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Abstract: C*-categories are essentially norm-closed x-categories of bounded
linear operators between Hilbert spaces. The purpose of this work is to identify
suitable axioms defining Krein C*-categories, i.e. those categories that play the
role of C*-categories whenever Hilbert spaces are replaced by more general in-
definite inner product Krein spaces, and provide some basic examples. Finally
we provide a Gel’fand-Naimark representation theorem for Krein C*-algebras and
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1 Introduction

It is well know that every C*-algebra is essentially an involutive norm-closed al-
gebra of bounded linear operators on a Hilbert space. C*-categories are a gen-
eralization of the notion of C*-algebra arising whenever we consider norm-closed
families of operators, between (possibly) many Hilbert spaces, that are closed
under composition and adjoint. They were first introduced in 1985 by P.Ghez-
R.Lima-J.Roberts [6] and since then they have been extensively used in algebraic
quantum field theory. In 2001 P.Mitchener [13] further examined the definition
of C*-categories, studied their K-theory and applied them to the Baum-Connes

conjecture.
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Although indefinite inner product spaces have been considered since the begin-
ning of the last century in phyiscs, Krein spaces i.e. vector spaces equipped with
an indefinite inner product, that are complete, were defined (following previous
works by L.Pontrjagin [15]) by J.Ginzburg [§] and E.Scheibe [16] and have been
subsequently studied by many mathematicians of the Russian school of M.Krein.

Bounded linear maps on a Krein space constitute natural examples of Krein
C*-algebras (they are the analogue of C*-algebras in the case of Krein spaces) a
concept that was introduced by K.Kawamura [9] in 2006.

In this work our purpose is to try to provide suitable axioms for the abstract
definition of Krein C*-categories. In particular our definitions should necessar-
ily include the basic example of bounded linear maps between (possibly) many
Krein spaces. We will also provide a few examples and study some of the proper-
ties of Krein C*-categories. In particular we will associate a Krein C*-category to
every fundamental symmetry of a Krein algebra (or more generally to every funda-
mental symmetry of a Krein C*-category) and use well-known Gel’fand-Naimark
representation results for C*-categories in order to provide Gel’fand-Naimark rep-

resentation theorems for Krein C*-algebras and Krein C*-categories.

The following paper was originally presented by K.Rutamorn at the “Annual
Pure and Applied Mathematics Conference 2009”, organized on May 25-26 by
the Department of Mathematics of Chulalongkorn University, and it appeared in
the non-refereed proceedings of the same conference: P.Bertozzini, K.Rutamorn,
Krein C*-categories, APAM 2009, Collection of Abstract and Presented Papers,
35-42 (2009).

2 Preliminaries

We collect here for the benefit of the reader the main definitions and some prop-
erties that will be used in this work. For general background in the theory
of operator algebras we refer to the books by V.Sunder [17], M.Takesaki [18],
B.Blackadar [4] and for Hilbert C*-modules to E.Lance’s book [12] and the notes
by N.Landsman [11]. General definitions and notations from category theory can
be obtained from S.MacLane [14] M.Barr-C. Wells [1] or R.Geroch [7] for an ele-

mentary introduction.



Krein C*-categories 65

2.1 C*-algebras and C*-categories

Definition 2.1. A complex C*-algebra A is a complex associative algebra (i.e. a
vector space over the complex numbers with a bilinear associative multiplication
-t Ax A — A) equipped with a conjugate linear map * : A — A such that
(z)* ==z, (x-y)* =y*-a*, for all z,y € A that is a complete metric space with
anorm || -] : A — R such that |z -y| < ||z] - |[|y|| and |z* - z| = ||=||?, for all
z,y € A. The C*-algebra is unital if there is an identity element 1,4 such that
x-lg=x=14 -z, forall z € A and ||14] = 1.

Definition 2.2. In a unital C*-algebra A and element = € A is positive if it
is Hermitian i.e. * = x and its spectrum is positive Sp(z) C Ry, where the
spectrum of x € A is defined as Sp(z) := {u € C | z — - 14 is not invertible}.
The set of positive elements of A will be denoted by A- .

Recall that in a unital C*-algebra x € A~ if and only if there exists z € A

such that x = z*z.

Definition 2.3. A state over the unital C*-algebra A is a linear map w: A — C
that is normalized i.e. w(1,4) = 1¢ and positive in the sense that w(z) € Cs = R,
for all z € As.

A unital *-homomorphism ¢ : A — B between two unital C*-algebras A, B
is a linear map such that ¢(zy) = ¢(z)P(y) and ¢(z*) = ¢(x)*, for all z,y € A
and (725(1/1) = lfB .

States are always Hermitian functionals i.e. w(z*) = w(z), for all x € A.

Definition 2.4. A left Hilbert C*-module 4M over the C*-algebra A is a left
A-module equipped with an A-valued inner product 4(- | ‘) : (z,y) — a{z | v),
i.e. a sesquilinear map, linear in the right variable, that is Hermitian 4(x | y)* =
Ay | x), positive 4(z | z) € As, non-degenerate 4(z | z) = 04 < x = Oy in
such a way tha M becomes a Banach space with the norm ||z||ly := v/a(z | 7).
The Hilbert C*-module 4M is unital if the C*-algebra A is unital and 14-2 = z,
for all x € M.

A right Hilbert C*-module Mg over the C*-algebra B is defined in a similar
way using a right B-module, but in this case the B-valued inner product (z | y)s
is a sesquilinear form that is assumed to be linear in the right entry.

A Hilbert C*-bimodule 4Mg over the C*-algebras A on the left and B on
the right is a left Hilbert C*-module over A and also a right Hilbert C*-module
over B such that (az)b = a(zb), forall ae A, z €M, be B.
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Following P.Ghez-R.Lima-J.Roberts [6] and P.Mitchener [13] we have the fol-

lowing generalization of the notion of C*-algebra.

Definition 2.5. A complex C*-category is category € such that Home (A, B) is
a complex Banach space for all A, B € Obe that is equipped with a contravariant
involutive conjugate linear functor * : € — € acting identically on the objects
such that ||[14] = 1 for all A € Obe, ||z oy| < ||z| - |ly||, for all composable
z,y € Home, ||z* ox|| = ||z||? for all # € Home and such that z* oz is a positive
element in the C*-algebra Home (A, A) for all x € Home(B, A).

From the definition we see that in a C*-category C, for all objects A, B € Obg,
the “diagonal blocks” Home(A, A), Home(B, B) are unital C*-algebras and the
the “off-diagonal blocks” Home(A, B) are unital Hilbert C*-bimodules over the
C*-algebras Home(A, A), acting on the left and Home (B, B) acting on the right.

Clearly, a C*-category with only one object can be identified with a uni-
tal C*-algebra and hence C*-categories are “many-objects” versions of unital
C*-algebras.

If 7 is a family of Hilbert spaces (or more generally Hilbert C*-modules over
a given C*-algebra) the collection B(#) of linear continous maps (adjointable
maps) between the Hilbert spaces (respectively the modules) in 52 has the struc-
ture of a C*-category with objects given by the spaces in the family ¢, compo-
sition, involution and norm given by the usual composition, adjoint and norm of
operators.

In the case of C*-categories, the notion of unital *-homomorphism is general-
ized by that of *x-functor.

Definition 2.6. Let € and D be two C*-categories. A covariant x-functor
¢ : € — D is given by a pair of maps ¢ : A — ¢4 between the set of objects and
¢ : x — ¢(x) between the set of morphisms such that @ € Home(A, B) implies
¢(x) € Homp (da,d5), ¢(xoy) = ¢(z) o ¢(y), for all composable z,y € Hom €
and ¢(z*) = ¢(x)*, for all x € Home. A covariant s-functor 7 : € — B(H) is
called a representation of the C*-category C.

We propose the following generalization, in the setting of C*-categories, of the

notion of state on a C*-algebra.

Definition 2.7. A state w: € — C on a C*-category C is map w : Home — C
that is linear when restricted to Home(A, B), for all A, B € Obe, Hermitian
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ie. w(z*) =w(x), for all z € Home, normalized i.e. w(14) = 1¢, for all A € Obe,

and positive i.e. w(z* ox) >0, for all x € Home.

The celebrated Gel’fand-Naimark-Segal theorem admits a natural “categori-

fied” version.

Theorem 2.8. Let w be a state over the C*-category C. There is a representation
7w, of C on a family Ha of Hilbert spaces indexed by objects of C and there exists
a family of normalized vectors €4 € Hy such that w(x) = (€a | 7o (x)B)H, , for
all x € Home(A, B).

Proof. Consider the set N* := {z € Home | w(z* ox) = 0} and note that N¢
is a closed left *-ideal in the C*-category €. For all A, B € Obg, the quotient
Crc/N% e is a pre-Hilbert space, with the well-defined inner product given by
(Y+NGe | 24NGe) = y*oz+NG-, for all y, z € Cpe and for every z € Cap, we
have for all C' € Obe well-defined continuous maps LS : Cpo/Ngo — Cac/N4e
given by left multiplication by = i.e. LS (24+N%.) := z02+N%.. Upon passing to
the Hilbert space completion Hgc of the pre-Hilbert spaces Cpc /N the maps
Lg extend by continuity to continuos linear maps Wc(x) : Hge — Hac. The
maps 7 satisfy 7¢(zoy) = 7¢(x) o 7%(y), 7€ (2*) = 7%(x)*, 7%(14) = ldg,,
and hence we have a representation m, := ©ceob.7C of € on the families of
Hilbert spaces {Hp := ®cecove. Hpco | B € Obe}.

Defining €4 = 14 + N4 4 € Haa C @cecobe.Hac = Ha, we can check that
w(z) = (€a | 79(2)Ep) Han = (€a | T (®)EB) .4 - O

From this result we can obtain a Gel’fand-Naimark representation theorem for
C*-categories (see [6}, [13]).

Theorem 2.9. A C*-category C admits an isometric representation in B(H),
the C*-category of a family of Hilbert spaces F .

Proof. Let Se¢ be the set of states defined on €. Considering 7 := @ es.m We
get a new representation of €. Since ||w(z*z)| = ||x(z)||?, the representation
if isometric if and only if it is isometric on the elements of the diagonal blocks
of €. Now for every element x € C44 there is at least one state w, such that

|7, (z)|| = ||z|| and hence ||7(z)]| > ||7w, (x)| = ||z|| and the isometry follows. [

Definition 2.10. A C*-envelope £(C) of a C*-category C is given by a unital
C*-algebra £(C) and a x-functor ¢ : € — &(C) that satisfy the following universal
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factorization property:
for all unital *-functors ¢ : € — A into a unital C*-algebra A, there exists one
and only one unital *-homomorphism ® : £(€) — A such that ® ot = ¢.

By the universal factorization property above, it is a standard result that the
C*-envelope of a C*-category is unique up to unital isomorphims of C*-algebras.
The existence of a C*-envelope is proved as in [6, Page 86] taking the inductive
C*-limit of the finite matrix C*-algebras of the C*-category.

If the C*-category € has only a finite set of objects {A;,...,Ax}, the con-
struction of the C*-envelope £(C) just deliver the matrix C*-algebra of C, i.e. the
set of N x N matrices with coeffients entries in position (i,5) taken from the
set Home(A;, A;), for 4,j = ¢,...,N; with line by column multiplication and
involution given by x-transposition.

Again, from the universal factorization property of C*-envelopes, we obtain
this result.

Proposition 2.11. Any *-functor ¢ : € — D between C*-categories induces a
unique unital *-homomorphism of enveloping C*-algebras E(¢) : E(C) — &(D)
such that E(¢) ote = tpo¢. The map € : ¢ — E(¢) is functorial and hence it
preserves mono epi and isomorphisms.

2.2 Krein Spaces and Krein C*-algebras

Referring to M.Dritschel-J.Rovnyak [5] for a more complete treatment, we provide

some basic definition and result on Krein spaces.

Definition 2.12. A complex Krein space is a complex vector space K , equipped
with a Hermitian sesquilinear form (linear in the second variable) (z,y) — (x| y),
for all x,y € K, that admits at least one direct sum decomposition K = K; ®K_
in orthogonal subspaces such that K is a Hilbert space with the restriction of the
sesquilinear form and K_ is a Hilbert space with the restriction of the opposite
of sesquilinear form on K . Any such direct sum decomposition is called a funda-
mental decomposition of the Krein space and the linear operator J : K — K
defined by J : x4 +2_ — x4 —x_ is called a fundamental symmetry of the
Krein space.

Of course there is a bijective correspondence between fundamental symmetries
and fundamental decompositions of a Krein space. A Krein space usually ad-

mits several different fundamental symmetries. To every fundamental symmetry
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J : K — K there is a unique associated Hilbert space | K|y := K4 ®(—K_) where
—K_ denotes the Hilbert space obtained by considering on K_ the opposite of
the inner product defined on K.

Proposition 2.13. All the norms ||-|||x|, on K obtained from the Hilbert spaces
associated to the fundamental symetries J are equivalent and induce a unique

topology on the Krein space K called the strong topology.

The previous definitions and results have been extended to Krein C*-modules
(see the details in S. Kaewumpai’s thesis [10]).

Definition 2.14. A (unital) right Krein C*-module My over the (unital)
C*-algebra A is a (unital) module over A equipped with a Hermitian sesquilinear
form (z,y) — (x| y)a, for all z,y € M, that admits at least one direct sum
decomposition M = M, @ M_ in orthogonal A-submodules such that M, and
—M_ are Hilbert C*-modules over A (again here —M_ denotes the module M_
with the restriction of the opposite of the sequilinear form on M).

Fundamental symmetries are defined in the same way in this more general

context of Kein C*-modules.

Proposition 2.15. On a Krein C*module M4 over the C*-algebra A there is
a unique strong topology that is induced by any of the equivalent norms on the
Hilbert C*-modules M|y : =My @ (=M_) given, for x € My, by

Izl = Ve [24)a = (e- [z-)all.

It is well-known, from the Gel’fand-Naimark representation theorem, that the
axioms listed in the definition of C*-algebra characterise those x-algebras that
are isomorphic to closed subalgebras of continuous linear operators on a Hilbert
space. Similarly the axioms in the definition of C*-category characterise those
involutive categories that are isomorphic to closed x-subcategories of operators
between Hilbert spaces.

A natural problem arising in the setting of Krein spaces is the study of the
axiomatic characterization of those x-algebras and x-categories that are isomor-
phic to “suitable” closed *-algebras, or closed *-categories, of linear continuous
operators between Krein spaces.

The following is a variation of K.Kawamura [9] definition of Krein C*-algebra.?

2 Attention that in K.Kawamura’s original definition a Krein C*-algebra is a Banach alge-
bra, but here we only assume that a Krein C*-algebra is “Banachable” and so its norm is not

necessarily fixed.
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Definition 2.16. A complex Krein C*-algebra is a complex *-algebra that
admits at least one Banach norm and at least one *x-automorphism a : A — A
such that coa =Idg and |Ja(z*)z| = ||z||?, for all x € A.

An automorphism that satisfies the previous properties is called a fundamen-
tal symmetry of the Krein C*-algebra. Every Krein C*-algebra usually admits
several different fundamental symmetries. For every fundamental symmetry «
the Krein C*-algebra A becomes a C*-algebra with the new involution defined by
zfe := a(x*), for 2 € A, and so (since in a C*-algebra the norm is unique) for
every fundamental symmetry there exists only one norm, here denoted by || - ||«,

that satisfies the C*-property in the previous definition.

Examples of Krein C*-algebras are immediately found in algebras of operators

on Krein spaces and more generally Krein C*-modules [10].

Theorem 2.17. Let M4 be a unital Krein C*-module over the unital C*-algebra

A. The *x-algebra B(M ) of adjointable operators on M4 is a Krein C*-algebra.

In particular for every Krein space K, the algebra of linear continuous maps
B(K) is a Krein C*-algebra and similarly all the x-subalgebras of B(K) that
are invariant for at least one of the fundamental symmetries of B(K) and that
are closed in the strong topology induced by the strong topology of K are Krein
C*-algebras.®

In order to probe if the definition of Krein C*-algebra is suitable for an ax-
iomatic characterization of those closed x-algebras of adjointable operators on
Krein spaces or Krein C*-modules that are stable for the adjoint action of one
of the fundamental symmetries of the space, we will make use here of techniques
of representation of C*-categories and we will begin to develope here a theory of
Krein C*-categories.

3 As suggested by the referee, the fact that a *-subalgebra A of B(K) that is closed in the
strong topology is not necessarily a Krein C*-algebra (unless one of the fundamental symmetries
of B(K) restricts to A), might suggest further improvements or generalizations in the definition
of Krein C*-algebra. In this work we will limit ourselves to the given definition 2.16/ and we will
assume that the fundamental symmetries of a Krein C*-subalgebra of B(K) are restrictions of
fundamental symmetries of B(K) and hence every Krein C*-subalgebra of B(K) is necessarily
stable by the action of one of the fundamental symmetries of B(K).
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3 Krein C*-categories

As immediate categorical generalization of the notion of Krein C*-algebra, we

propose the following definition.

Definition 3.1. A Krein C*-category is a *-category C that admits at least
one norm making all the normed spaces Home(A, B) Banach spaces, for all

A, B € Obe and at least one covariant x-functor « : € — € such that:

aoa=Ide, (1)

a(A)=A, VA € Obeg, (2)

la(z*)z|| = ||=||?, Vx € Home(A, B), VA, B € Obe, (3)
Vo € Home(B, A), VA, B € Obe a(z*)r € Home(A4, A)>. (4)

Note that from the first three axioms above, for all objects A, the set Home (A, A)
is always a Krein C*-algebra and so it is a C*-algebra when the involution is defined
as xfe := a(z*) so that the last axiom above tells that «(z*)z is always a positive
element in the C*-algebra Home (A, A) with involution f, .

An alternative way to state the last axiom would be to say that for all elements
x € Home (B, A), there exists z € Home(A, A) such that o(z*)z = a(2*)z. One
might also say that the spectrum of a(z*)x is always positive.

We provide immediately some elementary examples of Krein C*-categories.

Proposition 3.2. Let € be a C*-category and o : € — € be a covariant T -functor
such that aoa =1Ide, and a(A) = A, for all A € Obe. Then C becomes a Krein

C*-category with the new involution x*> = a(z').

Proposition 3.3. Let J¢ be the class of Krein spaces with composition of linear
continuous mapping and involution given by the Krein space adjoint. Then J¢ is
a Krein C*-category.

More generally let #, be the class of Krein C*-modules over the C*-algebra A
with composition of Krein adjointable maps and their Krein adjoint as involution.

Then %y is a Krein C*-category.

We proceed now to find examples of Krein C*-categories naturally associated
to Krein algebras equipped with a given fundamental symmetry.
Motivated somehow from the definition of *-bimodule given by N. Waever [19,

Definition 9.6.1], |[20] we propose the following definition of involutive C*-bimodule:
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Definition 3.4. An involutive Hilbert C*-bimodule over the C*-algebra
A is a Hilbert C*-bimodule M over A that is further equipped with a map
* : M — M such that:

(") =z, VzeM,
(ax +y)* = 2*a* +y*, Vo,y €M, Ya € A,
Az |y = 254, Vr,yeM
The module involution above essentially provides an indentification of the Ri-

effel dual of the Hilbert C*-bimodule M with M itself and so it is not surprising
the following reformulation of the linking C*-category of a Hilbert C*-bimodule.

Proposition 3.5. Let A be a unital C*-algebra and let M be a unital involutive
Hilbert C*-bimodule over A such that

alzly)z=z(y | 2)a, Vz,y,2€M.
There exists a C*-category C with two objects Obe := {+, —} with morphisms
Ciyp=A=C__, Ci =M =:C_g4,
and compositions given by:

(a,b)—a-4beCyy, Va,beCyy,
(a,b)—a-4beC__, Va,beC__,
(a, )
(y,0) mymbeCi, VbelC__, YyelCy_
)

(x,a)—xyma€Cp, Va€lyy, Veel_,

HG'MIEG_A,__, VCLGG_A,__H VIEG_A,__

(bvy)'_)b'MyeeJr*v Vbe@,,, vyeefﬂL
(@, y) = (@ |y)a € Coy, Vo eCy_, VyelCy,
(y,2) = alz |y")€C_, VoreCi_, VyelC_y,.

We will also denote by [A,M] the previous C*-category.

Theorem 3.6. To every unital Krein C*-algebra A with a given fundamental
symmetry a : A — A, we can associate a Krein C*-category Cig o) = [Ay, A_]
with two objects.
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Proof. For a given fundamental symmetry a, the Krein C*-algebra A becomes a
C*-algebra, here denoted by A%, with involution xfe := a(z*) with respect to a
unique C*-norm |- || and « : A — A becomes a unital f,-automorphism of this
C*-algebra A®. The set A$ of even elements of A® under the action of « is a
unital C*-algebra and the set A% of odd elements is a unital involutive Hilbert
C*-bimodule over A¢ so that, by the previous proposition we can construct a
C*-category Claa) = [A%,A%]. Note that a induces by restriction a f,-functor
of the C*-category G?Am that acts identically on the objects and it is involutive,
i.e. o« = 1Id, and so by proposition 3.2 we have that G?Am becomes a Krein
C*-category, here simply denoted by [A.,A_], with respect to the involution

given by z +— z* = a(zfe). O

Proposition 3.7. For a Krein C*-algebra A with a given fundamental symmetry

«, there is a canonical unital *-isomorphism W : A® — €(C(4.q))-

Proof. The inclusion of A, and A_ into A% := A, @ A_ induces a *-functor ¢
from G?A,a) to A® and for every x-functor ¢ : G?A’a) — B to a unital C*-algebra
B, defining ® : A* — B by ®(xy +2_) := ¢(x4) + ¢p(x_) we check that ® is the
unique unital *-homomorphism such that ®or = ¢ and hence A% is a C*-envelope
of G‘("A’a) and by the unique factorization property of the C*-envelope we get that

A is canonically isomorphic to S(G?Au)). O

As an immediate application we obtain the following generalization of Gel’fand-

Naimark representation theorem for unital Krein C*-algebras.

Theorem 3.8. Every unital Krein C*-algebra admits at least one faithful repre-
sentation on a Krein space and it is isomorphic to a closed unital *-subalgebra of

a Krein C*-algebra of continuous operators on a Krein space.

Proof. Let A be a unital Krein C*-algebra, let o be one of its fundamental
symmetries and || - ||, the associated C*-norm. Consider now the C*-category
G‘("A’a) = [AS, A%] constructed above and note that, by Gel’fand-Naimark repre-
sentation theorem for C*-categories 2.9/ there is an isometric T, -isomorphic func-
tor p of C’?A o) Onto a closed C*-category p(G(O‘A a)) of linear continuous operators
between two Hilbert spaces Hy and H_. By proposition 2.11] the *-functor p
can be lifted to a unital f,-isomorphism &(p) : E(C{y ,)) — E(p(Cly ,))) of the

C*-envelopes.
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Since p(@‘("A,a)) is a C*-category of linear continuous operators between two
Hilbert spaces Hy, H_ , its C*-envelope coincides with the 2x 2 matrix C*-algebra
with entries from p(G?‘A’Q)) acting on the Hilbert space Hi & H_ that is a
closed *-subalgebra of B(H, @& H_). Furthermore, by proposition 3.7 we can
take E(CP, ) =A%

Consider now the Krein space K := Hy & (—H_) obtained reversing the
sign of the inner product on H_ in the othogonal direct sum H; & H_ and the
fundamental symmetry J : K — K associated to such fundamental decomposition
Jilh +E- & -6

The map ay : B(K) — B(K) given by ay(T) := JTJ is a fundamental
symmetry of the Krein C*-algebra B(K) and restricted to the Krein C*-category
p(C(a.q)) gives a x-functor such that p(a(z)) = ays(p(x)), for all x € €4 ) and
that, by proposition 2.11 lifts to a unital *-automorphism of €(p(C4,q))) C B(K)
with E(p)oa=ayo0&(p).

The «-isomorphism of C*-algebras €(p) : A% — E(p(Cy ,))) becomes a unital
*-isomorphism of Krein C*-algebras €(p) : A — &(p(C(a,q)))*” , where the invo-
lution in &(p(C(a,q)))®’ is given by T* := a;(T1), with 7T denoting the Hilbert
space adjoint in B(H; @ H_). O

More generally we can obtain a Gel'fand-Naimark representation for Krein
C*-categories. There are other possible ways to prove the result: for example using
the Gel’fand-Naimark theorem for Krein C*-algebras applied to the envelope of
the Krein C*-category, but here we provide only a sketch of a direct proof that

generalizes the argument provided in the previous theorem.

Theorem 3.9. Let a be a fundamental symmetry of a Krein C*-category C.
There is a faithful representation m : C — B(X) that is a-covariant i.e. there
is an isomorphism of the Krein C*-category with a closed Krein C*-category in
B(H) and there exists a family of fundamental symmetries Jx , with K € %,
such that Toaa=ajyo.

Proof. To every Krein C*-category € with fundamental symmetry o and objects
Obe, we associate another Krein C*-category %(e o) with a “doubled family of

objects”

Ob(%(e,a)) := Obe X{:I:}.



Krein C*-categories 75

The families of morphisms are given by

Homg, ., (A+, B%) := {z € Home(A, B) | a(z) =z}, VA,B € Obg,
Homg e a)(A+, BF) := {z € Home(4, B) | a(z) = —z}, VA,B € Obe.

Consider the associated C*-category % 6,0y With involution z - a(z*) and by
Gel’fand-Naimark theorem for C*-categories, we obtain a faithful representation
p in a family of Hilbert spaces indexed by the family of objects Obe x{+}. Define
a family of fundamental symmetries J4 : Hay @ Ha— — Hyy @ Hy_, indexed by
A € Obeg, reverting the sign of the H4_ component. Note that poa = ajop. We
can define a notion of partial envelope of a “doubly indexed” C*-category with
respect to one family of indexes (in our case {£}) via the usual universal factor-
ization properties and note that we can assume Ei(%(oéya)) = C%. Furthermore
€+ (p(%(e,q))) consists of the C*-category with objects {Ha, ® Ha— | A € Obe}
and morphisms T': Hy, ® Hy— — Hp,_ ® Hp_of the form

D) ooy

plxy) p(x—)l , « € Home(A, B),

Since €4 (p) : C* — Ei(‘ﬁ(oé,a)) is an isomorphism of the C*-category €% onto
a closed sub-C*-category of B(s°) such that Ei(p) oa = ayo E4(p), defining
the family of Krein spaces K4 := Hay @ (—H4_) indexed by Obe, we have that
€+ (p) is an isomorphism of the Krein C*-category € with the Krein C*-category
€+(C(e ) = E+£(%(e,a)) that is a closed x-subcategory of B(%). O

4 Final Remarks

We have proposed here a tentative definition of Krein C*-category that, following
the general ideas outlined in 2}, Section 4.2], should provide a “horizontal categori-
fication” of the notion of Krein C*-algebra given by K.Kawamura. Using methods
from the theory of C*-categories, we have also described a Gel’fand-Naimark rep-
resentation theorem for Krein C*-algebras and more generally Krein C*-categories
that should somehow justify the abstract axioms for Krein C*-categories. It is of
course possible to try to develop in all the details a theory of Krein C*-categories
(and also of Krein W*-categories) that follows in parallel the theory of C*-algebras,
here we only started in these directions.

As described in [2] 3], C*-categories are just a special case of a more general

notion of Fell C*-bundle. In a similar way, it is possible to give a definition of
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“Krein Fell bundles” and “Krein spaceoids” that might later be useful in the study

of general spectral theories for (possibly non-commutative) Krein C*-algebras (or

categories). We leave these interesting points to future work.
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