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Abstract: The aim of this paper is to introduce the Quarter-Sweep Arithmetic
Mean (QSAM) method using the Quarter-Sweep Crank-Nicolson (QSCN) finite
difference method for solving one-dimensional diffusion equations. The formula-
tion of the QSAM method is developed by combining the concept of the quarter-
sweep iteration and the Arithmetic Mean (AM) method known as one of two-step
iterative methods. The QSAM method has been shown to be very fast as com-
pared to the standard AM method. Some numerical tests were included to support
our statement.
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1 Introduction

By considering numerical techniques, there are many methods can be used by re-
searchers to gain approximate solutions such as the finite difference, finite element,
finite volume and boundary element methods. In solving any partial differential
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equation, however, those methods will discretize the equations to the approxima-
tion equation, which is forming a system of linear equations.

Consequently, the concept of the two-stage iterative methods is definitely one
of the efficient methods in solving any system of linear equations. Actually, there
are many two-stage iterative methods have been proposed such as the Alternat-
ing Group Explicit (AGE) [7], the Iterative Alternating Decomposition Explicit
(IADE) [10], the Reduced Iterative Alternating Decomposition Explicit (RIADE)
[11], the Half-Sweep Iterative Alternating Decomposition Explicit (HSIADE) [12],
the Quarter-Sweep Iterative Alternating Decomposition Explicit (QSIADE) [13],
the Arithmetic Mean (AM) [9], and Block Jacobi [2] methods. However, this stan-
dard AM method can be also named as the Full-Sweep Arithmetic Mean (FSAM)
method. In 2004, the FSAM method has been modified [14] by borrowing the
concept of the half-sweep iteration [1] and then called as the Half-Sweep Arith-
metic Mean (HSAM) method. Further studies of the HSAM method have been
conducted by Sulaiman et al. ([15], [16]). Similarly by applying the quarter-
sweep iteration, we, here, introduce a new AM scheme called the Quarter-Sweep
Arithmetic Mean (QSAM) method.

To investigate the effectiveness of the QSAM method, let us consider the one-
dimensional diffusion equation as given by

∂U

∂t
= α

∂2U

∂x2
, a ≤ x ≤ b, 0 ≤ t ≤ T, (1)

subject to the initial condition

U(x, t) = g1(x), a ≤ x ≤ b,

and the boundary conditions

U(a, t) = g2(t)
U(b, t) = g3(t)

}
0 ≤ t ≤ T,

where α is a diffusion parameter.
Before describing formulation of the finite difference approximation equation

in case of the full-, half-, and quarter-sweep iterations over the problem (1), we
assume the solution domain (1) can be uniformly divided into (n + 1) and M

subintervals in the x and t directions. The subintervals in the x and t directions
are denoted ∆x and ∆t respectively, which are uniform and defined as

4x = b−a
m = h,m = n + 1

4t = T−0
M

}
. (2)
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Figure 1: a)., b).and c). show the distribution of uniform node points for the full-,
half-, and quarter-sweep cases respectively.

2 Formulation of Quarter-Sweep Finite Difference

Approximation

Based on Fig. 1, we firstly need to build three finite grid networks in order to
derive the full-, half-, and quarter-sweep finite difference approximation equations
by discretizing the problem (1). Actually, these networks show us on implemen-
tations of the full-, half-, and quarter-sweep iterative algorithms applied onto the
node points of type • only until iterative convergence test is achieved. Then
other approximate solutions at remaining points (points of the different type) are
computed directly using the direct method, see [1], [8], [17].

Because of implementations of the full-, half-, and quarter-sweep iterations
involve the node points of type • only, it is obvious that the implementation of
the half- and quarter-sweep iterative methods just involves approximately 50% and
25% of the whole inner points as shown in Figs. 1b and 1c compared to the full-
sweep iterative method. In this paper, the central difference and Crank-Nicolson
(CN) approaches have been used to derive the Full-, Half- and Quarter-Sweep
Crank-Nicolson finite difference approximation equations, which are indicated as
the FSCN, HSCN, and QSCN respectively. All CN finite difference approximation
equations at the (j + 1) time level, can generally be expressed as

−β1Ui−p,j+1 + β2Ui,j+1 − β1Ui+p,j+1 = fβ
i,j , (3)

where

β1 =
α4t

2(ph)2
, β2 =

(
1 +

α4t

(ph)2

)
, β3 =

(
1− α4t

(ph)2

)
,

fβ
i,j = β1Ui−p,j + β3Ui,j + β1Ui+p,j .
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The values of p , which correspond to 1, 2 and 4, represent the full-, half- and
quarter-sweep cases respectively. Eq. (3), considered at the (j + 1) time level,
generates a system of linear equation as follows

AβUβ
j+1 = fβ

j
, (4)

where coefficient matrix, Aβ is given by

Aβ =




β2 −β1

−β1 β2 −β1

−β1 β2 −β1

. . . . . . . . .

−β1 β2 −β1

−β1 β2




( m
p −p)×( m

p −p)

.

3 Quarter-Sweep Arithmetic Mean Methods

For simplifying, let Eq. (4) at any time level be rewritten as

AU = f, (5)

where,

A =




a b

c a b

c a b
. . . . . . . . .

c a b

c a




( m
p −1)×( m

p −1)

.

In the next discussion, we show on how to present the formulation of the FSAM,
HSAM, and QSAM schemes. As stated in previous section, all AM methods are one
of two-stage iterative methods. It denotes that the iterative process for all methods
involve two levels of virtual time such as U (1) and U (2) . To develop formulation
of all AM methods in Eq. (5), suppose the symmetry coefficient matrix, A (5)
needs to be decomposed into

A = L + D + T, (6)
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where L,D and T are strictly lower triangular, diagonal and strictly upper tri-
angular matrices respectively. The general scheme for all AM methods is given
by

(D + rL)U (1) = ((1− r)D − rT )U (k) + rf

(D + rT )U (2) = ((1− r)D − rL)U (k) + rf

U (k+1) = U(1)+U(2)

2





. (7)

where r and U (k) represent as an acceleration parameter and an unknown vector
at the k th iteration respectively. Practically the value of r will be determined
by implementing some computer programs and then choose one value of r , where
its number of iterations is the smallest. By determining values of matrices L,D

and T as stated in Eq. (6), the general algorithm for all AM schemes in Eq. (7)
may be described in Algorithm 1. Generally the basic idea for the convergence
analysis of the AM methods has been proved by [9]. The FSAM, HSAM, and
QSAM algorithms are explicitly performed by using all equations at level (1) and
level (2) alternatively until the specified convergence test is satisfied. The FSAM
method, however, will be used as the control of comparison of numerical results.

4 Numerical Results

To verify the efficiency of the implementation of the QSAM scheme as derived in
Eq. (5), which is based on the approximation Eq. (3), there are three items will
be considered in comparison such as the number of iterations, execution time and
maximum absolute error. Some numerical experiments were conducted in solving
the following one-dimensional diffusion equation as follows

∂U

∂t
=

∂2U

∂x2
, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.0. (8)

The initial and boundary conditions and exact solution of the problem (8) are
given by

U(x, t) = e−(π2t) sin(πx), 0 ≤ x ≤ 1, 0 ≤ t ≤ 1.0. (9)
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Algorithm I: FSAM, HSAM and QSAM schemes
Phase I. Preprocessing step
1.1 Choose the optimal parameter, r.
1.2 Set initial vector U

(0)
i = 0.0, i = 1p, 2p, 3p, . . . , m− p,

Phase II. AM iteration
A) at level (1)

2.1. Set a ← β2, b ← −β1, c ← −β1,

2.2. Set w ← a(1− r), v ← rb, λ ← rc,

2.3. For i = 1p, 2p, 3p, . . . , m− p,

Calculate U
(1)
i ←





(wU
(k)
i − vU

(k)
i+1 + rfi)/a i = 1p

(wU
(k)
i − λU

(1)
i−1 + rfi)/a i = m− p

(wU
(k)
i − vU

(k)
i+1 − λU

(1)
i−1 + rfi)/a others

B) at level (2)
2.4. For i = m− p,m− 2p, . . . , 1,

Calculate U
(2)
i ←





(wU
(k)
i − vU

(2)
i+1 + rfi)/a i = 1p

(wU
(k)
i − λU

(k)
i−1 + rfi)/a i = m− p

(wU
(k)
i − vU

(2)
i+1 − λU

(k)
i−1 + rfi)/a others

2.5. For i = 1p, 2p, 3p, . . . , m− p,

Calculate U
(k+1)
i ← 1

2 (U (1)
i + U

(2)
i )

All results of numerical experiments, which were gained from implementations
of the FSAM, HSAM, and QSAM methods, have been recorded in Table 1. In
implementations mentioned above, the convergence test considered the tolerance
error ε = 10−10 . Figs. 2 and 3 show number of iterations and execution time
against mesh size respectively.

5 Conclusion

As mentioned in the second section, the formulation of the FSCN, HSCN and
QSCN approximation equations, based on the CN scheme, can be easily formulated
and rewritten in the general form as shown in Eq. (3). Through the observation
in Table 1 and it has shown in Fig. 2 that number of iterations decreased approxi-
mately 65.79-70.54% and 42.08-45.74% respectively correspond to the QSAM and
HSAM methods compared to the FSAM method. In fact, the execution time
against the mesh size of both the QSAM and HSAM methods are much faster
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Figure 2: Number of iterations versus mesh size of the FSAM, HSAM, and QSAM
methods.

 

Figure 3: The execution time (seconds) versus mesh size of the FSAM, HSAM,
and QSAM methods.
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about 92.46-100.00% and 50.00-96.84% respectively than the FSAM method, see
Fig. 3.

Overall, the numerical results have proven that the QSAM method is more
superior in terms of number of iterations and the execution time than the FSAM
or HSAM method. This is due to the computational complexity of the QSAM
method is approximately 75% less than of the FSAM method.

For future works, the further investigation for the capability of family of AM
methods need to be carried out for solving other multi-dimensional partial differ-
ential equations ([3], [7], [5]) together with or without forcing term [6]. In fact,
further studies should also be conducted for comparison ammong two-stage itera-
tive methods such as AGE [7], IADE ([10], [11], [12], [13]), AM [9] and TSAM [4],
and Block Jacobi [2].
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