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Abstract: C*-categories are essentially norm-closed ∗ -categories of bounded
linear operators between Hilbert spaces. The purpose of this work is to identify
suitable axioms defining Krĕın C*-categories, i.e. those categories that play the
role of C*-categories whenever Hilbert spaces are replaced by more general in-
definite inner product Krĕın spaces, and provide some basic examples. Finally
we provide a Gel’fand-Năımark representation theorem for Krĕın C*-algebras and
Krĕın C*-categories.
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1 Introduction

It is well know that every C*-algebra is essentially an involutive norm-closed al-
gebra of bounded linear operators on a Hilbert space. C*-categories are a gen-
eralization of the notion of C*-algebra arising whenever we consider norm-closed
families of operators, between (possibly) many Hilbert spaces, that are closed
under composition and adjoint. They were first introduced in 1985 by P.Ghez-
R.Lima-J.Roberts [6] and since then they have been extensively used in algebraic
quantum field theory. In 2001 P.Mitchener [13] further examined the definition
of C*-categories, studied their K -theory and applied them to the Baum-Connes
conjecture.
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Although indefinite inner product spaces have been considered since the begin-
ning of the last century in phyiscs, Krĕın spaces i.e. vector spaces equipped with
an indefinite inner product, that are complete, were defined (following previous
works by L.Pontrjagin [15]) by J.Ginzburg [8] and E.Scheibe [16] and have been
subsequently studied by many mathematicians of the Russian school of M.Krĕın.

Bounded linear maps on a Krĕın space constitute natural examples of Krĕın
C*-algebras (they are the analogue of C*-algebras in the case of Krĕın spaces) a
concept that was introduced by K.Kawamura [9] in 2006.

In this work our purpose is to try to provide suitable axioms for the abstract
definition of Krĕın C*-categories. In particular our definitions should necessar-
ily include the basic example of bounded linear maps between (possibly) many
Krĕın spaces. We will also provide a few examples and study some of the proper-
ties of Krĕın C*-categories. In particular we will associate a Krĕın C*-category to
every fundamental symmetry of a Krĕın algebra (or more generally to every funda-
mental symmetry of a Krĕın C*-category) and use well-known Gel’fand-Năımark
representation results for C*-categories in order to provide Gel’fand-Năımark rep-
resentation theorems for Krĕın C*-algebras and Krĕın C*-categories.

The following paper was originally presented by K.Rutamorn at the “Annual
Pure and Applied Mathematics Conference 2009”, organized on May 25-26 by
the Department of Mathematics of Chulalongkorn University, and it appeared in
the non-refereed proceedings of the same conference: P.Bertozzini, K.Rutamorn,
Krĕın C*-categories, APAM 2009, Collection of Abstract and Presented Papers,
35-42 (2009).

2 Preliminaries

We collect here for the benefit of the reader the main definitions and some prop-
erties that will be used in this work. For general background in the theory
of operator algebras we refer to the books by V.Sunder [17], M.Takesaki [18],
B.Blackadar [4] and for Hilbert C*-modules to E.Lance’s book [12] and the notes
by N.Landsman [11]. General definitions and notations from category theory can
be obtained from S.MacLane [14] M.Barr-C. Wells [1] or R.Geroch [7] for an ele-
mentary introduction.
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2.1 C*-algebras and C*-categories

Definition 2.1. A complex C*-algebra A is a complex associative algebra (i.e. a
vector space over the complex numbers with a bilinear associative multiplication
· : A × A → A) equipped with a conjugate linear map ∗ : A → A such that
(x∗)∗ = x , (x · y)∗ = y∗ · x∗ , for all x, y ∈ A that is a complete metric space with
a norm ‖ · ‖ : A → R such that ‖x · y‖ ≤ ‖x‖ · ‖y‖ and ‖x∗ · x‖ = ‖x‖2 , for all
x, y ∈ A . The C*-algebra is unital if there is an identity element 1A such that
x · 1A = x = 1A · x , for all x ∈ A and ‖1A‖ = 1.

Definition 2.2. In a unital C*-algebra A and element x ∈ A is positive if it
is Hermitian i.e. x∗ = x and its spectrum is positive Sp(x) ⊂ R+ , where the
spectrum of x ∈ A is defined as Sp(x) := {µ ∈ C | x − µ · 1A is not invertible} .
The set of positive elements of A will be denoted by A> .

Recall that in a unital C*-algebra x ∈ A> if and only if there exists z ∈ A

such that x = z∗z .

Definition 2.3. A state over the unital C*-algebra A is a linear map ω : A → C
that is normalized i.e. ω(1A) = 1C and positive in the sense that ω(x) ∈ C> = R+

for all x ∈ A> .
A unital ∗-homomorphism φ : A → B between two unital C*-algebras A, B

is a linear map such that φ(xy) = φ(x)φ(y) and φ(x∗) = φ(x)∗ , for all x, y ∈ A

and φ(1A) = 1B .

States are always Hermitian functionals i.e. ω(x∗) = ω(x), for all x ∈ A .

Definition 2.4. A left Hilbert C*-module AM over the C*-algebra A is a left
A-module equipped with an A -valued inner product A〈· | ·〉 : (x, y) 7→ A〈x | y〉 ,
i.e. a sesquilinear map, linear in the right variable, that is Hermitian A〈x | y〉∗ =

A〈y | x〉 , positive A〈x | x〉 ∈ A> , non-degenerate A〈x | x〉 = 0A ⇔ x = 0M in
such a way tha M becomes a Banach space with the norm ‖x‖M :=

√
A〈x | x〉 .

The Hilbert C*-module AM is unital if the C*-algebra A is unital and 1A ·x = x ,
for all x ∈ M .

A right Hilbert C*-module MB over the C*-algebra B is defined in a similar
way using a right B -module, but in this case the B-valued inner product 〈x | y〉B
is a sesquilinear form that is assumed to be linear in the right entry.

A Hilbert C*-bimodule AMB over the C*-algebras A on the left and B on
the right is a left Hilbert C*-module over A and also a right Hilbert C*-module
over B such that (ax)b = a(xb), for all a ∈ A , x ∈ M , b ∈ B .
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Following P.Ghez-R.Lima-J.Roberts [6] and P.Mitchener [13] we have the fol-
lowing generalization of the notion of C*-algebra.

Definition 2.5. A complex C*-category is category C such that HomC(A, B) is
a complex Banach space for all A,B ∈ ObC that is equipped with a contravariant
involutive conjugate linear functor ∗ : C → C acting identically on the objects
such that ‖1A‖ = 1 for all A ∈ ObC , ‖x ◦ y‖ ≤ ‖x‖ · ‖y‖ , for all composable
x, y ∈ HomC , ‖x∗ ◦x‖ = ‖x‖2 for all x ∈ HomC and such that x∗ ◦x is a positive
element in the C*-algebra HomC(A,A) for all x ∈ HomC(B, A).

From the definition we see that in a C*-category C , for all objects A,B ∈ ObC ,
the “diagonal blocks” HomC(A,A), HomC(B,B) are unital C*-algebras and the
the “off-diagonal blocks” HomC(A,B) are unital Hilbert C*-bimodules over the
C*-algebras HomC(A,A), acting on the left and HomC(B, B) acting on the right.

Clearly, a C*-category with only one object can be identified with a uni-
tal C*-algebra and hence C*-categories are “many-objects” versions of unital
C*-algebras.

If H is a family of Hilbert spaces (or more generally Hilbert C*-modules over
a given C*-algebra) the collection B(H ) of linear continous maps (adjointable
maps) between the Hilbert spaces (respectively the modules) in H has the struc-
ture of a C*-category with objects given by the spaces in the family H , compo-
sition, involution and norm given by the usual composition, adjoint and norm of
operators.

In the case of C*-categories, the notion of unital ∗ -homomorphism is general-
ized by that of ∗-functor.

Definition 2.6. Let C and D be two C*-categories. A covariant ∗-functor
φ : C → D is given by a pair of maps φ : A → φA between the set of objects and
φ : x 7→ φ(x) between the set of morphisms such that x ∈ HomC(A,B) implies
φ(x) ∈ HomD(φA, φB), φ(x ◦ y) = φ(x) ◦ φ(y), for all composable x, y ∈ Hom C

and φ(x∗) = φ(x)∗ , for all x ∈ HomC . A covariant ∗ -functor π : C → B(H ) is
called a representation of the C*-category C .

We propose the following generalization, in the setting of C*-categories, of the
notion of state on a C*-algebra.

Definition 2.7. A state ω : C → C on a C*-category C is map ω : HomC → C
that is linear when restricted to HomC(A,B), for all A, B ∈ ObC , Hermitian
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i.e. ω(x∗) = ω(x), for all x ∈ HomC , normalized i.e. ω(1A) = 1C , for all A ∈ ObC ,
and positive i.e. ω(x∗ ◦ x) ≥ 0, for all x ∈ HomC .

The celebrated Gel’fand-Năımark-Segal theorem admits a natural “categori-
fied” version.

Theorem 2.8. Let ω be a state over the C*-category C . There is a representation
πω of C on a family HA of Hilbert spaces indexed by objects of C and there exists
a family of normalized vectors ξA ∈ HA such that ω(x) = 〈ξA | πω(x)ξB〉HA

, for
all x ∈ HomC(A,B) .

Proof. Consider the set Nω := {x ∈ HomC | ω(x∗ ◦ x) = 0} and note that Nω

is a closed left ∗ -ideal in the C*-category C . For all A,B ∈ ObC , the quotient
CBC/Nω

BC is a pre-Hilbert space, with the well-defined inner product given by
〈y+Nω

BC | z+Nω
BC〉 = y∗ ◦z+Nω

BC , for all y, z ∈ CBC and for every x ∈ CAB , we
have for all C ∈ ObC well-defined continuous maps LC

x : CBC/Nω
BC → CAC/Nω

AC

given by left multiplication by x i.e. LC
x (z+Nω

BC) := x◦z+Nω
AC . Upon passing to

the Hilbert space completion HBC of the pre-Hilbert spaces CBC/Nω
BC the maps

LC
x extend by continuity to continuos linear maps πC(x) : HBC → HAC . The

maps πC satisfy πC(x ◦ y) = πC(x) ◦ πC(y), πC(x∗) = πC(x)∗ , πC(1A) = IdHAA

and hence we have a representation πω := ⊕C∈ObC
πC of C on the families of

Hilbert spaces {HB := ⊕C∈ObC
HBC | B ∈ ObC} .

Defining ξA := 1A + Nω
AA ∈ HAA ⊂ ⊕C∈ObC

HAC = HA , we can check that
ω(x) = 〈ξA | πC(x)ξB〉HAA = 〈ξA | πω(x)ξB〉HA .

From this result we can obtain a Gel’fand-Năımark representation theorem for
C*-categories (see [6, 13]).

Theorem 2.9. A C*-category C admits an isometric representation in B(H ) ,
the C*-category of a family of Hilbert spaces H .

Proof. Let SC be the set of states defined on C . Considering π := ⊕ω∈SC
πω we

get a new representation of C . Since ‖π(x∗x)‖ = ‖π(x)‖2 , the representation
if isometric if and only if it is isometric on the elements of the diagonal blocks
of C . Now for every element x ∈ CAA there is at least one state ωx such that
‖πωx(x)‖ = ‖x‖ and hence ‖π(x)‖ ≥ ‖πωx(x)| = ‖x‖ and the isometry follows.

Definition 2.10. A C*-envelope E(C) of a C*-category C is given by a unital
C*-algebra E(C) and a ∗-functor ι : C → E(C) that satisfy the following universal



68 Chamchuri J. Math. 1(2009), no. 2: P. Bertozzini and K. Rutamorn

factorization property:
for all unital ∗-functors φ : C → A into a unital C*-algebra A , there exists one
and only one unital ∗ -homomorphism Φ : E(C) → A such that Φ ◦ ι = φ .

By the universal factorization property above, it is a standard result that the
C*-envelope of a C*-category is unique up to unital isomorphims of C*-algebras.
The existence of a C*-envelope is proved as in [6, Page 86] taking the inductive
C*-limit of the finite matrix C*-algebras of the C*-category.

If the C*-category C has only a finite set of objects {A1, . . . , AN} , the con-
struction of the C*-envelope E(C) just deliver the matrix C*-algebra of C , i.e. the
set of N × N matrices with coeffients entries in position (i, j) taken from the
set HomC(Aj , Ai), for i, j = i, . . . , N ; with line by column multiplication and
involution given by ∗ -transposition.

Again, from the universal factorization property of C*-envelopes, we obtain
this result.

Proposition 2.11. Any ∗-functor φ : C → D between C*-categories induces a
unique unital ∗-homomorphism of enveloping C*-algebras E(φ) : E(C) → E(D)
such that E(φ) ◦ ιC = ιD ◦ φ . The map E : φ 7→ E(φ) is functorial and hence it
preserves mono epi and isomorphisms.

2.2 Krĕın Spaces and Krĕın C*-algebras

Referring to M.Dritschel-J.Rovnyak [5] for a more complete treatment, we provide
some basic definition and result on Krĕın spaces.

Definition 2.12. A complex Krĕın space is a complex vector space K , equipped
with a Hermitian sesquilinear form (linear in the second variable) (x, y) 7→ 〈x | y〉 ,
for all x, y ∈ K , that admits at least one direct sum decomposition K = K+⊕K−
in orthogonal subspaces such that K+ is a Hilbert space with the restriction of the
sesquilinear form and K− is a Hilbert space with the restriction of the opposite
of sesquilinear form on K . Any such direct sum decomposition is called a funda-
mental decomposition of the Krĕın space and the linear operator J : K → K

defined by J : x+ + x− 7→ x+ − x− is called a fundamental symmetry of the
Krĕın space.

Of course there is a bijective correspondence between fundamental symmetries
and fundamental decompositions of a Krĕın space. A Krĕın space usually ad-
mits several different fundamental symmetries. To every fundamental symmetry



Krĕın C*-categories 69

J : K → K there is a unique associated Hilbert space |K|J := K+⊕(−K−) where
−K− denotes the Hilbert space obtained by considering on K− the opposite of
the inner product defined on K .

Proposition 2.13. All the norms ‖ ·‖|K|J on K obtained from the Hilbert spaces
associated to the fundamental symetries J are equivalent and induce a unique
topology on the Krĕın space K called the strong topology.

The previous definitions and results have been extended to Krĕın C*-modules
(see the details in S. Kaewumpai’s thesis [10]).

Definition 2.14. A (unital) right Krĕın C*-module MA over the (unital)
C*-algebra A is a (unital) module over A equipped with a Hermitian sesquilinear
form (x, y) 7→ 〈x | y〉A , for all x, y ∈ M , that admits at least one direct sum
decomposition M = M+ ⊕M− in orthogonal A-submodules such that M+ and
−M− are Hilbert C*-modules over A (again here −M− denotes the module M−
with the restriction of the opposite of the sequilinear form on M).

Fundamental symmetries are defined in the same way in this more general
context of Kĕın C*-modules.

Proposition 2.15. On a Krĕın C*-module MA over the C*-algebra A there is
a unique strong topology that is induced by any of the equivalent norms on the
Hilbert C*-modules |MA|J := M+ ⊕ (−M−) given, for x ∈ MA , by

‖x‖|M|J :=
√
‖〈x+ | x+〉A − 〈x− | x−〉A‖.

It is well-known, from the Gel’fand-Năımark representation theorem, that the
axioms listed in the definition of C*-algebra characterise those ∗-algebras that
are isomorphic to closed subalgebras of continuous linear operators on a Hilbert
space. Similarly the axioms in the definition of C*-category characterise those
involutive categories that are isomorphic to closed ∗-subcategories of operators
between Hilbert spaces.

A natural problem arising in the setting of Krĕın spaces is the study of the
axiomatic characterization of those ∗-algebras and ∗ -categories that are isomor-
phic to “suitable” closed ∗-algebras, or closed ∗ -categories, of linear continuous
operators between Krĕın spaces.

The following is a variation of K.Kawamura [9] definition of Krĕın C*-algebra.2

2Attention that in K.Kawamura’s original definition a Krĕın C*-algebra is a Banach alge-

bra, but here we only assume that a Krĕın C*-algebra is “Banachable” and so its norm is not

necessarily fixed.
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Definition 2.16. A complex Krĕın C*-algebra is a complex ∗ -algebra that
admits at least one Banach norm and at least one ∗-automorphism α : A → A

such that α ◦ α = IdA and ‖α(x∗)x‖ = ‖x‖2 , for all x ∈ A .

An automorphism that satisfies the previous properties is called a fundamen-
tal symmetry of the Krĕın C*-algebra. Every Krĕın C*-algebra usually admits
several different fundamental symmetries. For every fundamental symmetry α

the Krĕın C*-algebra A becomes a C*-algebra with the new involution defined by
x†α := α(x∗), for x ∈ A , and so (since in a C*-algebra the norm is unique) for
every fundamental symmetry there exists only one norm, here denoted by ‖ · ‖α ,
that satisfies the C*-property in the previous definition.

Examples of Krĕın C*-algebras are immediately found in algebras of operators
on Krĕın spaces and more generally Krĕın C*-modules [10].

Theorem 2.17. Let MA be a unital Krĕın C*-module over the unital C*-algebra
A . The ∗-algebra B(MA) of adjointable operators on MA is a Krĕın C*-algebra.

In particular for every Krĕın space K , the algebra of linear continuous maps
B(K) is a Krĕın C*-algebra and similarly all the ∗ -subalgebras of B(K) that
are invariant for at least one of the fundamental symmetries of B(K) and that
are closed in the strong topology induced by the strong topology of K are Krĕın
C*-algebras.3

In order to probe if the definition of Krĕın C*-algebra is suitable for an ax-
iomatic characterization of those closed ∗ -algebras of adjointable operators on
Krĕın spaces or Krĕın C*-modules that are stable for the adjoint action of one
of the fundamental symmetries of the space, we will make use here of techniques
of representation of C*-categories and we will begin to develope here a theory of
Krĕın C*-categories.

3As suggested by the referee, the fact that a ∗ -subalgebra A of B(K) that is closed in the

strong topology is not necessarily a Krĕın C*-algebra (unless one of the fundamental symmetries

of B(K) restricts to A ), might suggest further improvements or generalizations in the definition

of Krĕın C*-algebra. In this work we will limit ourselves to the given definition 2.16 and we will

assume that the fundamental symmetries of a Krĕın C*-subalgebra of B(K) are restrictions of

fundamental symmetries of B(K) and hence every Krĕın C*-subalgebra of B(K) is necessarily

stable by the action of one of the fundamental symmetries of B(K) .
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3 Krĕın C*-categories

As immediate categorical generalization of the notion of Krĕın C*-algebra, we
propose the following definition.

Definition 3.1. A Krĕın C*-category is a ∗ -category C that admits at least
one norm making all the normed spaces HomC(A,B) Banach spaces, for all
A,B ∈ ObC and at least one covariant ∗ -functor α : C → C such that:

α ◦ α = IdC, (1)

α(A) = A , ∀A ∈ ObC, (2)

‖α(x∗)x‖ = ‖x‖2, ∀x ∈ HomC(A,B), ∀A,B ∈ ObC, (3)

∀x ∈ HomC(B,A), ∀A, B ∈ ObC α(x∗)x ∈ HomC(A, A)>. (4)

Note that from the first three axioms above, for all objects A , the set HomC(A,A)
is always a Krĕın C*-algebra and so it is a C*-algebra when the involution is defined
as x†α := α(x∗) so that the last axiom above tells that α(x∗)x is always a positive
element in the C*-algebra HomC(A, A) with involution †α .

An alternative way to state the last axiom would be to say that for all elements
x ∈ HomC(B, A), there exists z ∈ HomC(A,A) such that α(x∗)x = α(z∗)z . One
might also say that the spectrum of α(x∗)x is always positive.

We provide immediately some elementary examples of Krĕın C*-categories.

Proposition 3.2. Let C be a C*-category and α : C → C be a covariant †-functor
such that α ◦α = IdC , and α(A) = A , for all A ∈ ObC . Then C becomes a Krĕın
C*-category with the new involution x∗α = α(x†) .

Proposition 3.3. Let KC be the class of Krĕın spaces with composition of linear
continuous mapping and involution given by the Krĕın space adjoint. Then KC is
a Krĕın C*-category.

More generally let KA be the class of Krĕın C*-modules over the C*-algebra A

with composition of Krĕın adjointable maps and their Krĕın adjoint as involution.
Then KA is a Krĕın C*-category.

We proceed now to find examples of Krĕın C*-categories naturally associated
to Krĕın algebras equipped with a given fundamental symmetry.

Motivated somehow from the definition of ∗-bimodule given by N. Waever [19,
Definition 9.6.1], [20] we propose the following definition of involutive C*-bimodule:
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Definition 3.4. An involutive Hilbert C*-bimodule over the C*-algebra
A is a Hilbert C*-bimodule M over A that is further equipped with a map
∗ : M → M such that:

(x∗)∗ = x, ∀x ∈ M,

(ax + y)∗ = x∗a∗ + y∗, ∀x, y ∈ M, ∀a ∈ A,

A〈x | y〉∗ = 〈y∗ | x∗〉A, ∀x, y ∈ M.

The module involution above essentially provides an indentification of the Ri-
effel dual of the Hilbert C*-bimodule M with M itself and so it is not surprising
the following reformulation of the linking C*-category of a Hilbert C*-bimodule.

Proposition 3.5. Let A be a unital C*-algebra and let M be a unital involutive
Hilbert C*-bimodule over A such that

A〈x | y〉z = x〈y | z〉A, ∀x, y, z ∈ M.

There exists a C*-category C with two objects ObC := {+,−} with morphisms

C++ := A =: C−−, C+− := M =: C−+,

and compositions given by:

(a, b) 7→ a ·A b ∈ C++, ∀a, b ∈ C++,

(a, b) 7→ a ·A b ∈ C−−, ∀a, b ∈ C−−,

(a, x) 7→ a ·M x ∈ C+−, ∀a ∈ C++, ∀x ∈ C+−

(y, b) 7→ y ·M b ∈ C+−, ∀b ∈ C−−, ∀y ∈ C+−

(x, a) 7→ x ·M a ∈ C+−, ∀a ∈ C++, ∀x ∈ C−+

(b, y) 7→ b ·M y ∈ C+−, ∀b ∈ C−−, ∀y ∈ C−+

(x, y) 7→ 〈x∗ | y〉A ∈ C++, ∀x ∈ C+−, ∀y ∈ C−+,

(y, x) 7→ A〈x | y∗〉 ∈ C−−, ∀x ∈ C+−, ∀y ∈ C−+.

We will also denote by [A, M] the previous C*-category.

Theorem 3.6. To every unital Krĕın C*-algebra A with a given fundamental
symmetry α : A → A , we can associate a Krĕın C*-category C(A,α) := [A+, A−]
with two objects.
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Proof. For a given fundamental symmetry α , the Krĕın C*-algebra A becomes a
C*-algebra, here denoted by Aα , with involution x†α := α(x∗) with respect to a
unique C*-norm ‖ · ‖α and α : A → A becomes a unital †α -automorphism of this
C*-algebra Aα . The set Aα

+ of even elements of Aα under the action of α is a
unital C*-algebra and the set Aα

− of odd elements is a unital involutive Hilbert
C*-bimodule over Aα

+ so that, by the previous proposition we can construct a
C*-category Cα

(A,α) := [Aα
+, Aα

−] . Note that α induces by restriction a †α -functor
of the C*-category Cα

(A,α) that acts identically on the objects and it is involutive,
i.e. α ◦ α = Id, and so by proposition 3.2 we have that Cα

(A,α) becomes a Krĕın
C*-category, here simply denoted by [A+, A−] , with respect to the involution
given by x 7→ x∗ = α(x†α).

Proposition 3.7. For a Krĕın C*-algebra A with a given fundamental symmetry
α , there is a canonical unital ∗-isomorphism Ψ : Aα → E(C(A,α)) .

Proof. The inclusion of A+ and A− into Aα := A+ ⊕A− induces a ∗ -functor ι

from Cα
(A,α) to Aα and for every ∗-functor φ : Cα

(A,α) → B to a unital C*-algebra
B , defining Φ : Aα → B by Φ(x+ +x−) := φ(x+)+φ(x−) we check that Φ is the
unique unital ∗ -homomorphism such that Φ◦ι = φ and hence Aα is a C*-envelope
of Cα

(A,α) and by the unique factorization property of the C*-envelope we get that
Aα is canonically isomorphic to E(Cα

(A,α)).

As an immediate application we obtain the following generalization of Gel’fand-
Năımark representation theorem for unital Krĕın C*-algebras.

Theorem 3.8. Every unital Krĕın C*-algebra admits at least one faithful repre-
sentation on a Krĕın space and it is isomorphic to a closed unital ∗-subalgebra of
a Krĕın C*-algebra of continuous operators on a Krĕın space.

Proof. Let A be a unital Krĕın C*-algebra, let α be one of its fundamental
symmetries and ‖ · ‖α the associated C*-norm. Consider now the C*-category
Cα

(A,α) := [Aα
+,Aα

−] constructed above and note that, by Gel’fand-Năımark repre-
sentation theorem for C*-categories 2.9 there is an isometric †α -isomorphic func-
tor ρ of Cα

(A,α) onto a closed C*-category ρ(Cα
(A,α)) of linear continuous operators

between two Hilbert spaces H+ and H− . By proposition 2.11 the ∗ -functor ρ

can be lifted to a unital †α -isomorphism E(ρ) : E(Cα
(A,α)) → E(ρ(Cα

(A,α))) of the
C*-envelopes.
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Since ρ(Cα
(A,α)) is a C*-category of linear continuous operators between two

Hilbert spaces H+, H− , its C*-envelope coincides with the 2×2 matrix C*-algebra
with entries from ρ(Cα

(A,α)) acting on the Hilbert space H+ ⊕ H− that is a
closed ∗ -subalgebra of B(H+ ⊕ H−). Furthermore, by proposition 3.7 we can
take E(Cα

(A,α)) = Aα .

Consider now the Krĕın space K := H+ ⊕ (−H−) obtained reversing the
sign of the inner product on H− in the othogonal direct sum H+ ⊕H− and the
fundamental symmetry J : K → K associated to such fundamental decomposition
J : ξ+ + ξ− 7→ ξ+ − ξ− .

The map αJ : B(K) → B(K) given by αJ(T ) := JTJ is a fundamental
symmetry of the Krĕın C*-algebra B(K) and restricted to the Krĕın C*-category
ρ(C(A,α)) gives a ∗ -functor such that ρ(α(x)) = αJ(ρ(x)), for all x ∈ C(A,α) and
that, by proposition 2.11, lifts to a unital ∗ -automorphism of E(ρ(C(A,α))) ⊂ B(K)
with E(ρ) ◦ α = αJ ◦ E(ρ).

The ∗ -isomorphism of C*-algebras E(ρ) : Aα → E(ρ(Cα
(A,α))) becomes a unital

∗ -isomorphism of Krĕın C*-algebras E(ρ) : A → E(ρ(C(A,α)))αJ , where the invo-
lution in E(ρ(C(A,α)))αJ is given by T ∗ := αJ(T †), with T † denoting the Hilbert
space adjoint in B(H+ ⊕H−).

More generally we can obtain a Gel’fand-Năımark representation for Krĕın
C*-categories. There are other possible ways to prove the result: for example using
the Gel’fand-Năımark theorem for Krĕın C*-algebras applied to the envelope of
the Krĕın C*-category, but here we provide only a sketch of a direct proof that
generalizes the argument provided in the previous theorem.

Theorem 3.9. Let α be a fundamental symmetry of a Krĕın C*-category C .
There is a faithful representation π : C → B(K ) that is α-covariant i.e. there
is an isomorphism of the Krĕın C*-category with a closed Krĕın C*-category in
B(K ) and there exists a family of fundamental symmetries JK , with K ∈ K ,
such that π ◦ α = αJ ◦ π .

Proof. To every Krĕın C*-category C with fundamental symmetry α and objects
ObC , we associate another Krĕın C*-category C(C,α) with a “doubled family of
objects”

Ob(C(C,α)) := ObC×{±}.
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The families of morphisms are given by

HomC(C,α)(A±, B±) := {x ∈ HomC(A, B) | α(x) = x}, ∀A, B ∈ ObC,

HomC(C,α)(A±, B∓) := {x ∈ HomC(A,B) | α(x) = −x}, ∀A,B ∈ ObC .

Consider the associated C*-category C α
(C,α) with involution x 7→ α(x∗) and by

Gel’fand-Năımark theorem for C*-categories, we obtain a faithful representation
ρ in a family of Hilbert spaces indexed by the family of objects ObC×{±} . Define
a family of fundamental symmetries JA : HA+⊕HA− → HA+⊕HA− , indexed by
A ∈ ObC , reverting the sign of the HA− component. Note that ρ◦α = αJ ◦ρ . We
can define a notion of partial envelope of a “doubly indexed” C*-category with
respect to one family of indexes (in our case {±}) via the usual universal factor-
ization properties and note that we can assume E±(C α

(C,α)) = Cα . Furthermore
E±(ρ(C α

(C,α))) consists of the C*-category with objects {HA+ ⊕HA− | A ∈ ObC}
and morphisms T : HA+ ⊕HA− → HB+ ⊕HB− of the form

T :=

[
ρ(x+) ρ(x−)
ρ(x−) ρ(x+)

]
, x ∈ HomC(A, B),

Since E±(ρ) : Cα → E±(C α
(C,α)) is an isomorphism of the C*-category Cα onto

a closed sub-C*-category of B(H ) such that E±(ρ) ◦ α = αJ ◦ E±(ρ), defining
the family of Krĕın spaces KA := HA+ ⊕ (−HA−) indexed by ObC , we have that
E±(ρ) is an isomorphism of the Krĕın C*-category C with the Krĕın C*-category
E±(C α

(C,α))
αJ = E±(C(C,α)) that is a closed ∗ -subcategory of B(K ).

4 Final Remarks

We have proposed here a tentative definition of Krĕın C*-category that, following
the general ideas outlined in [2, Section 4.2], should provide a “horizontal categori-
fication” of the notion of Krĕın C*-algebra given by K.Kawamura. Using methods
from the theory of C*-categories, we have also described a Gel’fand-Năımark rep-
resentation theorem for Krĕın C*-algebras and more generally Krĕın C*-categories
that should somehow justify the abstract axioms for Krĕın C*-categories. It is of
course possible to try to develop in all the details a theory of Krĕın C*-categories
(and also of Krĕın W*-categories) that follows in parallel the theory of C*-algebras,
here we only started in these directions.

As described in [2, 3], C*-categories are just a special case of a more general
notion of Fell C*-bundle. In a similar way, it is possible to give a definition of
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“Krĕın Fell bundles” and “Krĕın spaceoids” that might later be useful in the study
of general spectral theories for (possibly non-commutative) Krĕın C*-algebras (or
categories). We leave these interesting points to future work.
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