VOLUME 5(2013), 1-9

http://www.math.sc.chula.ac.th/cjm

Congruence Pairs of Algebras Abstracting Double Kleene and Stone algebras

Leibo Wang

Received 15 May 2013 Revised 26 June 2013 Accepted 3 August 2013

Abstract: In this note, we extend the result of Beazer on congruence pairs of K_2 -algebras to the class of double K_2 -algebras. We show that any congruence α on a double K_2 -algebra can be represented by a congruence pair $\langle \theta_1, \theta_2 \rangle$, where θ_1 is a Kleene congruence and θ_2 is a lattice one. As an application of this result, we give a sufficient condition for a double K_2 -algebra is congruence permutable (n-permutable).

Keywords: double K_2 -algebra, congruence pair, congruence permutable, congruence n-permutable

2000 Mathematics Subject Classification: 06D30, 06D15

1 Introduction

Lakser [9] and Katriňák [10] independently showed that any congruence on a distributive p-algebra can be represented by a congruence pair $\langle \theta_1, \theta_2 \rangle$, where θ_1 is a (Boolean) congruence of the skeleton Boolean algebra B(L) of L and θ_2 is a (lattice) congruence of the dense filter D(L) of L. Subsequently, Katriňák [11] showed that a congruence on a p-algebra with a modular frame can be described in exactly the same way as in the distributive p-algebra and Beazer [2] gave a different

method to describe the congruence pairs of a distributive double p-algebra with non-empty core. In [3], Beazer characterized the congruence pairs for algebras abstracting Kleene and Stone algebras, that is the class of K_2 -algebras which was introduced by Blyth and Varlet in [7]. The purpose of this note is to extend the result of Beazer on congruence pairs of K_2 -algebras to the class of double K_2 -algebras. We show that any congruence α on a double K_2 -algebra can be represented by a congruence pair $\langle \theta_1, \theta_2 \rangle$, where θ_1 is a (Kleene) congruence and θ_2 is a lattice one. As an application of this result, we give a sufficient condition that a double K_2 -algebra is congruence permutable (n-permutable).

2 Preliminaries

An MS-algebra is an algebra $\langle L; \vee, \wedge, ^{\circ}, 0, 1 \rangle$ of type $\langle 2, 2, 1, 0, 0 \rangle$ whose reduct $\langle L; \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice and such that, for any $x, y \in L$,

$$x \le x^{\circ \circ}, \ (x \wedge y)^{\circ} = x^{\circ} \vee y^{\circ}, \ 1^{\circ} = 0.$$

Clearly, the class MS of MS-algebras is a variety. The subvariety K_2 of MS-algebra L is defined by

(*)
$$x \wedge x^{\circ} = x^{\circ} \wedge x^{\circ \circ}$$
 and $x \wedge x^{\circ} \leq y \vee y^{\circ}$.

A double MS-algebra must be an algebra $\langle L; \vee, \wedge, ^{\circ}, ^{+}, 0, 1 \rangle$ of type $\langle 2, 2, 1, 1, 0, 0 \rangle$ such that $(L; ^{\circ})$ is an MS-algebra, $(L; ^{+})$ is a dual MS-algebra, and the unary operations are linked by the properties:

$$(\forall x \in L)$$
 $x^{\circ +} = x^{\circ \circ}$ and $x^{+ \circ} = x^{++}$.

In this note, our aim is to describe the congruence pairs of the class of double K_2 -algebras. A *congruence* on a double K_2 -algebra $(L, ^{\circ}, ^{+})$ is a lattice congruence θ such that

$$(x,y) \in \theta \Rightarrow (x^{\circ},y^{\circ}) \in \theta \text{ and } (x^{+},y^{+}) \in \theta$$

Through what follows, for a double K_2 -algebra $(L; ^{\circ}, ^{+})$, we shall denote by ConL the lattice of congruences of L. If S is a subalgebra of L and α is a congruence on L then we denote by $\alpha|_{S}$ a restriction of α on S. The basic congruence Φ on L given by

$$(x,y) \in \Phi \iff x^{\circ} = y^{\circ} \text{ and } x^{+} = y^{+}$$

The skeleton of L is the Kleene algebra

$$S(L) = \{x \in L; x = x^{\circ \circ}\} = \{x \in L; x = x^{++}\}.$$

The core of L is the set

$$K(L) = \{x \lor x^{\circ}; x \in L\} \cap \{x \land x^{+}; x \in L\} = \{x \in L; x^{\circ} < x < x^{+}\}.$$

For the basic properties of MS-algebras and double MS-algebras we refer the reader to [5]-[8]. The notations and terminologies we shall use in this note are same as used in [5] and [8].

3 Congruence pairs

Let $(L; ^{\circ}, ^{+})$ be a double K_{2} -algebra. We shall be concerned with the condition that K(L) = [k, l] is a bounded non-empty core. We now begin with the following:

Lemma 3.1. Let $(L; ^{\circ}, ^{+})$ be a double K_{2} -algebra and let K(L) = [k, l]. Then every $x \in L$ is of the form

$$(\dagger) \quad x = x^{++} \vee [x^{\circ \circ} \wedge (x \vee k) \wedge l].$$

Proof. We first show that for each $x \in L$, $x^{\circ\circ} \wedge k = x \wedge k$. Since $x \leq x^{\circ\circ}$, we have $x \wedge k \leq x^{\circ\circ} \wedge k$. Suppose now, by way of obtaining the contradiction, that $x \wedge k < x^{\circ\circ} \wedge k$. Here we must have $k \neq x \wedge x^{\circ}$; for otherwise, it follows the contradiction that $x \wedge x^{\circ} = x \wedge k < x^{\circ\circ} \wedge k = x \wedge x^{\circ}$. Let $a = x^{\circ\circ} \wedge k$, $b = x^{\circ} \wedge k$ and $c = x \wedge k$. Since, by [2, Theorem 1], that $L^{\vee} = \{x \vee x^{\circ} \mid x \in L\}$ is a filter, it follows that $k = \inf L^{\vee}$ and so $k \leq x \vee x^{\circ}$. Hence we have $x \wedge x^{\circ} < k \leq x \vee x^{\circ}$. Then by (*) we obtain

$$a \wedge b = x^{\circ \circ} \wedge x^{\circ} \wedge k = x \wedge x^{\circ} \wedge k = x \wedge x^{\circ} = b \wedge c$$

and

$$a \vee b = (x^{\circ \circ} \vee x^{\circ}) \wedge k = k = (x^{\circ} \vee x) \wedge k = (x^{\circ} \wedge k) \vee (x \wedge k) = b \vee c.$$

Here we must have $k \neq b$; for otherwise, it follows the contradiction that

$$a = x^{\circ \circ} \wedge k = x^{\circ \circ} \wedge b = x^{\circ \circ} \wedge x^{\circ} \wedge k = x \wedge x^{\circ} \wedge k = x \wedge b = x \wedge k = c$$

Therefore, $\{x \wedge x^{\circ}, c, a, b, k\}$ is a five-element non-modular sublattice of L, which contradicts to the distributivity of L. Consequently, we obtain that

$$x = x \lor (x \land k) = x \lor (x^{\circ \circ} \land k) = x^{\circ \circ} \land (x \lor k).$$

Similarly, we can show that $x = x^{++} \lor (x \land l)$. Thus we obtain

$$x = x^{++} \vee [x^{\circ \circ} \wedge (x \vee k) \wedge l].$$

Given a double K_2 -algebra L with K(L) = [k, l]. Every member of L contains two simpler substructures, one being a Kleene algebra S(L) and the other being a distributive sublattice K(L). For any $\alpha \in ConL$, define the pair

$$\langle \theta_1, \theta_2 \rangle \in Con(S(L)) \times Con(K(L))$$

where θ_1 is the restriction $\alpha|_{S(L)}$ of α to S(L) and θ_2 is the restriction $\alpha|_{K(L)}$ of α to K(L), where Con(S(L)) and Con(K(L)) are the congruence lattice of S(L) and K(L) respectively.

Definition 3.2. Let $(L; {}^{\circ}, {}^{+})$ be a double K_2 -algebra and let K(L) = [k, l]. We say that the pair $\langle \theta_1, \theta_2 \rangle \in Con(S(L)) \times Con(K(L))$ is a double K_2 -congruence pair if it satisfies the following conditions:

$$(CP1): \ c \stackrel{\theta_2}{\equiv} d \Rightarrow c^{\circ} \stackrel{\theta_1}{\equiv} d^{\circ} \ \text{and} \ c^{+} \stackrel{\theta_1}{\equiv} d^{+};$$

$$(CP2): \ a \stackrel{\theta_1}{\equiv} b \Rightarrow (a \lor k) \land l \stackrel{\theta_2}{\equiv} (b \lor k) \land l \, .$$

In what follows, we shall denote by $Con_p(L)$ the set of all double K_2 -congruence pairs of a double K_2 -algebra L.

Theorem 3.3. Let $(L; {}^{\circ}, {}^{+})$ be a double K_2 -algebra and let K(L) = [k, l]. Then $Con_p(L)$ is a sublattice of $Con(S(L)) \times Con(K(L))$.

Proof. Let $\langle \theta_1, \theta_2 \rangle$, $\langle \varphi_1, \varphi_2 \rangle \in Con_p(L)$. Clearly, $\langle \theta_1 \wedge \varphi_1, \theta_2 \wedge \varphi_2 \rangle \in Con_p(L)$. To see that $\langle \theta_1 \vee \varphi_1, \theta_2 \vee \varphi_2 \rangle \in Con_p(L)$, let $a \stackrel{\theta_1 \vee \varphi_1}{\equiv} b$ and $c \stackrel{\theta_2 \vee \varphi_2}{\equiv} d$. Then there exist

$$a = x_0, x_1, \cdots, x_m = b$$
 in $S(L)$

and

$$c = y_0, y_1, \cdots, y_n = d$$
 in $K(L)$

such that

$$a = x_0 \equiv x_1 \equiv x_2 \equiv \cdots \equiv x_m = b$$

and

$$c = y_0 \equiv y_1 \equiv y_2 \equiv \dots \equiv y_n = d$$

where $x_i \stackrel{\theta_1}{\equiv} x_{i+1}$ or $x_i \stackrel{\varphi_1}{\equiv} x_{i+1}$ and $y_j \stackrel{\theta_2}{\equiv} y_{j+1}$ or $y_j \stackrel{\varphi_2}{\equiv} y_{j+1}$. By properties (CP1)and (CP2), we see that $y_j^{\circ} \stackrel{\theta_1}{\equiv} y_{j+1}^{\circ}$, $y_j^{+} \stackrel{\theta_1}{\equiv} y_{j+1}^{+}$ or $y_j^{\circ} \stackrel{\varphi_1}{\equiv} y_{j+1}^{\circ}$, $y_j^{+} \stackrel{\varphi_1}{\equiv} y_{j+1}^{+}$ and $(x_i \lor k) \land l \stackrel{\theta_2}{\equiv} (x_{i+1} \lor k) \land l \text{ or } (x_i \lor k) \land l \stackrel{\varphi_2}{\equiv} (x_{i+1} \lor k) \land l. \text{ Thus, } c^{\circ} \stackrel{\theta_1 \lor \varphi_1}{\equiv} d^{\circ}, c^{+} \stackrel{\theta_1 \lor \varphi_1}{\equiv} d^{+} \text{ and } (a \lor k) \land l \stackrel{\theta_2 \lor \varphi_2}{\equiv} (b \lor k) \land l. \text{ Consequently, } \langle \theta_1 \lor \varphi_1, \theta_2 \lor \varphi_2 \rangle \in$ $Con_p(L)$ and we obtain that $Con_p(L)$ is a sublattice of $Con(S(L)) \times Con(K(L))$.

Theorem 3.4. Every congruence α on a double K_2 -algebra $(L; ^{\circ}, ^{+})$ with K(L) =[k,l] determines a double K_2 -congruence pair. Conversely, every double K_2 congruence pair $\langle \theta_1, \theta_2 \rangle \in Con(S(L)) \times Con(K(L))$ uniquely determines a congruence α on L satisfying $\alpha|_{S(L)} = \theta_1$ and $\alpha|_{K(L)} = \theta_2$ such that the following conditions are equivalent:

(i)
$$x \stackrel{\alpha}{\equiv} y$$
;

(ii)
$$x^{\circ} \stackrel{\theta_1}{\equiv} y^{\circ}$$
, $x^{+} \stackrel{\theta_1}{\equiv} y^{+}$ and $(x \vee k) \wedge l \stackrel{\theta_2}{\equiv} (y \vee k) \wedge l$.

Proof. Let α be a relation on L defined by (i) and (ii). Clearly, α is an equivalence relation. Let now $a \stackrel{\alpha}{\equiv} b$ and $c \stackrel{\alpha}{\equiv} d$. Then

$$a^{\circ} \stackrel{\theta_1}{\equiv} b^{\circ}, \ a^{+} \stackrel{\theta_1}{\equiv} b^{+}, \ (a \vee k) \wedge l \stackrel{\theta_2}{\equiv} (b \vee k) \wedge l$$

and

$$c^{\circ} \stackrel{\theta_1}{\equiv} d^{\circ}, \ c^{+} \stackrel{\theta_1}{\equiv} d^{+}, \ (c \vee k) \wedge l \stackrel{\theta_2}{\equiv} (d \vee k) \wedge l.$$

By the distributivity of L, it is not hard to see that

$$(a \vee c)^{\circ} \stackrel{\theta_1}{\equiv} (b \vee d)^{\circ}, \ (a \vee c)^{+} \stackrel{\theta_1}{\equiv} (b \vee d)^{+}, \ (a \vee c \vee k) \wedge l \stackrel{\theta_2}{\equiv} (b \vee d \vee k) \wedge l$$

and

$$(a \wedge c)^{\circ} \stackrel{\theta_1}{\equiv} (b \wedge d)^{\circ}, \ (a \wedge c)^{+} \stackrel{\theta_1}{\equiv} (b \wedge d)^{+}, \ ((a \wedge c) \vee k) \wedge l \stackrel{\theta_2}{\equiv} ((b \wedge d) \vee k) \wedge l.$$

Thus $(a \lor c, b \lor d) \in \alpha$ and $(a \land c, b \land d) \in \alpha$. Hence, we obtain that α is a lattice congruence on L.

We now show that α preserves the unary operations $^{\circ}$ and $^{+}$. Let $x\stackrel{\alpha}{\equiv}y$. Then

$$x^{\circ} \stackrel{\theta_1}{\equiv} y^{\circ}, \ x^{+} \stackrel{\theta_1}{\equiv} y^{+}, \ (x \vee k) \wedge l \stackrel{\theta_2}{\equiv} (y \vee k) \wedge l.$$

Since $a^{\circ\circ}=a^{\circ+}$ and $a^{++}=a^{+\circ}$ for any $a\in L$, and by property (CP2), we observe that

$$x^{\circ\circ} \stackrel{\theta_1}{\equiv} y^{\circ\circ}, \ x^{\circ+} \stackrel{\theta_1}{\equiv} y^{\circ+}, \ (x^{\circ} \vee k) \wedge l \stackrel{\theta_2}{\equiv} (y^{\circ} \vee k) \wedge l$$

and

$$x^{+\circ} \stackrel{\theta_1}{\equiv} y^{+\circ}, \ x^{++} \stackrel{\theta_1}{\equiv} y^{++}, \ (x^+ \lor k) \land l \stackrel{\theta_2}{\equiv} (y^+ \lor k) \land l.$$

Thus α preserves the unary operations \circ and $^+$ and so α is a congruence on L Next, we show that $\alpha|_{S(L)} = \theta_1$ and $\alpha|_{K(L)} = \theta_2$. Let $x,y \in S(L)$. If $x \stackrel{\theta_1}{\equiv} y$, then $x^{\circ} \stackrel{\theta_1}{\equiv} y^{\circ}$ and $x^{+} \stackrel{\theta_1}{\equiv} y^{+}$. By property (CP2), we obtain that $(x \vee k) \wedge l \stackrel{\theta_2}{\equiv} (y \vee k) \wedge l$ and so $x \stackrel{\alpha|_{S(L)}}{\equiv} y$. Then $\theta_1 \leq \alpha|_{S(L)}$. If $x \stackrel{\alpha|_{S(L)}}{\equiv} y$ then $x^{\circ} \stackrel{\theta_1}{\equiv} y^{\circ}$ so that $x = x^{\circ \circ} \stackrel{\theta_1}{\equiv} y^{\circ \circ} = y$. Thus $\alpha|_{S(L)} \leq \theta_1$ and consequently, $\alpha|_{S(L)} = \theta_1$. Now, let $x,y \in K(L)$. If $x \stackrel{\theta_2}{\equiv} y$ then $x^{\circ} \stackrel{\theta_1}{\equiv} y^{\circ}$ and $x^{+} \stackrel{\theta_1}{\equiv} y^{+}$ by property (CP1). Since K(L) is sublattice of L, we see that $(x \vee k) \wedge l \stackrel{\theta_2}{\equiv} (y \vee k) \wedge l$. Hence $x \stackrel{\alpha|_{K(L)}}{\equiv} y$ and whence $\theta_2 \leq \alpha|_{K(L)}$. If $x \stackrel{\alpha|_{K(L)}}{\equiv} y$ then $x = (x \vee k) \wedge l \stackrel{\theta_2}{\equiv} (y \vee k) \wedge l = y$. Thus $\alpha|_{K(L)} \leq \theta_2$ and consequently, $\alpha|_{K(L)} = \theta_2$.

Suppose now, by the way of obtaining the uniqueness of the theorem, that there exist $\alpha, \beta \in ConL$ such that $\alpha|_{S(L)} = \beta|_{S(L)}$ and $\alpha|_{K(L)} = \beta|_{K(L)}$. Let $x \stackrel{\alpha}{\equiv} y$. Then $x^{\circ \circ} \stackrel{\alpha|_{S(L)}}{\equiv} y^{\circ \circ}$, $x^{++} \stackrel{\alpha|_{S(L)}}{\equiv} y^{++}$ imply $x^{\circ \circ} \stackrel{\beta|_{S(L)}}{\equiv} y^{\circ \circ}$, $x^{++} \stackrel{\beta|_{S(L)}}{\equiv} y^{++}$, and $(x \lor k) \land l \stackrel{\alpha|_{K(L)}}{\equiv} (y \lor k) \land l$. By (\dagger) , we obtain that

$$x = x^{++} \vee [x^{\circ \circ} \wedge (x \vee k) \wedge l] \stackrel{\beta}{=} y^{++} \vee [y^{\circ \circ} \wedge (y \vee k) \wedge l] = y.$$

Similarly, we can show that $\beta \leq \alpha$. Consequently, we have $\alpha = \beta$.

The following result is an immediate consequence from Theorem 3.4.

Corollary 3.5. Let $(L, ^{\circ}, ^{+})$ be a double K_{2} -algebra and let K(L) = [k, l]. Then ConL is lattice isomorphic to $Con_{p}(L)$ by the prescription $\alpha \to \langle \alpha|_{S(L)}, \alpha|_{K(L)} \rangle$.

We recall from [2] that if $(L; {}^{\circ}, {}^{+})$ is double Stone algebra then S(L) is a boolean sublattice of L and K(L) is a Φ -classes of L. In addition, a pair $(\theta_1, \theta_2) \in$

 $Con(S(L)) \times Con(K(L))$ is called a reduced congruence pair of L if, for any $x, y \in K(L)$, $x \leq y$ and $z \in S(L)$, the following condition hold:

(‡)
$$x \wedge z = y \wedge z$$
 and $z \stackrel{\theta_1}{\equiv} 1 \Rightarrow x \stackrel{\theta_2}{\equiv} y$.

Corollary 3.6. Let $(L; {}^{\circ}, {}^{+})$ be a double Stone algebra with K(L) = [k, l] and let $\langle \theta_1, \theta_2 \rangle \in Con(S(L)) \times Con(K(L))$. Then $\langle \theta_1, \theta_2 \rangle \in Con_p(L)$ if and only if it is a reduced congruence pair.

Proof. (\Rightarrow :) Suppose that $\langle \theta_1, \theta_2 \rangle \in Con_p(L)$. Let $x \wedge z = y \wedge z$ and $z \stackrel{\theta_1}{\equiv} 1$, where $x, y \in K(L)$, $x \leq y$ and $z \in S(L)$. Then $(z \vee k) \wedge l \stackrel{\theta_2}{\equiv} l$ by (CP2). Observe that

$$x \stackrel{\theta_2}{\equiv} x \wedge (z \vee k) \wedge l = (x \wedge z) \vee k = (y \wedge z) \vee k \stackrel{\theta_2}{\equiv} y \wedge (z \vee k) \wedge l \stackrel{\theta_2}{\equiv} y.$$

Hence we see that $x \stackrel{\theta_2}{=} y$. Thus, $\langle \theta_1, \theta_2 \rangle$ is a reduced congruence pair.

(\Leftarrow :) Suppose that $\langle \theta_1, \theta_2 \rangle$ is a reduced congruence pair. Since, for $x \in K(L)$, $x^{\circ} = 0$ and $x^{+} = 1$, the property (CP1) holds. To see that $\langle \theta_1, \theta_2 \rangle \in Con_p(L)$, let $a \stackrel{\theta_1}{\equiv} b$ for some $a, b \in S(L)$. Now, let $c = (a \vee b^{\circ}) \wedge (b \vee a^{\circ})$. Then $c \in S(L)$, $a \wedge c = b \wedge c = a \wedge b$ and $\alpha \stackrel{\theta_1}{\equiv} 1$. Hence, by (\ddagger) we have $a \stackrel{\theta_2}{\equiv} b$, whence $(a \vee k) \wedge l \stackrel{\theta_2}{\equiv} (b \vee k) \wedge l$ and we conclude that (CP2) holds. Consequently, $\langle \theta_1, \theta_2 \rangle \in Con_p(L)$.

4 Applications

If A is an algebra and α_1 , α_2 are congruences on A then α_1 and α_2 are said to be permutable provided that, for any $a,b,c\in A$ with $(a,b)\in \alpha_1$ and $(b,c)\in \alpha_2$, there exists $d\in A$ such that $(a,d)\in \alpha_2$ and $(d,c)\in \alpha_1$, that is $\alpha_1\circ\alpha_2=\alpha_2\circ\alpha_1$, where $\alpha_1\circ\alpha_2$ is their relational product. In what follows we shall denote by $\alpha_1\circ^n\alpha_2$ the compound relational product $\alpha_1\circ\alpha_2\circ\alpha_1...$, where $n\geq 2$. If $\alpha_1\circ^n\alpha_2=\alpha_2\circ^n\alpha_1$ then, we shall say that α_1 and α_2 are n-permutable. An algebra A is said to be congruence permutable (congruence n-permutable) if every pair of congruences on it is permutable (n-permutable). For the purpose of characterizing the congruence permutability (n-permutability) of a double K_2 -algebra, we shall make use of the following useful result.

Theorem 4.1. Let $(L; {}^{\circ}, {}^{+})$ be a double K_2 -algebra and K(L) = [k, l]. If $\langle \theta_1, \theta_2 \rangle, \langle \varphi_1, \varphi_2 \rangle \in Con(S(L)) \times Con(K(L))$ then

$$\langle \theta_1, \theta_2 \rangle \circ \langle \varphi_1, \varphi_2 \rangle = \theta_1 \circ \varphi_1 \vee \theta_2 \circ \varphi_2.$$

Proof. Suppose that $\langle \theta_1, \theta_2 \rangle$, $\langle \varphi_1, \varphi_2 \rangle \in Con(S(L)) \times Con(K(L))$. Then by Corollary 3.5 there exist unique $\alpha, \beta \in ConL$ such that $\alpha = \langle \theta_1, \theta_2 \rangle$ and $\beta = \langle \varphi_1, \varphi_2 \rangle$. Clearly, $\theta_1 \circ \varphi_1 \vee \theta_2 \circ \varphi_2 \leq \alpha \circ \beta$.

To see the reverse inequality, we let $x \stackrel{\alpha \circ \beta}{\equiv} y$. Then there exists $t \in L$ such that $x \stackrel{\alpha}{\equiv} t$ and $t \stackrel{\beta}{\equiv} y$. Then $x^{\circ \circ} \stackrel{\alpha}{\equiv} t^{\circ \circ}$, $x^{++} \stackrel{\alpha}{\equiv} t^{++}$ and $t^{\circ \circ} \stackrel{\beta}{\equiv} y^{\circ \circ}$, $t^{++} \stackrel{\beta}{\equiv} y^{++}$. Hence $x^{\circ \circ} \stackrel{\theta_1}{\equiv} t^{\circ \circ}$, $x^{++} \stackrel{\theta_1}{\equiv} t^{++}$ and $t^{\circ \circ} \stackrel{\varphi_1}{\equiv} y^{\circ \circ}$, $t^{++} \stackrel{\varphi_1}{\equiv} y^{++}$, and so $x^{\circ \circ} \stackrel{\theta_1 \circ \varphi_1}{\equiv} y^{\circ \circ}$ and $x^{++} \stackrel{\theta_1 \circ \varphi_1}{\equiv} y^{++}$. In addition, since $x \stackrel{\alpha}{\equiv} t$ and $t \stackrel{\beta}{\equiv} y$ imply $(x \lor k) \land l \stackrel{\alpha}{\equiv} (t \lor k) \land l$ and $(t \lor k) \land l \stackrel{\alpha}{\equiv} (t \lor k) \land l$. Thus, we have $(x \lor k) \land l \stackrel{\theta_2}{\equiv} (t \lor k) \land l$ and $(t \lor k) \land l \stackrel{\varphi_2}{\equiv} (y \lor k) \land l$, and whence $(x \lor k) \land l \stackrel{\theta_2 \circ \varphi_2}{\equiv} (y \lor k) \land l$. Since $x^{\circ \circ} \stackrel{\theta_1 \circ \varphi_1}{\equiv} y^{\circ \circ}$, $x^{++} \stackrel{\theta_1 \circ \varphi_1}{\equiv} y^{++}$ and $(x \lor k) \land l \stackrel{\theta_2 \circ \varphi_2}{\equiv} (y \lor k) \land l$, there exist $a, b, c \in L$ such that $x^{\circ \circ} \stackrel{\theta_1}{\equiv} a$, $a \stackrel{\varphi_1}{\equiv} y^{\circ \circ}$, $x^{++} \stackrel{\theta_1}{\equiv} b$, $b \stackrel{\varphi_1}{\equiv} y^{++}$ and $(x \lor k) \land l \stackrel{\theta_2}{\equiv} c$, $c \stackrel{\varphi_2}{\equiv} (y \lor k) \land l$. By (\dagger) , it follows that

$$x = x^{++} \vee [x^{\circ \circ} \wedge (x \vee k) \wedge l] \equiv b \vee (a \wedge c)(\theta_1 \circ \varphi_1 \vee \theta_2 \circ \varphi_2);$$

$$y = y^{++} \vee [y^{\circ \circ} \wedge (y \vee k) \wedge l] \equiv b \vee (a \wedge c)(\theta_1 \circ \varphi_1 \vee \theta_2 \circ \varphi_2).$$

Therefore, $x \equiv y(\theta_1 \circ \varphi_1 \vee \theta_2 \circ \varphi_2)$. Thus, we have $\alpha \circ \beta \leq \theta_1 \circ \varphi_1 \vee \theta_2 \circ \varphi_2$.

Consequently, we have from the above observations that $\alpha \circ \beta = \langle \theta_1, \theta_2 \rangle \circ \langle \varphi_1, \varphi_2 \rangle = \theta_1 \circ \varphi_1 \vee \theta_2 \circ \varphi_2$.

Corollary 4.2. Let $(L; {}^{\circ}, {}^{+})$ be a double K_2 -algebra and let K(L) = [k, l]. If S(L) and K(L) are congruence permutable (congruence n-permutable), then so L.

Since every boolean algebra is congruence permutable and congruence *n*-permutable, the following result is an immediate consequence from Corollary 4.2, [1, Lemma 3.2] and [2, Theorem 2.5].

Corollary 4.3. Let $(L; ^{\circ}, ^{+})$ be a double Stone algebra with K(L) = [k, l]. Then L is congruence permutable (congruence n-permutable) if and only if K(L) is congruence permutable (congruence n-permutable).

Acknowledgements: The author would like to thank the referees for the valuable and very help comments on the presentation of this note.

References

- [1] M. E. Adams and R. Beazer: Congruence properties of distributive double p-algebras, Czech. Math. J., 41(2)(1991), 216–231.
- [2] R. Beazer: Congruence pairs for distributive double p-algebras with non-empty core, Houston Math. J., 6(1980), 443–454.
- [3] R. Beazer: Congruence pairs for algebras abstracting Kleene and Stone algebras, *Czech. Math. J.*, **35(2)**(1985), 260–268.
- [4] R. Beazer: Distributive p-algebras and double p-algebras having n-permutable congruences, Proc. Edin. Math. Soc., 35(1992), 301–307.
- [5] T. S. Blyth and J. C. Varlet: Ockham Algebras, Oxford University Press, Oxford, 1994.
- [6] T. S. Blyth and J. C. Varlet: On a common abstraction of de Morgan and Stone algebras, Proc. Roy. Soc. Edin. Sect, A 94A(1983), 301–308.
- [7] T. S. Blyth and J. C. Varlet: Subvarieties of the class of MS-algebras, Proc. Roy. Soc. Edin. Sect, A 95A(1983), 157–169.
- [8] T. S. Blyth and J. C. Varlet: Double MS-algebras, Proc. Roy. Soc. Edin. Sect, A 98A(198)4, 37–47.
- [9] H. Lakser: The structure of pseudocomplemented distributive lattice. I. Subdirect decomposition, *Trans. Amer. Math. Soc.*, **156**(1971), 335–342.
- [10] T. Katriňák: Über eine Konstruktion der distributiven pseudokomplementaren Verbände, *Math. Nachr.*, **53**(1972), 85–99.
- [11] T. Katriňák: Congruence pairs on p-algebras with a modular frame, ALgebra Univ., 8(1978), 205–220.

Leibo Wang

College of Mathematics and Software Science,

Sichuan Normal University,

Chengdu, 610066, P. R. China

Email: leibowang@hotmail.com