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Abstract: In this paper, a new type of two-step iteration with errors for a nonex-

pansive nonself-mapping is introduced and studied. Weak and strong convergence

theorems of such iterations are established under certain conditions in a uniformly

convex Banach space. The results obtained in this paper extend and improve

the corresponding results of Shahzad [N. Shahzad, Approximating fixed points

of non-self nonexpansive mappings in Banach spaces, Nonlinear Anal., 61(2005),

1031–1039], Tan and Xu [K.K. Tan and H.K. Xu, Approximating fixed points of

nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl.,

178(1993), 301–308] and others.
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1 Introduction

Let X be a normed space, C a nonempty convex subset of X , P : X → C the

nonexpansive retraction of X onto C , and T : C → X a given mapping. Then for

a given x1 ∈ C , compute the sequences {xn} and {yn} by the iterative scheme:
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yn = P ((1 − an − µn)xn + anTP ((1 − βn)xn + βnTxn) + µnwn),

xn+1 = P ((1 − bn − δn)xn + bnTP ((1 − γn)yn + γnTyn) + δnvn), (1)

n ≥ 1, where {an}, {bn}, {µn}, {δn}, {βn} and{γn} are appropriate sequences in

[0, 1] and {wn}, {vn} are bounded sequences in C .

If an = µn = δn ≡ 0, then (1) reduces to the iterative scheme defined by

Shahzad [23]:

x1 ∈ C, xn+1 = P ((1 − bn)xn + bnTP ((1 − γn)xn + γnTxn)), n ≥ 1, (2)

where {bn} and {γn} are real sequences in [ε, 1 − ε] for some ε ∈ (0, 1).

If T : C → C and an = µn = δn ≡ 0, then (1) reduces to the iterative scheme

defined by Tan and Xu [27]:

xn+1 = (1 − bn)xn + bnT ((1 − γn)xn + γnTxn), n ≥ 1, (3)

where {bn} and {γn} are appropriate real sequences in [0, 1].

Fixed-point iteration processes for approximating fixed points of nonexpansive

mappings in Banach spaces have been studied by various authors (see [2, 4, 6, 7,

11–14, 20 ]) using the Mann iteration process (see [16]) or the Ishikawa iteration

process (see [11, 12, 27, 31]). For nonexpansive nonself-mappings, some authors

(see [16–19, 22, 25, 27, 29]) have studied the strong and weak convergence the-

orems in Hilbert spaces or uniformly convex Banach spaces. In 2000, Noor [2]

introduced a three-step iterative scheme and studied the approximate solutions

of variational inclusion in Hilbert spaces. In 2005, Suantai [24] defined a new

three-step iteration which is an extension of Noor iteration and gave some weak

and strong convergence theorems of such iteration for asymptotically nonexpan-

sive mappings in uniformly convex Banach spaces. In 1998, Takahashi and Kim

[26] proved strong convergence of approximants to fixed points of nonexpansive

nonself-mappings in reflexive Banach spaces with a uniformly Gâteaux differen-

tiable norm. In the same year, Jung and Kim [13] proved the existence of a fixed

point for a nonexpansive nonself-mapping in a uniformly convex Banach space

with a uniformly Gâteaux differentiable norm.

In [27], Tan and Xu introduced a modified Ishikawa process to approximate

fixed points of nonexpansive self-mappings defined on nonempty closed convex

bounded subsets of a uniformly convex Banach space X . More preciesely, they

proved the following theorem.
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Theorem 1.1. (Tan and Xu [27, Theorem 1, p. 305]). Let X be a uniformly

convex Banach space which satisfies Opial’s condition or has a Fréchet differen-

tiable norm and C a nonempty closed convex bounded subset of X. Let T : C → C

be a nonexpansive mapping. Let {bn} and {γn} be real sequences in [0, 1] such

that
∑∞

n=1 bn(1−bn) = ∞,
∑∞

n=1 γn(1−bn) < ∞, and lim supn→∞ γn < 1. Then

the sequence {xn} generated by (3) converges weakly to some fixed point of T.

In Theorem 1.1, the mapping T remains self-mapping of a nonempty closed

convex subset C of a uniformly convex Banach space. If, however, the domain C

of T is a proper subset of X (and this is the case in several applications), and

T maps C into X then, the sequence {xn} generated by (3) may not be well

defined.

Note that each lp (1 ≤ p < ∞) satisfies the Opial’s condition, while all Lp

do not have the property unless p = 2 and the dual of reflexive Banach spaces

with a Fr échet differentiable norm have the Kadec–Klee property. It is worth

mentioning that there are uniformly convex Banach spaces, which have neither a

Fr échet differentiable norm nor Opial property; however, their dual does have the

Kadec–Klee property (see [10, 14]).

Recently, Shahzad [23] extended Tan and Xu’s result [27] to the case of non-

expansive nonself-mapping in a uniformly convex Banach space. He studied weak

convergence of the modified Ishikawa type iteration process (2) in a uniformly

convex Banach space whose dual has the Kadec–Klee property. The result applies

not only to Lp spaces with (1 ≤ p < ∞) but also to other spaces which do not

satisfy Opial’s condition or have a Fr échet differentiable norm. Meanwhile, the

results of [23] generalized the results of [27].

Inspired and motivated by research going on in this area, we define and study

a new type of two-step iterative scheme with errors (1) for nonexpansive nonself-

mapping.

The purpose of this paper is to construct an iteration scheme with errors for

approximating a fixed point of nonexpansive nonself-mappings (when such a fixed

point exists) and to prove some strong and weak convergence theorems for such

mappings in a uniformly convex Banach space. Our results extend and improve

the corresponding ones announced by Shahzad [23], Tan and Xu [27], and others.

Now, we recall some well known concepts and results.

Let X be a Banach space with dimension X ≥ 2. The modulus of X is the
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function δX : (0, 2] → [0, 1] defined by

δX(ε) = inf{1 − ‖
1

2
(x + y)‖ : ‖x‖ = 1, ‖y‖ = 1, ε = ‖x − y‖}.

Banach space X is uniformly convex if and only if δX(ε) > 0 for all ε ∈ (0, 2]. It

is known that a uniformly convex Banach space is reflexive and strictly convex.

The norm of X is said to be Fr échet differentiable if for each x ∈ X with ‖x‖ = 1

the limit

lim
n→0

‖x + ty‖ − ‖x‖

t

exists and is attained uniformly for y, with ‖y‖ = 1.

A subset C of X is said to be retract if there exists continuous mapping

P : X → C such that Px = x for all x ∈ C. Every closed convex subset of a

uniformly convex Banach space is a retract. A mapping P : X → X is said to be

a retraction if P 2 = P. If a mapping P is a retraction, then Pz = z for every

z ∈ R(P ), range of P. A set C is optimal if each point outside C can be moved

to be closer to all points of C. It is well known (see [9]) that

(1) If X is a separable, strictly convex, smooth, reflexive Banach space, and if

C ⊂X is an optimal set with interior, then C is a nonexpansive retract of X.

(2) A subset of lp, with 1 < p < ∞, is a nonexpansive retract if and only if it

is optimal.

Note that every nonexpansive retract is optimal. In strictly convex Banach

spaces, optimal sets are closed and convex. Moreover, every closed convex subset

of a Hilbert space is optimal and also a nonexpansive retract.

Recall that a Banach space X is said to satisfy Opial’s condition [19] if xn → x

weakly as n → ∞ and x 6= y imply that

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖.

A Banach space X is said to have the Kadec–Klee property if for every sequence

{xn} in X , xn → x weakly and ‖xn‖ → ‖x‖ strongly together imply ‖xn−x‖ → 0

for more details on Kadec-Klee property, the reader is referred to [8, 25] and the

references therein. The mapping T : C → X with F (T ) 6= ∅ is said to satisfy

condition(A) [22] if there is a nondecreasing function f : [0,∞) → [0,∞) with

f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

‖x − Tx‖ ≥ f(d(x, F (T )))

for all x ∈ C ; see [21, p.377] for an example of nonexpansive mappings satisfying

condition(A). Senter and Dotson [22] approximated fixed points of a nonexpansive
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mapping T by Mann iterates. Later on, Maiti and Ghosh [17] and Tan and

Xu [27] studied the approximation of fixed points of a nonexpansive mapping

T by Ishikawa iterates under the same condition(A) which is weaker than the

requirement that T is demicompact.

In the sequel, the following lemmas are needed to prove our main results.

Lemma 1.2 ([27]). Let {an}, {bn} and {δn} be sequences of nonnegative real

numbers satisfying the inequality

an+1 ≤ (1 + δn)an + bn, ∀n = 1, 2, . . . .

If
∑∞

n=1 δn < ∞ and
∑∞

n=1 bn < ∞ , then

(1) limn→∞ an exists .

(2) limn→∞ an = 0 whenever lim infn→∞ an = 0 .

Lemma 1.3 ([29]). Let p > 1 , r > 0 be two fixed numbers. Then a Banach space

X is uniformly convex if and only if there exists a continuous, strictly increasing,

and convex function g : [0,∞) → [0,∞) , g(0) = 0 such that

‖λx + (1 − λ)y‖p ≤ λ‖x‖p + (1 − λ)‖y‖p − wp(λ)g(‖x − y‖)

for all x, y in Br = {x ∈ X : ‖x‖ ≤ r}, λ ∈ [0, 1], where wp(λ) = λ(1 − λ)p +

λp(1 − λ).

Lemma 1.4 ([7]). Let X be a uniformly convex Banach space and Br = {x ∈ X :

‖x‖ ≤ r}, r > 0 . Then there exists a continuous, strictly increasing, and convex

function g : [0,∞) → [0,∞), g(0) = 0 such that

‖αx + βy + γz‖2 ≤ α‖x‖2 + β‖y‖2 + γ‖z‖2 − αβg(‖x − y‖)

for all x, y, z ∈ Br , and all α, β, γ,∈ [0, 1] with α + β + γ = 1 .

Lemma 1.5 ([4]). Let X be a uniformly convex Banach space, C a nonempty

closed convex subset of X , and T : C → X be a nonexpansive mapping. Then

I −T is demiclosed at 0 , i.e., if xn → x weakly and xn −Txn → 0 strongly, then

x ∈ F (T ) , where F (T ) is the set of fixed point of T .

Lemma 1.6 ([24]). Let X be a Banach space which satisfies Opial’s condition

and let {xn} be a sequence in X. Let u, v ∈ X be such that limn→∞ ‖xn − u‖

and limn→∞ ‖xn −v‖ exist. If {xnk
} and {xmk

} are subsequences of {xn} which

converge weakly to u and v , respectively, then u = v .
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Lemma 1.7 ([14]). Let X be a real reflexive Banach space such that its dual X∗

has the Kadec-Klee property. Let {xn} be a bounded sequence in X and x∗, y∗ ∈

ωw(xn) ; where ωw(xn) denotes the set of all weak subsequential limits of {xn} .

Suppose limn→∞ ‖txn + (1 − t)x∗ − y∗‖ exists for all t ∈ [0, 1] . Then x∗ = y∗ .

We denote by Γ the set of strictly increasing, continuous convex functions

γ : R
+ → R

+ with γ(0) = 0. Let C be a convex subset of the Banach space X .

A mapping T : C → C is said to be type (γ) [3] if γ ∈ Γ and 0 6 α 6 1,

γ(‖αTx + (1 − α)Ty − T (αx + (1 − α)y)‖) 6 ‖x − y‖ − ‖Tx − Ty‖

for all x, y in C . Obviously, every type (γ) mapping is nonexpansive. For more

information about mappings of type(γ), see [1, 5, 15].

Lemma 1.8 ([6, 18]). Let X be a uniformly convex Banach space and C a convex

subset of X . Then there exists γ ∈ Γ such that for each mapping S : C → C with

Lipschitz constant L,

‖αSx + (1 − α)Sy − S(αx + (1 − α)y)‖ 6 Lγ−1(‖x − y‖ −
1

L
‖Sx − Sy‖)

for all x, y ∈ C and 0 < α < 1 .

2 Main Results

In this section, we prove weak and strong convergence theorems of the new iterative

scheme (1) for a nonexpansive nonself-mapping in a uniformly convex Banach

space. In order to prove our main results, the following lemmas are needed.

Lemma 2.1. Let X be a uniformly convex Banach space, C a nonempty closed

convex nonexpansive retract of X with P as a nonexpansive retraction. Let

T : C → X be a nonexpansive nonself-mapping with F (T ) 6= ∅ . Suppose that

{an}, {bn}, {µn}, {δn}, {βn} and {γn} are real sequences in [0, 1] and {wn}, {vn}

are bounded sequences in C such that
∑∞

n=1 µn < ∞ and
∑∞

n=1 δn < ∞. From

an arbitrary x1 ∈ C , define the sequences {xn} and {yn} by the recursion (1).

Then limn→∞ ‖xn − x∗‖ exists for all x∗ ∈ F (T ) .

Proof. Let x∗ ∈ F (T ), and M = max{supn≥1 ‖wn −x∗‖, supn≥1 ‖vn −x∗‖}. For
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each n ≥ 1, using (1), we have

‖xn+1 − x∗‖ = ‖P ((1 − bn − δn)xn + bnTP ((1 − γn)yn + γnTyn) + δnvn) − x∗‖

= ‖P ((1 − bn − δn)xn + bnTP ((1 − γn)yn + γnTyn) + δnvn) − P (x∗)‖

≤ ‖(1 − bn − δn)xn + bnTP ((1 − γn)yn + γnTyn) + δnvn − x∗‖

= ‖(1 − bn − δn)(xn − x∗) + bn(TP ((1 − γn)yn

+ γnTyn) − x∗) + δn(vn − x∗)‖

≤ (1 − bn − δn)‖xn − x∗‖ + bn‖TP ((1 − γn)yn

+ γnTyn) − x∗‖ + δn‖vn − x∗‖

≤ (1 − bn − δn)‖xn − x∗‖ + bn‖P ((1 − γn)yn

+ γnTyn) − x∗‖ + δn‖vn − x∗‖

≤ (1 − bn − δn)‖xn − x∗‖ + bn‖(1 − γn)yn

+ γnTyn − x∗‖ + δn‖vn − x∗‖

= (1 − bn − δn)‖xn − x∗‖ + bn‖(1 − γn)(yn − x∗)

+ γn(Tyn − x∗)‖ + δn‖vn − x∗‖

≤ (1 − bn − δn)‖xn − x∗‖ + bn((1 − γn)‖yn − x∗‖

+ γn‖yn − x∗‖) + δn‖vn − x∗‖

= (1 − bn − δn)‖xn − x∗‖ + bn‖yn − x∗‖ + δn‖vn − x∗‖

≤ (1 − bn − δn)‖xn − x∗‖ + bn‖yn − x∗‖ + Mδn (4)

and

‖yn − x∗‖ = ‖P ((1 − an − µn)xn + anTP ((1 − βn)xn + βnTxn) + µnwn) − x∗‖

= ‖P ((1 − an − µn)xn + anTP ((1 − βn)xn + βnTxn) + µnwn) − P (x∗)‖

≤ ‖(1 − an − µn)xn + anTP ((1 − βn)xn + βnTxn) + µnwn − x∗‖

= ‖(1 − an − µn)(xn − x∗) + an(TP ((1 − βn)xn

+ βnTxn) − x∗) + µn(wn − x∗)‖

≤ (1 − an − µn)‖xn − x∗‖ + an‖TP ((1 − βn)xn

+ βnTxn) − x∗‖ + µn‖wn − x∗‖

≤ (1 − an − µn)‖xn − x∗‖ + an‖P ((1 − βn)xn

+ βnTxn) − x∗‖ + µn‖wn − x∗‖
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≤ (1 − an − µn)‖xn − x∗‖ + an‖(1 − βn)xn

+ βnTxn − x∗‖ + µn‖wn − x∗‖

= (1 − an − µn)‖xn − x∗‖ + an‖(1 − βn)(xn − x∗)

+ βn(Txn − x∗)‖ + µn‖wn − x∗‖

≤ (1 − an − µn)‖xn − x∗‖ + an(1 − βn)‖xn − x∗‖

+ anβn‖xn − x∗‖ + µn‖wn − x∗‖

= (1 − an − µn)‖xn − x∗‖ + an‖xn − x∗‖ + µn‖wn − x∗‖

= (1 − µn)‖xn − x∗‖ + µn‖wn − x∗‖

≤ ‖xn − x∗‖ + Mµn. (5)

Using (4) and (5), we have

‖xn+1 − x∗‖ ≤ (1 − bn − δn)‖xn − x∗‖ + bn(‖xn − x∗‖ + Mµn) + Mδn

= (1 − bn − δn)‖xn − x∗‖ + bn‖xn − x∗‖ + Mbnµn + Mδn

= (1 − δn)‖xn − x∗‖ + Mbnµn + Mδn

≤ ‖xn − x∗‖ + kn
(1), (6)

where kn
(1) = Mbnµn + Mδn. Since

∑∞

n=1 µn < ∞ and
∑∞

n=1 δn < ∞, we have∑∞

n=1 kn
(1) < ∞. We obtained from (6) and Lemma 1.2(i) that limn→∞ ‖xn − x∗‖

exists. This completes the proof.

Lemma 2.2. Let X be a uniformly convex Banach space, C a nonempty closed

convex nonexpansive retract of X with P as a nonexpansive retraction. Let

T : C → X be a nonexpansive nonself-mapping with F (T ) 6= ∅ . Suppose that

{an}, {bn}, {µn}, {δn}, {βn} and {γn} are real sequences in [0, 1] such that an+µn

and bn+δn are in [0, 1] for all n ≥ 1 , and {wn}, {vn} are bounded sequences in C

such that
∑∞

n=1 µn < ∞ ,
∑∞

n=1 δn < ∞, 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 ,

0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1 and lim supn→∞(an + βn) < 1. From an

arbitrary x1 ∈ C , define the sequences {xn} and {yn} by the recursion (1). Then

limn→∞ ‖Txn − xn‖ = 0 .

Proof. Let x∗ ∈ F (T ). Then, by Lemma 2.1, limn→∞ ‖xn − x∗‖ exists. Set

qn = P ((1 − βn)xn + βnTxn) and sn = P ((1 − γn)yn + γnTyn). Since {xn} and

{yn} are bounded, it follows that {xn −x∗}, {Txn −x∗}, {yn −x∗}, {Tyn −x∗},
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{Tsn − x∗} and {Tqn − x∗} are all bounded. This allows us to put

K = max{M, sup
n≥1

‖xn − x∗‖, sup
n≥1

‖Txn − x∗‖, sup
n≥1

‖yn − x∗‖,

sup
n≥1

‖Tyn − x∗‖, sup
n≥1

‖Tsn − x∗‖, sup
n≥1

‖Tqn − x∗‖}.

Since T is a nonexpansive, from Lemma 1.3 and Lemma 1.4 we have

‖xn+1 − x∗‖2 = ‖P ((1 − bn − δn)xn + bnTP ((1 − γn)yn + γnTyn) + δnvn) − x∗‖2

= ‖P ((1 − bn − δn)xn + bnTsn + δnvn) − x∗‖2

≤ ‖(1 − bn − δn)xn + bnTsn + δnvn − x∗‖2

= ‖(1 − bn − δn)(xn − x∗) + bn(Tsn − x∗) + δn(vn − x∗)‖2

≤ (1 − bn − δn)‖xn − x∗‖2 + bn‖Tsn − x∗‖2 + δn‖vn − x∗‖2

− (1 − bn − δn)bng(‖Tsn − xn‖)

≤ (1 − bn − δn)‖xn − x∗‖2 + bn‖Tsn − x∗‖2 + K2δn

− bn(1 − bn − δn)g(‖Tsn − xn‖), (7)

‖Tsn − x∗‖2 = ‖TP ((1 − γn)yn + γnTyn) − x∗‖2

≤ ‖P ((1 − γn)yn + γnTyn) − x∗‖2

≤ ‖(1 − γn)yn + γnTyn − x∗‖2

= ‖(1 − γn)(yn − x∗) + γn(Tyn − x∗)‖2

≤ (1 − γn)‖yn − x∗‖2 + γn‖Tyn − x∗‖2

− W2(γn)g(‖Tyn − yn‖)

≤ ‖yn − x∗‖2 − W2(γn)g(‖Tyn − yn‖), (8)

‖yn − x∗‖2 = ‖P ((1 − an − µn)xn + anTP ((1 − βn)xn + βnTxn) + µnwn) − x∗‖2

= ‖P ((1 − an − µn)xn + anTqn + µnwn) − x∗‖2

≤ ‖(1 − an − µn)xn + anTqn + µnwn − x∗‖2

= ‖(1 − an − µn)(xn − x∗) + an(Tqn − x∗) + µn(wn − x∗)‖2

≤ (1 − an − µn)‖xn − x∗‖2 + an‖Tqn − x∗‖2 + µn‖wn − x∗‖2

− an(1 − an − µn)g(‖Tqn − xn‖)

≤ (1 − an − µn)‖xn − x∗‖2 + an‖Tqn − x∗‖2 + K2µn (9)
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and

‖Tqn − x∗‖2 = ‖TP ((1 − βn)xn + βnTxn) − x∗‖2

≤ ‖P ((1 − βn)xn + βnTxn) − x∗‖2

≤ ‖(1 − βn)xn + βnTxn − x∗‖2

= ‖(1 − βn)(xn − x∗) + βn(Txn − x∗)‖2

≤ (1 − βn)‖xn − x∗‖2 + βn‖Txn − x∗‖2

− W2(βn)g(‖Txn − xn‖)

≤ (1 − βn)‖xn − x∗‖2 + βn‖xn − x∗‖2

− W2(βn)g(‖Txn − xn‖)

≤ ‖xn − x∗‖2. (10)

By using (7), (8), (9) and (10), we have

‖xn+1 − x∗‖2 ≤ (1 − bn − δn)‖xn − x∗‖2 + bn‖Tsn − x∗‖2 + K2δn

− bn(1 − bn − δn)g(‖Tsn − xn‖)

≤ (1 − bn − δn)‖xn − x∗‖2 + bn(‖xn − x∗‖2 + K2µn

− W2(γn)g(‖Tyn − yn‖)) + K2δn − bn(1 − bn − δn)g(‖Tsn − xn‖)

= (1 − bn − δn)‖xn − x∗‖2 + bn‖xn − x∗‖2 + K2bnµn

− bnW2(γn)g(‖Tyn − yn‖) + K2δn − bn(1 − bn − δn)g(‖Tsn − xn‖)

≤ ‖xn − x∗‖2 + K2bnµn + K2δn

− bnW2(γn)g(‖Tyn − yn‖) − bn(1 − bn − δn)g(‖Tsn − xn‖)

= ‖xn − x∗‖2 − bnW2(γn)g(‖Tyn − yn‖)

− bn(1 − bn − δn)g(‖Tsn − xn‖) + kn
(2)

= ‖xn − x∗‖2 − bnγn(1 − γn)g(‖Tyn − yn‖)

− bn(1 − bn − δn)g(‖Tsn − xn‖) + kn
(2), (11)

where kn
(2) = K2bnµn + K2δn. Since

∑∞

n=1 µn < ∞ and
∑∞

n=1 δn < ∞, we have∑∞

n=1 kn
(2) < ∞. From (11), we obtain the following two important inequalities:

bnγn(1 − γn)g(‖Tyn − yn‖) ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + kn
(2) (12)

and
bn(1 − bn − δn)g(‖Tsn − xn‖) ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + kn

(2). (13)
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Since limn→∞ δn = 0, 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 and 0 <

lim infn→∞ bn ≤ lim supn→∞ bn < 1, there exists n0 ∈ N and η1, η2, η3, η4

∈ (0, 1) such that 0 < η1 < bn < η2 < 1 and 0 < η3 < γn < η4 < 1 for all n ≥ n0.

Hence, by (12) and (13), we have

η1η3(1 − η4)g(‖Tyn − yn‖) ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + kn
(2) (14)

and
η1(1 − η2)g(‖Tsn − xn‖) ≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + kn

(2) (15)

for all n ≥ n0. By (14) and (15), applying for m ≥ n0, we have

η1η3(1 − η4)

m∑

n=n0

g(‖Tyn − yn‖) ≤
m∑

n=n0

(‖xn − x∗‖2 − ‖xn+1 − x∗‖2) +

m∑

n=n0

kn
(2)

= ‖xn0
− x∗‖2 +

m∑

n=n0

kn
(2) (16)

and

η1(1 − η2)

m∑

n=n0

g(‖Tsn − xn‖) ≤
m∑

n=n0

(‖xn − x∗‖2 − ‖xn+1 − x∗‖2) +

m∑

n=n0

kn
(2)

= ‖xn0
− x∗‖2 +

m∑

n=n0

kn
(2). (17)

Since
∑∞

n=1 kn
(2) < ∞, by letting m → ∞ in (16) and (17) we get

∑∞

n=n0
g(‖Tyn−

yn‖) < ∞ and
∑∞

n=n0
g(‖Tsn−xn‖) < ∞, and therefore limn→∞ g(‖Tyn−yn‖) =

0 = limn→∞ g(‖Tsn−xn‖). Since g is strictly increasing and continuous at 0 with

g(0) = 0, it follows that

lim
n→∞

‖Tyn − yn‖ = 0 = lim
n→∞

‖Tsn − xn‖. (18)

Using (1), we have

‖yn − xn‖ = ‖P ((1 − an − µn)xn + anTP ((1 − βn)xn + βnTxn) + µnwn) − xn‖

≤ ‖(1 − an − µn)xn + anTP ((1 − βn)xn + βnTxn) + µnwn − xn‖

= ‖an(TP ((1 − βn)xn + βnTxn) − xn) + µn(wn − xn)‖

= ‖an(TP ((1 − βn)xn + βnTxn) − Txn + Txn − xn) + µn(wn − xn)‖

≤ an‖TP ((1 − βn)xn + βnTxn) − Txn + Txn − xn‖ + µn‖wn − xn‖

≤ an‖TP ((1 − βn)xn + βnTxn) − Txn‖ + an‖Txn − xn‖ + µn‖wn − xn‖

≤ an‖P ((1 − βn)xn + βnTxn) − xn‖ + an‖Txn − xn‖ + µn‖wn − xn‖

≤ an‖(1 − βn)xn + βnTxn − xn‖ + an‖Txn − xn‖ + µn‖wn − xn‖

≤ anβn‖Txn − xn‖ + an‖Txn − xn‖ + µn‖wn − xn‖

≤ (an + βn)‖Txn − xn‖ + µn‖wn − xn‖. (19)
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Since T is a nonexpansive mapping, from sn = P ((1 − γn)yn + γnTyn) we have

‖Txn − xn‖ = ‖Txn − Tsn + Tsn − xn‖

≤ ‖Txn − Tsn‖ + ‖Tsn − xn‖

≤ ‖xn − sn‖ + ‖Tsn − xn‖

≤ (1 − γn)‖yn − xn‖ + γn‖Tyn − xn‖ + ‖Tsn − xn‖

= (1 − γn)‖yn − xn‖ + γn‖Tyn − yn + yn − xn‖ + ‖Tsn − xn‖

≤ (1 − γn)‖yn − xn‖ + γn‖Tyn − yn‖ + γn‖yn − xn‖ + ‖Tsn − xn‖

= ‖yn − xn‖ + γn‖Tyn − yn‖ + ‖Tsn − xn‖. (20)

It follows from (19) and (20) that

‖Txn − xn‖ ≤ (an + βn)‖Txn − xn‖ + µn‖wn − xn‖

+ γn‖Tyn − yn‖ + ‖Tsn − xn‖,

which implies

(1 − an − βn)‖Txn − xn‖ ≤ µn‖wn − xn‖ + γn‖Tyn − yn‖ + ‖Tsn − xn‖.

Since lim supn→∞(an + βn) < 1, there exists a positive integer N0 and η ∈ (0, 1)

such that an + βn < η < 1 for all n ≥ N0. Then for n ≥ N0, we have

(1 − η)‖Txn − xn‖ ≤ µn‖wn − xn‖ + γn‖Tyn − yn‖ + ‖Tsn − xn‖.

This together with (18) and limn→∞ µn = 0 imply that limn→∞ ‖Txn − xn‖ = 0.

This completes the proof.

Theorem 2.3. Let X be a uniformly convex Banach space, C a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction,

and T : C → X a completely continuous nonexpansive nonself-mapping with

F (T ) 6= ∅ . Suppose that {an}, {bn}, {µn}, {δn}, {βn} and {γn} are real sequences

in [0, 1] such that an + µn and bn + δn are in [0, 1] for all n ≥ 1, and {wn},

{vn} are bounded sequences in C such that
∑∞

n=1 µn < ∞ ,
∑∞

n=1 δn < ∞, 0 <

lim infn→∞ γn ≤ lim supn→∞ γn < 1, 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1

and lim supn→∞(an + βn) < 1. Then the sequences {xn} and {yn} defined by the

iterative scheme (1) converge strongly to a fixed point of T.

Proof. By Lemma 2.2, we have

lim
n→∞

‖Txn − xn‖ = 0. (21)
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Since T is completely continuous and {xn} ⊆ C is bounded, there exists a subse-

quence {xnk
} of {xn} such that {Txnk

} converges. Therefore from (21), {xnk
}

converges. Let q = limk→∞ xnk
. By the continuity of T and (21) we have that

Tq = q , so q is a fixed point of T . By Lemma 2.1, limn→∞ ‖xn − q‖ exists. Then

limk→∞ ‖xnk
− q‖ = 0. Thus limn→∞ ‖xn − q‖ = 0. Since limn→∞ µn = 0, using

(19) and (21), we have
lim

n→∞
‖yn − xn‖ = 0.

It follows that limn→∞ ‖yn − q‖ = 0. This completes the proof.

Next, we prove a strong convergence theorem for nonexpansive nonself-mapping

in a uniformly convex Banach space satisfying condition(A).

Theorem 2.4. Let X be a uniformly convex Banach space, C a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction,

and T : C → X a nonexpansive nonself-mapping with F (T ) 6= ∅ . Suppose that

{an}, {bn}, {µn}, {δn}, {βn} and {γn} are real sequences in [0, 1] such that an+µn

and bn+δn are in [0, 1] for all n ≥ 1, and {wn}, {vn} are bounded sequences in C

such that
∑∞

n=1 µn < ∞ ,
∑∞

n=1 δn < ∞, 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 ,

0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1 and lim supn→∞(an + βn) < 1. Suppose

that T satisfies condition(A). Then the sequences {xn} and {yn} defined by the

iterative scheme (1) converge strongly to a fixed point of T.

Proof. Let x∗ ∈ F (T ). Then, as in Lemma 2.1, {xn} is bounded, limn→∞ ‖xn −

x∗‖ exists and
‖xn+1 − x∗‖ ≤ ‖xn − x∗‖ + kn

(1),

where
∑∞

n=1 kn
(1) < ∞. This implies that d(xn+1, F (T )) ≤ d(xn, F (T )) + kn

(1)

and so, by Lemma 1.2(i), limn→∞ d(xn, F (T )) exists. Also, by Lemma 2.2,

limn→∞ ‖xn − Txn‖ = 0. Since T satisfies condition(A), we conclude that

limn→∞ d(xn, F (T )) = 0. Next we show that {xn} is a Cauchy sequence. Since

limn→∞ d(xn, F (T )) = 0 and
∑∞

n=1 kn
(1) < ∞, given any ε < 0, there exists a nat-

ural number n0 such that d(xn, F (T )) < ε
4 and

∑n

i=n0
ki
(1) < ε

2 for all n ≥ n0.

So we can find y∗ ∈ F (T ) such that ‖xn0
− y∗‖ < ε

4 . For n ≥ n0 and m ≥ 1, we

have
‖xn+m − xn‖ = ‖xn+m − y∗‖ + ‖xn − y∗‖

≤ ‖xn0
− y∗‖ + ‖xn0

− y∗‖ +

n∑

i=n0

ki
(1)

<
ε

4
+

ε

4
+

ε

2
= ε.
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This shows that {xn} is a Cauchy sequence and so is convergent since X is

complete. Let limn→∞ xn = u. Then d(u, F (T )) = 0. It follows that u ∈ F (T ).

As in the proof of Theorem 2.3, we have

lim
n→∞

‖yn − xn‖ = 0,

it follows that limn→∞ yn = u. This completes the proof.

If an = µn = δn ≡ 0, then the iterative scheme (1) reduces to that of (2) and

the following result is directly obtained by Theorem 2.4.

Theorem 2.5. (Shahzad [23] Theorem 3.6, p.1037). Let X be a real uniformly

convex Banach space and C a nonempty closed convex subset of X which is also

a nonexpansive retract of X. Let T : C → X be a nonexpansive mapping with

F (T ) 6= ∅. Let {bn} and {γn} be sequences in [ε, 1− ε] for some ε ∈ (0, 1). From

an arbitrary x1 ∈ C, define the sequence {xn} by the recursion (2). Suppose T

satisfies condition (A). Then {xn} converges strongly to some fixed point of T.

In the remainder of this section, we deal with the weak convergence of the

new iterative scheme (1) for nonexpansive nonself-mappings in a uniformly convex

Banach space satisfying Opial’s condition.

Theorem 2.6. Let X be a uniformly convex Banach space which satisfies Opial’s

condition, C a nonempty closed convex nonexpansive retract of X with P as

a nonexpansive retraction. Let T : C → X be a nonexpansive mapping with

F (T ) 6= ∅ . Suppose that {an}, {bn}, {µn}, {δn}, {βn} and {γn} are real sequences

in [0, 1] such that an + µn and bn + δn are in [0, 1] for all n ≥ 1, and {wn},

{vn} are bounded sequences in C such that
∑∞

n=1 µn < ∞ ,
∑∞

n=1 δn < ∞, 0 <

lim infn→∞ γn ≤ lim supn→∞ γn < 1, 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1

and lim supn→∞(an + βn) < 1. Then the sequences {xn} and {yn} defined by the

iterative scheme (1) converge weakly to a fixed point of T.

Proof. By using the same proof as in Lemma 2.2, it can be shown that limn→∞ ‖Txn

−xn‖ = 0. Since X is uniformly convex and {xn} is bounded, we may assume

that xni
→ u weakly as n → ∞ , without loss of generality. By Lemma 1.5, we

have u ∈ F (T ). Suppose that subsequences {xnk
} and {xmk

} of {xn} converge

weakly to u and v , respectively. From Lemma 1.5, u, v ∈ F (T ). By Lemma

1.2(i), limn→∞ ‖xn − u‖ and limn→∞ ‖xn − v‖ exist. It follows from Lemma 1.6

that u = v . Therefore {xn} converges weakly to fixed point of T . As in the proof
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of Theorem 2.3, we have limn→∞ ‖yn − xn‖ = 0 and xn → u weakly as n → ∞,

it follows that yn → u weakly as n → ∞. The proof is completed.

Next, we deal with the weak convergence of the sequence {xn} defined by

(1) in a uniformly convex Banach space X whose dual X∗ has the Kadec-Klee

property.

Theorem 2.7. Let X be a uniformly convex Banach space, C a nonempty

closed convex nonexpansive retract of X with P as a nonexpansive retraction.

Let T : C → X be a nonexpansive mapping with F (T ) 6= ∅ . Suppose that

{an}, {bn}, {µn}, {δn}, {βn} and {γn} are real sequences in [0, 1] such that an+µn

and bn+δn are in [0, 1] for all n ≥ 1, and {wn}, {vn} are bounded sequences in C

such that
∑∞

n=1 µn < ∞ ,
∑∞

n=1 δn < ∞, 0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 ,

0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1 and lim supn→∞(an + βn) < 1. From

an arbitrary x1 ∈ C, define the sequence {xn} by the recursion (1). Then for all

u, v ∈ F (T ), the limit limn→∞ ‖txn − (1 − t)u − v‖ exists for all t ∈ [0, 1] .

Proof. It follows from Lemma 2.1 that the sequence {xn} is bounded. Then there

exists R > 0 such that {xn} ⊂ BR(0)∩C. Let an(t) := ‖txn +(1− t)u−v‖ where

t ∈ (0, 1). Then limn→∞ an(0) = ‖u − v‖ and by Lemma 2.1, limn→∞ an(1) =

limn→∞ ‖xn − v‖ exists. Without loss of the generality, we may assume that

limn→∞ ‖xn − v‖ = r for some positive number r. Let x ∈ C,

yn(x) = P ((1 − an − µn)x + anTP ((1 − βn)x + βnTx) + µnwn).

Define Tn : C → C by

Tnx = P ((1 − bn − δn)x + bnTP ((1 − γn)yn(x) + γnTyn(x)) + δnvn)

for all x ∈ C. For x, z ∈ C, we have

‖Tnx − Tnz‖ = ‖P ((1 − bn − δn)x + bnTP ((1 − γn)yn(x) + γnTyn(x)) + δnvn)

− (P ((1 − bn − δn)z + bnTP ((1 − γn)yn(z) + γnTyn(z)) + δnvn))‖

≤ (1 − bn − δn)‖x − z‖ + bn‖TP ((1 − γn)yn(x) + γnTyn(x))

− TP ((1 − γn)yn(z) + γnTyn(z))‖

≤ (1 − bn)‖x − z‖ + bn‖(1 − γn)(yn(x) − yn(z)) + γn(Tyn(x) − Tyn(z))‖

≤ (1 − bn)‖x − z‖ + bn(1 − γn)‖yn(x) − yn(z)‖ + bnγn‖yn(x) − yn(z)‖

≤ (1 − bn)‖x − z‖ + bn‖yn(x) − yn(z)‖ (22)
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and

‖yn(x) − yn(z)‖ = ‖P ((1 − an − µn)x + anTP ((1 − βn)x + βnTx) + µnwn)

− P ((1 − an − µn)z + anTP ((1 − βn)z + βnTz) + µnwn)‖

≤ (1 − an − µn)‖x − z‖ + an‖TP ((1 − βn)x + βnTx)

− TP ((1 − βn)z + βnTz)‖

≤ (1 − an)‖x − z‖ + an‖(1 − βn)(x − z) + βn(Tx − Tz)‖

≤ (1 − an)‖x − z‖ + an(1 − βn)‖x − z‖ + anβn‖Tx − Tz‖

≤ (1 − an)‖x − z‖ + an‖x − z‖

= ‖x − z‖. (23)

Using (22) and (23), we have ‖Tnx−Tnz‖ ≤ ‖x−z‖. Set Sn,m := Tn+m−1Tn+m−2

· · ·Tn, n,m ≥ 1, and bn,m = ‖Sn,m(txn + (1− t)u)− (tSn,mxn + (1− t)u)‖, where

0 ≤ t ≤ 1. Then ‖Sn,mx − Sn,my‖ ≤ ‖x − y‖, Sn,mxn = xn+m and Sn,mx∗ = x∗

for all x∗ ∈ F (T ). It follows from Lemma 1.8 that

bn,m = ‖Sn,m(txn + (1 − t)u) − (tSn,mxn + (1 − t)u)‖

≤ γ−1(‖xn − u‖ − ‖Sn,mxn − Sn,mu‖)

≤ γ−1(‖xn − u‖ − ‖xn+m − u‖). (24)

Hence γ(bn,m) ≤ ‖xn−u‖−‖xn+m−u‖. This implies that limn,m→∞ γ(bn,m) = 0.

By the property of γ, we obtain that limn,m→∞ bn,m = 0. Observe that

an+m(t) = ‖txn+m + (1 − t)u − v‖

= ‖tSn,mxn + (1 − t)u − Sn,mv‖

= ‖Sn,mv − (tSn,mxn + (1 − t)u)‖

= ‖Sn,mv − Sn,m(txn + (1 − t)u) + Sn,m(txn + (1 − t)u)

− (tSn,mxn + (1 − t)u)‖

≤ ‖Sn,mv − Sn,m(txn + (1 − t)u)‖ + bn,m

= ‖Sn,m(txn + (1 − t)u) − Sn,mv‖ + bn,m

≤ ‖txn + (1 − t)u − v‖ + bn,m

= an(t) + bn,m.
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Consequently,

lim sup
m→∞

am(t) = lim sup
m→∞

an+m(t)

≤ lim sup
m→∞

(bn,m + an(t))

≤ γ−1(‖xn − u‖ − lim
m→∞

‖xm − u‖) + an(t)

and
lim sup

n→∞

an(t) ≤ lim inf
n→∞

an(t).

This implies that limn→∞ an(t) exists for all t ∈ [0, 1]. This completes the proof.

Theorem 2.8. Let X be a uniformly convex Banach space such that its dual X∗

has the Kaded-Klee property and C a nonempty closed convex nonexpansive retract

of X with P as a nonexpansive retraction. Let T : C → X be a nonexpansive

mapping with F (T ) 6= ∅ . Suppose that {an}, {bn}, {µn}, {δn}, {βn} and {γn} are

real sequences in [0, 1] such that an+µn and bn+δn are in [0, 1] for all n ≥ 1, and

{wn}, {vn} are bounded sequences in C such that
∑∞

n=1 µn < ∞ ,
∑∞

n=1 δn < ∞,

0 < lim infn→∞ γn ≤ lim supn→∞ γn < 1 , 0 < lim infn→∞ bn ≤ lim supn→∞ bn < 1

and lim supn→∞(an + βn) < 1 . Then the sequence {xn} defined by the iterative

scheme (1) converges weakly to a fixed point of T.

Proof. It follows from Lemma 2.1 that the sequence {xn} is bounded. Then there

exists a subsequence {xnj
} of {xn} converging weakly to a point x∗ ∈ C. By

Lemma 2.2, we have limn→∞ ‖xnj
− Txnj

‖ = 0. Now using Lemma 1.5, we have

(I − T )x∗ = 0, that is Tx∗ = x∗. Thus x∗ ∈ F (T ). It remains to show that {xn}

converges weakly to x∗ . Suppose that {xni
} is another subsequence of {xn}

converging weakly to some y∗ . Then y∗ ∈ C and so x∗, y∗ ∈ ωw(xn) ∩ F (T ). By

Theorem 2.7,

lim
n→∞

‖txn − (1 − t)x∗ − y∗‖

exists for all t ∈ [0, 1]. It follows from Lemma 1.7 that x∗ = y∗. As a result,

ωw(xn) is a singleton, and so {xn} converges weakly to a fixed point of T.

If an = µn = δn ≡ 0, then the iterative scheme (1) reduces to that of (2) and

the following result is directly obtained by Theorem 2.8.

Theorem 2.9. (Shahzad [23] Theorem 3.5, p.1036). Let X be a real uniformly

convex Banach space such that its dual X∗ has the Kadec-Klee property and C a
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nonempty closed convex subset of X which is also a nonexpansive retract of X.

Let T : C → X be a nonexpansive mapping with F (T ) 6= ∅. Let {bn} and {γn}

be sequences in [ε, 1− ε] for some ε ∈ (0, 1). From an arbitrary x1 ∈ C, define the

sequence {xn} by the recursion (2). Then {xn} converges weakly to some fixed

point of T.
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