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Abstract: We discuss the thermal instability in a layer of dielectric fluid when the
boundaries of the layer are subjected to synchronous/asynchronous time-periodic
temperatures. Only infinitesimal disturbances are considered. Perturbation solu-
tion in powers of the amplitude of the applied temperature field is obtained. In
the case when the Imposed Time-periodic Boundary Temperatures (ITBT) at the
two walls are synchronized then for moderate values of frequency the role of the
electric Rayleigh Number in inducing subcritical instabilities is delineated. A sim-
ilar role is shown to be played by the Prandtl number. The dielectric parameters
and Prandtl number have the opposite effect at large frequencies. The system is
most stable when the ITBT is asynchronous. The problem has relevance in many
dielectric fluid applications wherein regulation of thermal convection is called for.

1 Introduction

One of the effective mechanisms of controlling convection is through the main-
tenance of a non-uniform temperature gradient which is only space-dependent.
However, in many practical situations non-uniform temperature gradients find
their origin in transient heating or cooling at the boundaries, hence warranting
the use of a basic temperature profile which is a function of both position and
time. Venezian [15] investigated the stability of a horizontal layer of a viscous
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fluid heated from below when, in addition to a steady temperature difference
between the surfaces of the layer, a time-dependent sinusoidal perturbation is ap-
plied to the wall temperatures. Subsequently, it was shown by Yih and Li [13] that
time-periodic modulation of the wall temperatures has a destabilizing effect on the
onset of convection over a wide range of frequencies of modulation although such
a modulation is stabilizing for low frequencies. The critical Rayleigh number (cor-
responding to onset of convection) in these problems depends on the frequency of
the imposed temperature modulation and the study suggests that it is possible to
hasten or delay the onset of instability by adjusting this modulation. Studies have
also been made on the effect of synchronous/asynchronous ITBT on convection
([11], [12]) in suspensions.

The application of a strong electric field in a poorly conducting fluid can induce
bulk motions. This phenomenon known as electroconvection or electrohydrody-
namics is gaining importance due to the technological stimulus of designing more
efficient heat exchangers as required for jet engines [6]. Boiling of dielectric fluids
was proposed as a promising cooling mechanism for future microelectronic chips
[2, 3]. EHD convection is very attractive in applications to new fluid devices such
as in a dielectric fluid motor [5]. Since magnetic fields and switching circuits are
not required the dielectric fluid motor enhances size reduction and hence is an at-
tractive source of mechanical energy in a micro machine. Convective heat transfer
through polarized dielectric liquids was studied by P. J. Stiles [7, 8].

The problem of control of convection is of relevance and interest in innumer-
able dielectric fluid applications [4, 12, 13, 14] and is also mathematically quite
challenging. It is with this motivation we study the problem of the ITBT-means
of regulating convection. We determine the onset of convection for a dielectric
fluid layer heated from below, when, in addition to a fixed temperature difference
between the walls, an additional time-periodic perturbation is applied to the wall
temperatures.

2 Mathematical Formulation and Solution

We consider an infinite horizontal layer of a dielectric fluid of thickness h.

We choose a cartesian co-ordinate system x, y, z in which z is measured at right
angles to the boundaries and the origin is on the lower boundary. The lower plane
surface is at z = 0 and the upper one is at z = h. The lower surface is grounded
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and the upper surface is kept at a high alternating (60 Hz) potential. The wall
temperatures are externally imposed and are taken as

T0 +
1
2
∆T [1 + ε cos ω t] at z = 0 and T0 − 1

2
∆T [1− ε cos (ω t + Φ)] at z = h (1)

where T0 is a reference temperature, ∆T is the temperature difference between the
two walls in the unmodulated case, ε is the amplitude of the thermal modulation,
ω is the frequency and Φ is the phase.

We adopt the Boussinesq approximation and for small departures from T0 , the
density ρ , as a function of temperature T , is given by

ρ = ρ0 [1− α (T − T0)] . (2)

The Navier-Stokes equations describing flow in an incompressible dielectric fluid
are

∇. ~q = 0, (3)

ρ0

[
∂~q

∂t
+ (~q.∇) ~q

]
= −∇p + ρ~g + η∇2~q + ~P .∇ ~E, (4)

∂T

∂t
+ ~q.∇T = Kc∇2T, (5)

ε = ε0 [1− e (T − T0)] , (6)

∇.
(
ε0

~E + ~P
)

= 0, (7)

∇× ~E = 0 (8)

where α and e are usually positive.
In the above equations, ~q is the velocity, T is the temperature, p is the pres-

sure, η is the shear kinematic viscosity co-efficient, α is the co-efficient of thermal
expansion, ρ is the density, ρ0 is the density of the fluid at temperature T = T0 ,
Kc is thermal diffusivity.

Equation (8) allows us to express the irrotational electric field ~E as

~E = E0

[
1 + β z

(
∂ (ln εr)

∂T

)]
k̂ −∇φ, (9)
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and the polarization field ~P can be expressed as

~P = ε0E0

[
εr − 1−

(
∂ (ln εr)

∂T

)
(βz − T )

]
k̂ − (εr − 1) ε0∇φ (10)

where φ is the perturbation to the electric scalar potential due to convection, εr

and ε0 are the relative permittivity and permittivity of free space respectively and
β is the temperature gradient.

We now study the condition for onset of convection in the aforementioned
dielectric fluid layer. In the undisturbed state, the equations (2) - (6) yield

Eb = − φ1e (T0 − Tb) h

log (1 + e (T0 − Tb))
, (11)

−∂pb

∂z
= ρbg − Pb

∂Eb

∂z
, (12)

∂Tb

∂t
= Kc

∂2Tb

∂z2
, (13)

ρb = ρ0 [1− α (Tb − T0)] , (14)

εb = ε0 [1− e (Tb − T0)] (15)

where the subscript b denotes quantities in the basic state.

Following Venezian [15], the solution of (13) satisfying the thermal boundary
conditions (1) is

Tb = T0 +
∆T

2h
(h− 2z) + εRe

{[
a (λ) e

λz
h + a (−λ) e

−λz
h

]
e−iωt

}
, (16)

where

λ = (1− i)
(

ωh2

2Kc

) 1
2

, a (λ) =
∆T

2

[
e−iΦ − e−λ

eλ − e−λ

]
, (17)

and Re stands for the real part.
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2.1 Linear Stability Analysis

Let the basic state be slightly perturbed by an infinitesimal perturbation. Lin-
earizing the equations governing the infinitesimal perturbations, operating curl
twice on the resulting momentum equation and writing in dimensionless form by
setting

(x∗, y∗, z∗) =
(x

h
,
y

h
,
z

h

)
, ~q∗ =

~q′

(Kc/h)
, θ∗ =

θ

∆T
,

φ∗ =
φ′

E0β h2
(

d(ln ε0)
dT

) , t∗ =
t

(h2/Kc)
. (18)

We get

∂
(∇2w

)

∂t
− Pr (R + L)∇2

1θ + Pr L
∂

(∇2
1φ

)

∂z
= Pr∇4w, (19)

∂θ

∂t
+ w

∂Tb

∂z
= ∇2θ + w, (20)

∇2φ− ∂θ

∂z
= 0, (21)

where the asterisks have been dropped for simplicity and the non-dimensional
parameters are

R =
ρ0αg∆Td3

ηKc
(Rayleigh number),

L =
(

dε

dT

)2
E2 (∆T )2 d2

ηεKc
(Electric Rayleigh number),

Pr =
ν

Kc
(Prandtl number).

In equation (20), ∂Tb

∂z is given by

∂Tb

∂z
= −1 + ε f, (22)

where f = Re
{(

A (λ) eλz + A (−λ) e−λz
)

e−iωt
}

and A (λ) = λ
2

[
e−iΦ−e−λ

eλ−e−λ

]
.

Equations (19)-(21) are solved subject to the following conditions appropriate
for stress-free, isothermal boundaries:

W =
∂2W

∂z2
= θ =

∂φ

∂z
= 0 at z = 0, 1. (23)
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This simple boundary condition (23) facilitates an analytical solution as obtained
in the present problem.

Combining equations (19)-(21) we obtain the following equation for the vertical
component of velocity W in the form

[
∇4

(
∇2 − 1

Pr

∂

∂t

) (
∇2 − ∂

∂t

)
+ L

(
∂Tb

∂z
− 1

)
∇4

1

]
W = R∇2

(
∂Tb

∂z
− 1

)
∇2

1W .

(24)

In dimensionless form, the velocity boundary conditions are (see Chandrashekar[1])

W =
∂2W

∂z2
=

∂4W

∂z4
=

∂6W

∂z6
= 0 at z = 0, 1, (25)

where the sixth order condition has been derived from the governing equations.

2.2 Stability Analysis

Let us now seek the eigenfunctions W and the eigenvalues R of equation (2.1)
for the basic temperature distribution (22) that departs from the linear profile
∂Tb

∂z = −1 by quantities of order ε . Thus, the eigenvalues of the present problem
differ from those of ordinary Benard convection by quantities of order ε . We seek
a solution of (2.1) in the form

W = W0 + εW1 + ε2W2 + . . . ,

R = R0 + εR1 + ε2R2 + . . . , (26)

where R0 is the critical Rayleigh number for the unmodulated convection in di-
electric fluids. Substituting equation (26) into equation (2.1) and equating powers
of ε , we obtain the following system of equations :

L1W0 = 0, (27)

L1W1 =
[(

R1∇2−R0f
) ∇2 − Lf∇2

1

]∇2
1W0, (28)

L1W2 = −R0f∇2
[∇2

1W1

] −R1∇2
[∇2

1 (fW0 − 2W1)
]

+ 2R2∇2∇2
1W0, (29)

where
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L1 = ∇4
(∇2 − 1

Pr
∂
∂t

) (∇2 − ∂
∂t

)−∇2
1

(
L∇2

1 +∇2R0

)
. (30)

The function W0 is the solution of the unmodulated problem in dielectric fluids
(Stiles et al [7, 8]). The marginally stable solution for that problem is

W0 = exp {i (kxx + kyy)} sin π z, (31)

corresponding to the lowest mode of convection with the electric Rayleigh number
given by ( see Stiles et al [7, 8]) :

L =

(
π2 + a2

)4 −R0a
2
(
π2 + a2

)

a4
. (32)

Equation (28) on using equation (31) becomes

L1W1 =
{

2R1a
2
[
π2 + a2

]
sin π z −R0fa2

[
π2 + a2

] − Lfa4
}

sin π z. (33)

If the above equation is to have a solution, then the right hand side must be
orthogonal to the null space of the operator L1 . This implies that the time-
independent part of the right hand side of (33) must be orthogonal to sinπ z. Since
f varies sinusoidally in time, the only steady term is 2R1a

2
[
π2 + a2

3

]
sinπ z , so

that R1 is zero. This result could have been anticipated because changing the
sign of ε merely amounts to a shift in the time origin by half a period. Since such
a shift does not affect the stability problem, it follows that all the odd coefficients
R1 , R3 , . . . in equation (26) must vanish.

To solve equation (33) we expand the right hand side in a Fourier series and
obtain W1 by inverting the operator L1 term by term. Following Venezian [15],
we arrive at the following expression for R2 .

R2 =
−R0

[
π2 + a2

]− La2

4 [π2 + a2]

∞∑

n=1

(
R0

(
n2π2 + a2

)
a2 + La4

) |Bn (λ)|2
|L1(ω, n)|2

L1 (ω, n) + L∗1 (ω, n)

2
,

(34)

where the asterisk indicates complex conjugate.

2.3 Minimum Rayleigh Number for Convection

The value of R obtained by this procedure is the eigenvalue corresponding to the
function W which, though oscillating, remains bounded in time and is a function
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of ‘a’, the horizontal wave number and ε the amplitude of modulation. Thus we
get

R(a, ε) = R0(a) + ε2R2(a) + . . . . (35)

At a = ac we get the critical value Rc of R. Upto order ε2 , Rc is determined
by evaluating R0 and R2 at a = a0 . It is only when one wishes to evaluate R4

that a2 must be taken into account where a = a2 minimizes R2 . To evaluate the
critical value of R2 (denoted by R2c one has to substitute a = a0 in R2 where
a0 is the value of ‘a’ at which R0 given by equation (32) is minimum.

We now evaluate R2c for three cases:

(a) Synchronous ITBT, which means that the two ITBT’s are in-phase Φ = 0.
In this case Bn(λ) = bn or 0 accordingly as n is even or odd.

(b) Asynchronous ITBT, which means that the two ITBT’s are out-of-phase.

In this case we consider two sub-cases:

Type (i) : There is a phase difference between the two ITBT’s with Φ = π .
In this case Bn(λ) = 0 or bn accordingly as n is even or odd.

Type (ii) : Only one wall, say the lower one, is ITBT-affected. This case
corresponds to Φ = −i∞ . Here Bn(λ) = (1/2)bn , for integer values of n ,
and

bn =
−4nπ2λ2

[
λ2 + (n + 1)2 π2

] [
λ2 + (n− 1)2 π2

] . (36)

λ = (1− i)
(ω

2

) 1
2

, |bn|2 =
16n2π4ω2

[
ω2 + (n + 1)4 π4

] [
ω2 + (n− 1)4 π4

] . (37)

Following Venezian [1], we get the expression for R2c in the form :

R2c =
−R0[π2+a2]−La2

4[π2+a2] ×∑ [
R0a

2
(
n2π2 + a2

)
+ La4

] |bn|2 Cn ,
(38)

where
Cn =

L1 (ω, n) + L∗1 (ω, n)
2 |L1 (ω, n)|2

=
((

n2π2 + a2
)2

((
n2π2 + a2

)2 − ω2

Pr

)
− 2La4 − 2a2

(
n2π2 + a2

)
R0

)/
dn,
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dn =
{(

n2π2 + a2
)2

((
n2π2 + a2

)2 − ω2

Pr

)
− 2La4 − 2a2

(
n2π2 + a2

)
R0

}2

+
{

ω

(
1 +

1
Pr

) (
n2π2 + a2

)3
}2

. (39)

In equation (38), the summation extends over even values of n for case (a), odd
values of n for case (b), type (i), and for all integer values of n for case (b),
type (ii). The infinite series (38) converges rapidly in all cases.

3 Results and Discussion

We make an analytical study of the effects of dielectric-related parameters and
time-periodic boundary temperatures on the onset of convection in a Newtonian
dielectric fluid. It was found in this case that R2c is a crucial quantity which
determines whether ITBT leads to sub-critical instability or not. The study of the
behaviour of R2c is of some interest in the limiting cases of very small and very
large frequencies. We find that when ω > > 1, R2c tends to zero, so that the
effects of ITBT and the dielectric parameters become small. For moderate values
of ω , the dielectric parameter will affect R2c . In the paper we consider two types
of ITBT
1. Synchronous ITBT which means that the two ITBTs are in-phase. (Φ = 0)
2. Asynchronous ITBT which means that the two ITBTs are out-of-phase. In this
case we consider two sub-cases:

i) There is phase difference between the two ITBTs (Φ = π ) and
ii) Only one wall, say the lower one, is ITBT-affected. (Φ → −i∞)

Figure 2 shows the variation of R2c with ω for different values of Pr (with
L fixed) in the case of synchronous ITBT. It may be noticed that for moderate
values of frequency, R2c decreases with an increase in Pr. We can infer from
this that the effect of increasing Pr is to destabilize the system. It is appropriate
to note here that Pr does not affect the R0 -part of R . It affects only R2 . It
is also observed that for low concentration of the suspended dielectric particles
supercritical motion is possible and for high concentration only subcritical motion
is possible. Thus, in the case of fluids with suspended particles subcritical motions
are more probable than supercritical motions.
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Figure 1: Physical configuration of the Rayleigh-Benard convection for a Dielectric
fluid with imposed time-periodic boundary temperatures.

Figure 3 is the plot of R2c versus ω for different values of the electric Rayleigh
number L (the Prandtl number Pr being fixed) in respect of synchronous ITBT.
The electric Rayleigh number L is the ratio of the electric to the gravitational
forces. We see from the figure that for synchronous ITBT when L is greater
than 2972 super critical motion occurs and R2c increases with an increase in L

at a given frequency ω . Hence, L has a stabilizing effect on the flow. It is
also interesting to see from the figures that for given L (L < 2972), R2c first
decreases with increase in ω , reaches a minimum and then increases with increase
in ωand for a given L (L > 2972), R2c first increases with increase in ω reaches
a maximum and then decreases with increase in ω . This shows that for a weakly
dielectric fluid, the flow is destabilized for small values of ω and stabilized for
large ω . This is due to the fact that when the frequency of modulation is low,
the effect of ITBT is felt throughout the fluid. For synchronous ITBT of the fluid,
the temperature profiles consists of the steady line section plus a parabolic profile
which oscillate in time. As the amplitude of the modulation increases the parabolic
part of the profile becomes more and more significant. It is known that a parabolic
profile is subject to finite amplitude instabilities so that convection occurs at lower
Rayleigh numbers than those predicted by the linear theory. There is also a value
of ω for which the stabilizing influence is minimum and this minimum decreases
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Figure 2: R2c as a function of ω when the wall temperatures are modulated in
phase for Pr = 1, Pr = 10 and Pr = 100.
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Figure 3: R2c as a function of ω when the wall temperatures are modulated in
phase for different values of the critical electric Rayleigh number.
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Figure 4: R2c as a function of ω when the wall temperatures are modulated out
of phase for Pr = 1 and Pr = 100.

with an increase in L.

We observe from Figure 4 that for asynchronous ITBT with a phase difference
between the two ITBTs, even though R2c decreases with an increase in L and
Pr it does not become negative. Thus subcritical motions are ruled out in this
case. The above results are due to the fact that in the case of asynchronous ITBT
the temperature field has essentially a linear gradient varying in time, so that
the instantaneous Rayleigh number is supercritical for half a cycle and subcritical
during the other half cycle (see Venezian (1969)). We also observe that L and Pr
have opposing influences in synchronous and asynchronous ITBT.

For asynchronous ITBT where only the lower wall is ITBT-affected we observe
from Figure 5 that the effect of the various parameters on R2c is qualitatively
similar to the previous case of asynchronous ITBT with a phase difference between
the two ITBTs. A point to be noted in this case is that for very high values of the
Prandtl number Pr, subcritical motions are possible for low and moderate values
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Figure 5: R2c as a function of ω when the temperatures of the lower wall is
modulated for Pr = 1 and Pr = 100.
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of the frequency.

L Pr R0c R2c

ω=10 ω=20
2128.7
3000

10 -295.63
-786.62

-2.667
0.102

-1.81
0.135

Table 1: Variation of R0c and R2c for different values of L in the case of syn-
chronous ITBT.

We see from Table that Rc decreases more steeply thanR2c for the dielectric
parameter.

4 Conclusion

The results of the study reaffirm the findings of Venezian (1969) for Newtonian
fluids. The study indicates that ITBT can give rise to sub-critical motion. It
is also observed that for large frequencies the effects of ITBT disappear. The
problem throws light on an external means of controlling convection in dielectric
liquids which is quite important from the application point of view.
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