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Abstract: Let {Un}∞n=0 and {Wn}∞n=0 be two sequences defined by U0 = 0, U1 = 1,

Un+2 = pUn+1 + qUn and Wn+2 = pWn+1 + qWn (W0,W1 arbitrary) with

p, q ∈ R; p2 + 4q > 0. The aim of this paper is to prove
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where a, t ∈ N and t ≥ 2. This identity generalizes a number of known identities

such as
∑∞

n=0
1

F2n
= 7−

√
5

2 , where {Fn} is the Fibonacci sequence.
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1 Introduction

Let

{Fn}n≥0 = {0, 1, . . . , Fn+1 = Fn + Fn−1, . . .}
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and

{Ln}n≥0 = {2, 1, . . . , Ln+1 = Ln + Ln−1, . . .}

denote the sequences of Fibonacci, respectively, Lucas numbers. In 1974, Millin [9]

posed the problem of showing that
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1

F2n

=
7 −

√
5

2
. (1)

A proof of (1) by Good is given in [2], while in [4], Hoggatt and Bicknell demon-

strated eleven different methods of finding the same sum. The identity (1) was

further extended by Hoggatt and Bicknell in [5], where they showed that
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In [7], this last sum was also found to equal
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, (2)

while a finite version of this sum was shown by Greig [3] to be
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In 1976, using Lambert series expansions, Bruckman and Good [1] evaluated sev-

eral reciprocal sums including
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Since the Fibonacci and the Lucas numbers are elements satisfying the same sec-

ond order linear recurrence relation but with different initial values, it is natural

to ask whether the above-mentioned identities continue to hold for elements sat-

isfying a general second order linear recurrence relation. We answer this question

affirmatively here.
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Define three second order linear recurrences {Un}n≥0, {Vn}n≥0 and {Wn}n≥0by

Un+2 = pUn+1 + qUn, U0 = 0, U1 = 1

Vn+2 = pVn+1 + qVn, V0 = 2, V1 = p

and

Wn+2 = pWn+1 + qWn, W0,W1 arbitrary,

where p, q ∈ R are subject to p2 + 4q > 0. Let α, β be the two roots of its

characteristic equation x2 − px − q = 0 with |β| < |α| . It is well-known, [6], that

Un =
αn − βn

α − β
, Vn = αn + βn, Wn = r1α

n + r2β
n,

where r1 = W1−W0β

α−β
and r2 = W0α−W1

α−β
. If p = 1, q = 1, then Un = Fn and

Vn = Ln are the Fibonacci and Lucas numbers, respectively. The following iden-

tities are easily verified

F2n = FnLn (5)

αn = αFn + Fn−1 or βn = βFn + Fn−1 (6)
√

5αn = αLn + Ln−1 or
√

5βn = −βLn − Ln−1. (7)

Certain reciprocal sums of elements in the sequence {Un} have previously ap-

peared such as in 1995, Melham and Shanon [8] found, when q = 1, that
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. (8)

2 Results

The notation of Section 1 will be kept standard throughout. Observe that the

Fibonacci and Lucas numbers satisfy the following identities

FmFn−1 − Fm−1Fn = (−1)nFm−n (9)

LmLn−1 − Lm−1Ln = (−1)n−15Fm−n, (10)

In (9), taking m = n + 1, we get

Fn−1Fn+1 − F 2
n = (−1)n,

which is the result found by Cassini (Theorem 5.3 in Chapter 5 of [6]). These

identities are special cases of (11) in the next lemma.



96 Chamchuri J. Math. 2(2010), no. 1: K. Kuhapatanakul and V. Laohakosol

Lemma 2.1. If m,n are two positive integers with m ≥ n , then

WmWn−1 − Wm−1Wn = (−q)n−1(W0W2 − W 2
1 )Um−n. (11)

Proof. Both sides of (11) are zero when m = n . Observe from the recurrence

relation that
(
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.

Evaluating the determinants on both sides, we get

WmWn−1 − Wm−1Wn = (−q)n−1(Wm−n+1W0 − Wm−nW1).

It remains to show that

Wm−n+1W0 − Wm−nW1 = (W0W2 − W 2
1 )Um−n,

i.e.

Wk+1W0 − WkW1 = (W0W2 − W 2
1 )Uk, (12)

where m = n+k . Clearly, (12) holds for k = 1. Assume it is true for an arbitrary

positive integer i . By definition and the induction hypothesis, we get

Wi+2W0 − Wi+1W1 = (pWi+1 + qWi)W0 − (pWi + qWi−1)W1

= p(Wi+1W0 − WiW1) + q(WiW0 − Wi−1W1)

= p(W0W2 − W 2
1 )Ui + q(W0W2 − W 2

1 )Ui−1

= (W0W2 − W 2
1 )Ui+1,

i.e., (12) also holds for i + 1.

We next state and prove our main theorem.
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Theorem 2.2. Let N, a, t ∈ N with t ≥ 2 . If W0W2 6= W 2
1 and Wn 6= 0 for

all n , then
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Proof. Rewrite the equation (11) of Lemma 2.1 as
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Putting m = at + 2i, n = at + 2(i − 1), we get
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Summing over i from 1 to N , we get the result of Part 1).

For Part 2), putting m = ati+1, n = ati , we get
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The identity in Part 2) follows by summing over i .

Part 3) follows by taking N = atN+1−at
2 in Part 1).

3 Applications

Theorem 2.2 is a host of a good deal of identities as we now show.

Corollary 3.1. If N, a, t ∈ N with t ≥ 2 , then
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Proof. For Parts 1) and 3), put Wn = Un in Theorem 2.2 Part 1) and 2), respec-

tively.

For Parts 2) and 4), put Wn = Vn in Theorem 2.2 Part 1) and 2), respectively.

Letting N → ∞ in Corrolary 3.1, and using

lim
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1

α
,

we obtain:

Corollary 3.2. If a, t ∈ N with t ≥ 2 , then
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Specializing certain parameters in Corrolary 3.2, several identities, mentioned

in Section 1, follow easily as we illustrate now.

1) Putting t = 2 and q = 1 in Part 3), we get

∞∑
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1
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α

which, after a little more computation, is (8).

2) When {Un} = {Fn} and {Vn} = {Ln} are the Fibonacci and Lucas se-

quences, we have α = (1+
√

5)/2. Part 3) of Corrolary 3.2 gives, when t = 2, the
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which is (2), and when t = 3 and q = 1, the identity

∞∑
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which is (3). Part 4) of Corrolary 3.2 gives, when t = 3, the identity
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