈ S and it is called commutative if it is both additively and multiplicatively
commutative. An element 0 ∈ S is called a zero of (S, +, ·) if x + 0 = 0 + x = x
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and x · 0 = 0 · x = 0 for all x ∈ S . By an identity of a semiring (S, +, ·) we mean
an element 1 ∈ S such that x · 1 = 1 · x = x for all x ∈ S . Notice that a zero and
an identity of a semiring are unique.

By an idempotent semiring we mean a commutative semiring with zero 0 and
identity 1 such that x + x = x = x2 for all x ∈ S .

Example 1.1. Let S ⊆ [0, 1] be such that 0, 1 ∈ S . Define the operations ⊕ and
¯ on S by

x⊕ y = max{x, y} and x¯ y = min{x, y} for all x, y ∈ S .

Then (S,⊕,¯) is an idempotent semiring having 0 and 1 as its zero and identity,
respectively and it may be written as (S, max,min).

Example 1.2. Let X be a nonempty set and P(X) the power set of X . Define

A⊕B = A ∪B and A¯B = A ∩B for all A,B ∈ P(X).

Then (P(X),⊕,¯) is an idempotent semiring having ∅ and X as its zero and
identity, respectively and it may be written as (P(X),∪,∩).

Let S be a commutative semiring with zero 0 and identity 1, n a positive
integer and Mn(S) the set of all n×n matrices over S . Then under usual addition
and multiplication, Mn(S) is an additively commutative semiring. The n×n zero
matrix 0n and the n× n identity matrix In over S are the zero and the identity
of the semiring Mn(S), respectively. If S contains more than one element and
n > 1, then Mn(S) is not multiplicatively commutative. For A ∈ Mn(S) and
i, j ∈ {1, . . . , n} , let Aij be the element (entry) of A in the ith row and jth

column. The transpose of A ∈ Mn(S) will be denoted by At , that is, At
ij = Aji

for all i, j ∈ {1, . . . , n} . Then for A, B ∈ Mn(S), (At)t = A, (A + B)t = At + Bt

and (AB)t = BtAt . A matrix A ∈ Mn(S) is said to be invertible over S if
AB = BA = In for some B ∈ Mn(S). Notice that such B is unique and B is
called the inverse of A . Also, A is invertible over S if and only if At is invertible
over S . A matrix A ∈ Mn(S) is called a permutation matrix if every element
(entry) of A is either 0 or 1 and each row and each column contains exactly one
1. A permutation matrix A over S is clearly invertible over S and At is the
inverse of A . In 1963, D.E. Rutherford characterized the invertible matrices in
Mn(S) where S is an idempotent semiring of 2 elements as follows:
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Theorem 1.3. [2] Let S be an idempotent semiring of 2 elements. Then a square
matrix A over S is invertible over S if and only if A is a permutation matrix.

Let Sn be the symmetric group of degree n ≥ 2, An the alternating group of
degree n and Bn = Sn rAn , that is,

An = {σ ∈ Sn | σ is an even permutation },
Bn = {σ ∈ Sn | σ is an odd permutation }.

If S is a commutative semiring with zero and identity and n is a positive integer
greater than 1, then the positive determinant and the negative determinant of
A ∈ Mn(S) are defined respectively by

det+A =
∑

σ∈An

(
n∏

i=1

Aiσ(i)

)
,

det−A =
∑

σ∈Bn

(
n∏

i=1

Aiσ(i)

)
.

Notice that det+In = 1 and det−In = 0. In 1984, C. Reutenauer and H. Straubing
[1] gave the following significant results.

Theorem 1.4. ([1]) Let S be a commutative semiring with zero and identity and
n a positive integer ≥ 2 . If A,B ∈ Mn(S) , then there is an element r ∈ S such
that

det+(AB) = (det+A)(det+B) + (det−A)(det−B) + r,

det−(AB) = (det+A)(det−B) + (det−A)(det+B) + r.

Theorem 1.5. ([1]) Let S be a commutative semiring with zero and identity and
n a positive integer. For A,B ∈ Mn(S), if AB = In , then BA = In .

The purpose of this paper is to extend Theorem 1.3 to an idempotent semiring
by making use of Theorem 1.4 and Theorem 1.5. We show that an n× n matrix
over an idempotent semiring S with zero 0 and identity 1 is invertible over S if
and only if
(i) the product of any two elements in the same column [row] is 0 and
(ii) the sum of all elements in each row [column] is 1.
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2 Invertible Matrices over Idempotent Semirings

The following series of lemmas is needed. The first one is evident.

Lemma 2.1. Let S be an idempotent semiring with zero 0 and identity 1 . Then
the following statements hold.

(i) For x, y ∈ S, x + y = 0 ⇒ x = 0 = y .

(ii) For x, y ∈ S, xy = 1 ⇒ x = 1 = y .

Lemma 2.2. Let S be an idempotent semiring and n a positive integer ≥ 2 . If
A ∈ Mn(S) is invertible over S , then det+ A + det−A = 1 .

Proof. Let B ∈ Mn(S) be such that AB = BA = In . By Theorem 1.4, there
exists an element r ∈ S such that

det+(AB) = (det+A)(det+B) + (det−A)(det−B) + r,

det−(AB) = (det+A)(det−B) + (det−A)(det+B) + r.

But det+(AB) = det+In = 1 and det−(AB) = det−In = 0, so we have that

1 = (det+A)(det+B) + (det−A)(det−B) + r,

0 = (det+A)(det−B) + (det−A)(det+B) + r.

The last equality and Lemma 2.1(i) yield the result that

(det+A)(det−B) = (det−A)(det+B) = r = 0.

Then

1 = (det+A)(det+B) + (det−A)(det−B)

= (det+A)(det+B) + (det−A)(det−B) + (det+A)(det−B) + (det−A)(det+B)

= (det+A + det−A)(det+B + det−B).

By Lemma 2.1(ii), we have that det+ A + det−A = 1, as desired.

Theorem 2.3. Let S be an idempotent semiring with zero 0 and identity 1 , n a
positive integer and A ∈ Mn(S) . Then A is invertible over S if and only if

(i) the product of any two elements in the same column is 0 and

(ii) the sum of all elements in each row is 1 .
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Proof. By Lemma 2.1(ii), the theorem is obviously true for n = 1.

Let n > 1 and assume that A is invertible over S . Let B ∈ Mn(S) be such
that AB = BA = In . Let i, j ∈ {1, . . . , n} be distinct. Then

0 = (In)ij = (AB)ij =
n∑

k=1

AikBkj .

It follows from Lemma 2.1(i) that AikBkj = 0 for all k ∈ {1, . . . , n} . This proves
that

AlkBkt = 0 for all l, t, k ∈ {1, . . . , n} such that l 6= t. (1)

Then for k ∈ {1, . . . , n} ,

AikAjk = (AikAjk)1

= (AikAjk)(BA)kk

= AikAjk

( n∑
t=1

BktAtk

)

=
n∑

t=1

AikAjkBktAtk

= AikAjkBkjAjk +
n∑

t=1
t 6=j

AikAjkBktAtk

= (AikBkj)Ajk +
n∑

t=1
t 6=j

Aik(AjkBkt)Atk

= 0 + 0 = 0 from (1).

Hence (i) is proved.
From Lemma 2.2, we have that det+ A + det−A = 1. By (i), we have that

A1k1A2k2 . . . Ankn = 0 if k1, . . . , kn ∈ {1, . . . , n} are not all distinct. (2)

Then

( n∑

k=1

A1k

)( n∑

k=1

A2k

)
. . .

( n∑

k=1

Ank

)
=

∑

k1,...,kn∈{1,...,n}
A1k1A2k2 . . . Ankn

=
∑

σ∈Sn

A1σ(1)A2σ(2) . . . Anσ(n) from (2)

= det+A + det−A = 1.
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Hence by Lemma 2.1(ii),
n∑

k=1

A1k =
n∑

k=1

A2k = · · · =
n∑

k=1

Ank = 1. Therefore (ii)

is proved.
Conversely, assume that (i) and (ii) hold. Claim that AAt = In . If i ∈

{1, . . . , n} , then from (ii),

(AAt)ii =
n∑

k=1

AikAt
ki =

n∑

k=1

AikAik =
n∑

k=1

Aik = 1.

Also, for distinct i, j ∈ {1, . . . , n} , from (i)

(AAt)ij =
n∑

k=1

AikAt
kj =

n∑

k=1

AikAjk = 0.

This shows that AAt = In . Therefore by Theorem 1.5, AtA = In . Hence A is
invertible over S .

Since A is invertible over S if and only if At is invertible over S , the following
result is obtained directly from Theorem 2.3.

Corollary 2.4. Let S be an idempotent semiring with zero 0 and identity 1 , n

a positive integer and A ∈ Mn(S) . Then A is invertible over S if and only if

(i) the product of any two elements in the same row is 0 and

(ii) the sum of all elements in each column is 1 .

Corollary 2.5. Let (S, max, min) be the idempotent semiring defined as in Ex-
ample 1.1 , n a positive integer and A ∈ Mn(S) . Then A is invertible over S if
and only if A is a permutation matrix.

Proof. Assume that A is invertible over S . Let i ∈ {1, . . . , n} . If there are distinct
l, t ∈ {1, . . . , n} such that Ail 6= 0 and Ait 6= 0, then Ail¯Ait = min{Ail, Ait} 6= 0
which is contrary to Corollary 2.4. By Theorem 2.3, Ai1 ⊕ · · · ⊕ Ain = 1. Then
1 = max{Ai1, . . . , Ain} , so Aik = 1 for some k ∈ {1, . . . , n} . This shows that
every row of A contains only one nonzero element which is 1. We can show
similarly by Theorem 2.3 and Corollary 2.4 that every column of A contains only
one nonzero element which is 1. Hence A is a permutation matrix.

As mentioned previously, a permutation matrix is invertible.
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Remark 2.6. From the proof of Theorem 2.3, we have that if A ∈ Mn(S) is
invertible over S , then the inverse of A is At . It can be seen that Theorem 1.3 is
a special case of Corollary 2.5.

Example 2.7. Let (P(X),∪,∩) be the idempotent semiring defined in Example
1.2. Let X1, X2, . . . , Xn be subsets of X such that X = X1 ∪X2 ∪ . . . ∪Xn and
X1, . . . , Xn are pairwise disjoint. By Theorem 2.3,

A =




X1 X2 · · · Xn−1 Xn

Xn X1 · · · Xn−2 Xn−1

· · · · · · · · · · · · · · ·
X3 X4 · · · X1 X2

X2 X3 · · · Xn X1



∈ Mn((P(X),∪,∩))

is invertible over (P(X),∪,∩). By Remark 2.6, the inverse of A is




X1 Xn · · · X3 X2

X2 X1 · · · X4 X3

· · · · · · · · · · · · · · ·
Xn−1 Xn−2 · · · X1 Xn

Xn Xn−1 · · · X2 X1




.
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