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Abstract: The concepts of boosters and σ -ideals are introduced in distributive
p-algebras. Many properties of σ -ideals are studied in terms of boosters. It
is proved that the class of all boosters of a distributive p-algebra is a Boolean
algebra. It is also observed that the lattice of all σ -ideals of a distributive p -
algebra is isomorphic to the ideal lattice of the lattice of all boosters. Finally,
some properties of σ -ideals are studied with respect to homomorphisms.
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Introduction

The theory of pseudo-complements was introduced in semi-lattices and dis-
tributive lattices by O. Frink [6] and G. Birkhof [3]. Later pseudo-complements in
Stone algebras has been studied by many authors like R. Balbes[1], O. Frink[6],
G. Gratzer[4] etc.

In this paper, the notion of boosters is introduced in distributive p-algebras and
then many properties of boosters are studied. It is proved that the set B∗(L) of
all boosters of a distributive p-algebra L forms a Boolean algebra on its own. It
is also observed that a distributive p -algebra L is homomorphic to B∗(L). The
concept of σ -ideals is introduced in distributive p-algebras. Some properties of σ -
ideals of a distributive p-algebra are studied in terms of boosters and then proved
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that the set Iσ(L) of all σ -ideals can be made into a distributive lattice. It is
proved that Iσ(L) is isomorphic to the ideal lattice of B∗(L). It is proved that
every minimal prime ideal of a distributive p-algebra containing a given σ -ideal is
a σ -ideal. Also, it is proved that every proper σ -ideal of a distributive p-algebra
is the intersection of all prime σ -ideals containing it. Finally, some properties of
σ -ideals are studied with respect to homomorphisms. If a distributive p-algebras
L is homomorphic to a distributive p-algebra M , then the lattice B∗(L) of boost-
ers is homomorphic to B∗(M) the lattice of Boosters of M and the ideal lattice
of B∗(L) is homomorphic to the ideal lattice of B∗(M).

1 Preliminaries

In this section, we present certain definitions and results which are taken mostly
from the papers [2], [5] and [6] for the ready reference of the reader.

A (distributive)p-algebra is a universal algebra (L,∨,∧,∗ , 0, 1) where (L,∨,∧, 0, 1)
is a bounded (distributive)lattice and the unary operation ∗ is defined by

x ≤ a∗ ⇔ x ∧ a = 0

Here the above operation ∗ is called pseudo-complementation on L . It is will
known that the class of all p-algebras is equational(See [6]). A distributive p-
algebra L in which x∗ ∨ x∗∗ = 1 for all x ∈ L holds is called a Stone algebra.

We shall frequently use the following rules of the computations in p-algebras.
For any two elements a, b of a p-algebra L , we have (see [2],[5])

(1) 0∗∗ = 0 and 1∗∗ ,

(2) a ∧ a∗ = 0,

(3) a ≤ b implies b∗ ≤ a∗ ,

(4) a ≤ a∗∗ ,

(5) a∗∗∗ = a∗ ,

(6) (a ∨ b)∗ = a∗ ∧ b∗ ,

(7) (a ∧ b)∗ ≥ a∗ ∨ b∗ ,

(8) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗ ,

(9) (a ∨ b)∗∗ = (a∗ ∧ b∗)∗ = (a∗∗ ∨ b∗∗)∗∗ .

An element x of a p-algebra L is called closed if x∗∗ = x and the set of all
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closed elements of L is denoted by B(L) = {a ∈ L : a = a∗∗} . It is known that
(B(L),5,∧,∗ , 0, 1) is a Boolean algebra, where a5 b = (a∗ ∧ b∗)∗ . An element a

is called dense if a∗ = 0. The set D(L) = {d ∈ L : d∗ = 0} is a filter of L .

2 Boosters of distributive p-algebras

In this section, the concept of boosters is introduced in a distributive p-algebra.
Some properties of boosters are investigated in a distributive p-algebra. It is
proved that the class of all boosters forms a Boolean algebra.

Definition 2.1. Let L be a distributive p-algebra. Then for every a ∈ L , define
the booster of a as follows :

(a)4 = {x ∈ L : x ∧ a∗ = 0}

It is obvious that (0)4 = {0} and (1)4 = L . Moreover, the class of boosters
of a distributive p-algebra satisfies the following properties.

Lemma 2.2. Let L be a distributive p-algebra. Then for any a, b ∈ L we have

(1) (a)4 is an ideal of L containing a ,

(2) (a)4 = (a∗∗)4 = (a∗∗] ,

(3) (a)4 = (a] ⇔ a ∈ B(L) ,

(4) (a)4 = L ⇔ a ∈ D(L) ,

(5) a ∈ (b)4 ⇒ (a)4 ⊆ (b)4 .

Proof. (1). Clearly 0 ∈ (a)4 . Let x, y ∈ (a)4 . Then (x ∨ y) ∧ a∗ = (x ∧
a∗) ∨ (y ∧ a∗) = 0. Thus x ∨ y ∈ (a)4 . Now let x ∈ (a)4 and z ≤ x . Then
z ∧ a∗ ≤ x∧ a∗ = 0. So, z ∈ (a)4 . Thus (a)4 is an ideal of L . Clearly a ∈ (a)4 .

(2). (a)4 = (a∗∗)4 follows from the fact a∗ = a∗∗∗ . Since a∗∗ ∧ a∗ = 0, we get
that a∗∗ ∈ (a)4 . To show that a∗∗ is the greatest element of (a)4 , let y ∈ (a)4 .
Then y ∧ a∗ = 0, which implies that y ≤ a∗∗ . Therefore (a)4 = (a∗∗] .

(3). Let a ∈ B(L). Then a∗∗ = a . So by (2), we get (a)4 = (a] . Conversely, let
(a)4 = (a] . But (2) gives (a)4 = (a∗∗] . Thus a = a∗∗ and a ∈ B(L).

(4). Let a ∈ D(L). Then x∧ a∗ = 0 for all x ∈ L . So (a)4 = L . Conversely, let
(a)4 = L . Then (a)4 = (a∗∗] = L and (1)4 = (1∗∗] = L imply that a∗ = 0.

(5). Suppose a ∈ (b)4 . Then a ∧ b∗ = 0 and hence b∗ ≤ a∗ . Let x ∈ (a)4 .
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Then x ∧ a∗ = 0 and thus a∗ ≤ x∗ . Thus it concludes b∗ ≤ a∗ ≤ x∗ . Hence
x ∧ b∗ ≤ x ∧ a∗ = 0. Thus it yields x ∈ (b)4 . Therefore (a)4 ⊆ (b)4 .

Lemma 2.3. For any two elements a, b of a distributive p-algebra L , we have

(1) a ≤ b implies (a)4 ⊆ (b)4 ,

(2) a∗ = b∗ ⇔ (a)4 = (b)4 ,

(3) (a)4 ∩ (b)4 = (a ∧ b)4 ,

(4) (a)4 = (b)4 implies (a ∧ c)4 = (b ∧ c)4 for all c ∈ L ,

(5) (a)4 = (b)4 implies (a ∨ c)4 = (b ∨ c)4 for all c ∈ L ,

(6) (a)4 = (0)4 if and only if a = 0 .

Proof. (1). Assume that a ≤ b . Let x ∈ (a)4 . Then we get x ∧ b∗ ≤ x ∧ a∗ = 0,
which implies that x ∈ (b)4 . Therefore (a)4 ⊆ (b)4 .

(2). Using (3) of Lemma 2.2, we get

a∗ = b∗ ⇔ a∗∗ = b∗∗ ⇔ (a∗∗] = (b∗∗] ⇔ (a)4 = (b)4

(3). It is clear that (a∧ b)4 is a lower bound of both (a)4 and (b)4 . Let (c)4 ⊆
(a)4 and (c)4 ⊆ (b)4 for some c ∈ L . Let x ∈ (c)4 . Then x ∈ (a)4 = (a∗∗] and
x ∈ (b)4 = (b∗∗] . Then x ≤ a∗∗∧b∗∗ = (a∧b)∗∗ implies x ∈ ((a∧b)∗∗] = (a∧b)4 .
Therefore (a ∧ b)4 is the greatest lower bound of (a)4 and (b)4 .

(4). Suppose (a)4 = (b)4 . Let x ∈ (a ∧ c)4 , then we have

x ∧ (a∗ ∨ c∗) ≤ x ∧ (a ∧ c)∗ = 0 ⇒ (x ∧ a∗) ∨ (x ∧ c∗) = 0

⇒ x ∧ a∗ = 0 and x ∧ c∗ = 0

⇒ x ∈ (a)4 = (b)4 and x ∈ (c)4

⇒ x ∈ (b)4 ∩ (c)4 = (b ∧ c)4 by (3)

Thus (a∧ c)4 ⊆ (b∧ c)4 . By similar way we can prove that (b∧ c)4 ⊆ (a∧ c)4 .

(5). Suppose (a)4 = (b)4 . Let x ∈ (a ∨ c)4 , then we have

x ∧ (a ∨ c)∗ = 0 ⇒ x ∧ a∗ ∧ c∗ = 0

⇒ x ∧ c∗ ∈ (a)4 = (b)4

⇒ x ∧ c∗ ∧ b∗ = 0

⇒ x ∧ (c ∨ b)∗ = 0

⇒ x ∈ (b ∨ c)4
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Thus (a ∨ c)4 ⊆ (b ∨ c)4 . Similarly we can show that (b ∨ c)4 ⊆ (a ∨ c)4 .

(6). It is obvious.

The following is an easy consequence of (4) and (5) of the above Lemma 2.3.

Proposition 2.4. Let L be a distributive p-algebra. For any x, y ∈ L , define a
binary relation Ψ on L as follows :

Ψ = {(x, y) : (x)4 = (y)4}
Then Ψ is a congruence on L .

Now, let us denote the set of all boosters of a distributive p-algebra L by
B∗(L). Then we get the following:

B∗(L) = {(x)4 : x ∈ L} = {(x∗∗)4 : x ∈ L}
Theorem 2.5. Let L be a distributive p-algebra. Then the following hold.

(1) B∗(L) is a Boolean algebra on its own,

(2) L is homomorphic of B∗(L) ,

(3) B(L) ∼= B∗(L) .

Proof. (1). It is easy to observe that B∗(L) is a partially ordered set with respect
to the set inclusion. Clearly (0)4 = {0} is the zero element of B∗(L) and (1)4 = L

is the unit element of it. Define the operations ∩ and t on B∗(L) as follows :

(x)4 ∩ (y)4 = (x ∧ y)4 and (x)4 t (y)4 = (x ∨ y)4

Clearly (x ∧ y)4 is the infimum of both (x)4 and (y)4 in B∗(L). Since x, y ≤
x∨y , we get (x)4, (y)4 ⊆ (x∨y)4 . So (x∨y)4 is an upper bound for both (x)4

and (y)4 . Suppose (z)4 is an upper bound of (x)4 and (y)4 for some z ∈ L .
Then (x)4, (y)4 ⊆ (z)4 . Thus we get

a ∈ (x ∨ y)4 ⇒ a ∧ (x ∨ y)∗ = 0

⇒ a ∧ x∗ ∧ y∗ = 0

⇒ a ∧ x∗ ∈ (y)4 ⊆ (z)4

⇒ a ∧ x∗ ∧ z∗ = 0

⇒ a ∧ z∗ ∈ (x)4 ⊆ (z)4

⇒ a ∧ z∗ = 0

⇒ a ∈ (z)4
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Then (x∨y)4 is the supremum for (x)4 and (y)4 in B∗(L). Therefore (B∗(L),∩,t, 0, L)
is a bounded lattice. For all (x)4, (y)4 and (z)4 in B∗(L) we have

(x)4 ∩ ((y)4 t (z)4) = (x)4 ∩ (y ∨ z)4

= (x ∧ (y ∨ z)4

= ((x ∧ y) ∨ (x ∧ z))4

= (x ∧ y)4 t (x ∧ z)4

= ((x)4 ∧ (y)4) t ((x)4 ∧ (z)4)

Therefore it concludes that B∗(L) is a distributive lattice. Define a unary opera-
tion ¯ on B∗(L) by (x)4∗ = (x∗)4,∀(x) ∈ B∗(L), so we get

(x)4 ∧ (x)4− = (x)4 ∧ (x∗)4 = (x ∧ x∗)4 = (0)4 = {0} ,

(x)4 ∨ (x)4− = ((x ∨ x∗)∗∗)4 = ((x∗ ∧ x∗∗)∗)4 = (1)4 = L

Thus it yields that B∗(L) is a complemented lattice. Therefore (B∗(L),∩,t,̄ , 0, L)
forms a Boolean algebra.

(2). Define ϕ : L → B∗(L) by ϕ(x) = (x∗∗)4 . Then by Lemma 2.2(2), we get
(x∗∗)4 = (x)4 . Clearly ϕ(0) = {0} and ϕ(1) = L . For every x, y ∈ L we have

ϕ(x ∧ y) = (x ∧ y)4 = (x)4 ∩ (y)4 = ϕ(x) ∩ ϕ(y),

ϕ(x ∨ y) = (x ∨ y)4 = (x)4 t (y)4 = ϕ(x) t ϕ(y),

ϕ(x∗) = (x∗)4 = (x)4− = [ϕ(x)]−

Obviously ϕ is an onto map. Therefore ϕ is an onto homomorphism. Moreover
ϕ is not a one-one, because of (a)4 = (x)4 defined by a∗ = x∗ and a 6= x .

(3). Clearly the map f : B(L) → B∗(L) with f(a) = (a)4 is an isomorphism.

Definition 2.6. Let L be a distributive p-algebra. Then define as follows:

(1) For any ideal I of L , define an operator σ as σ(I) = {(x)4 : x ∈ I}
(2) For any ideal I of B∗(L), define an operator ←−σ as ←−σ (I) = {x ∈ L : (x)4 ∈ I}

Lemma 2.7. The following conditions hold in a distributive p-algebra L .

(1) for any ideal I of L , σ(I) is an ideal of B∗(L) ,

(2) for any ideal I of B∗(L) , ←−σ (I) is an ideal of L ,

(3) ←−σ and σ are isotones,
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(4) σ(←−σ (I)) = I , for all ideal I of B∗(L) .

Proof. (1). Let I be an ideal of L . Clearly (0)4 ∈ σ(I) as 0 ∈ I . For any
(x)4, (y)4 ∈ σ(I), we get (x)4 t (y)4 = (x ∨ y)4 ∈ σ(I) as x ∨ y ∈ I . Again
let (x)4 ∈ σ(I) and (z)4 ∈ B∗(L) such that (z)4 ⊆ (x)4 , then (z)4 = (z)4 ∩
(x)4 = (x ∧ z)4 ∈ σ(I) as z ∧ x ∈ I . Therefore σ(I) is an ideal of B∗(L).

(2). Let I be an ideal of B∗(L). Then 0 ∈ ←−σ (I) as (0)4 ∈ I . Let x, y ∈ ←−σ (I).
Then (x ∨ y)4 = (x)4 t (y)4 ∈ I implies x ∨ y ∈ ←−σ (I). Now let x, y ∈ ←−σ (I)
and y ≤ x , for some y ∈ L . Since (y)4 = (y)4 ∩ (x)4 ∈ I . Then y ∈ ←−σ (I).
Therefore ←−σ (I) is an ideal of L .

(3). Let I, H be two ideals of B∗(L). Suppose I ⊆ H and x ∈ ←−σ (I). Then
(x)4 ∈ I ⊆ H implies x ∈ ←−σ (H). Therefore ←−σ is an isotone operator from
the lattice I(B∗(L)) of all ideals of B∗(L) to the lattice I(L) of all ideals of L .
Similarly, we can also prove that σ is an isotone operator.

(4). Let I be an ideal of B∗(L), then ←−σ is an ideal of L (by (2)). So we have

(x)4 ∈ I ⇔ x ∈ ←−σ (I) ⇔ (x)4 ∈ σ←−σ (I)

Then σ←−σ (I) = I . So σ←−σ : I(B∗(L)) → I(B∗(L)) is the identity map.

Theorem 2.8. The map I →←−σ σ(I) is a closure operator of a lattice of ideals of
L , that is

(1) I ⊆ ←−σ σ(I) ,

(2) I ⊆ H implies ←−σ σ(I) ⊆ ←−σ σ(H) ,

(3) ←−σ σ{←−σ σ(I)} = ←−σ σ(I) for any ideals I, H of L .

Proof. (1). Let x ∈ I . Then we get (x)4 ∈ σ(I). Since σ(I) is an ideal of B∗(L),
we get that x ∈ ←−σ σ(I). Therefore I ⊆ ←−σ σ(I).

(2). Suppose I ⊆ H . Let x ∈ ←−σ σ(I). Hence (x)4 ∈ σ(I). We have (x)4 = (y)4

for some y ∈ I ⊆ H . Then (x)4 = (y)4 ∈ σ(H). Since σ(H) is an ideal of
B∗(L), then x ∈ ←−σ σ(H). Therefore I ⊆ ←−σ σ(I).

(3). We have ←−σ σ(I) ⊆ ←−σ σ{←−σ σ(I)} as σ{←−σ σ(I)} is an ideal of B∗(L). Con-
versely, let x ∈ ←−σ σ{←−σ σ(I)} . Then (x)4 ∈ σ{←−σ σ(I)} . Hence (x)4 = (y)4 for
some y ∈ ←−σ σ(I). Thus (x)4 = (y)4 ∈ σ(I). So x ∈ ←−σ (I).

Corollary 2.9. Let I, H be two ideals of a distributive p-algebra L . Then ←−σ σ(I∩
H) = ←−σ σ(I) ∩←−σ σ(H)
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Proof. Clearly ←−σ σ(I ∩ H) ⊆ ←−σ σ(I) ∩ ←−σ σ(H). Conversely, let x ∈ ←−σ σ(I) ∩
←−σ σ(H). Then we get (x)4 ∈ σ(I) ∩ σ(H) = σ(I ∩H) as h is a homomorphism.
Then we have x ∈ ←−σ σ(I ∩H). Therefore ←−σ σ(I) ∩←−σ σ(H) ⊆ ←−σ σ(I ∩H).

3 σ-ideals of distributive p-algebras

In this section, the notion of σ -ideals is introduced in distributive p-algebras.
The class of σ -ideals is characterized by means of boosters.

Definition 3.1. An ideal I of a distributive p-algebra L is called σ -ideal if
←−σ σ(I) = I .

Theorem 3.2. Let I be an ideal of a distributive p-algebra L . The following
conditions are equivalent.

(1) I is a σ -ideal,

(2) for all x, y ∈ L, (x)4 = (y)4 and x ∈ I imply y ∈ I ,

(3) I =
⋃

x∈I(x)4 ,

(4) x ∈ I implies (x)4 ⊆ I .

Proof. (1) ⇒ (2): Assume that I is a σ -ideal of L . Let x, y ∈ L be such that
(x)4 = (y)4 . Suppose x ∈ I . Then (x)4 = (y)4 ∈ σ(I). Since σ(I) is an ideal
of B∗(L), we have y ∈ ←−σ σ(I) = I .

(2) ⇒ (3): For any x ∈ I , we have (x] ⊆ (x)4 . Hence I =
⋃

x∈I(x] ⊆ ⋃
x∈I(x)4 .

Conversely, let x ∈ I and y ∈ (x)4 . Then we get (y)4 ⊆ (x)4 . Hence (y)4 =
(y)4 ∩ (x)4 = (y ∧ x)4 . Since y ∧ x ∈ I , by condition (2), we get y ∈ I . Hence
(x)4 ⊆ I for all x ∈ I . This it yields

⋃
x∈I(x)4 ⊆ I . Therefore I =

⋃
x∈I(x)4 .

(3)⇒(4): Assume the condition (3). Let x ∈ I . Then by condition (3), we get
x ∈ (a)4 for some a ∈ I . Let t ∈ (x)4 . Then it concludes t ∈ (x)4 ⊆ (a)4 and
a ∈ I . Hence t ∈ ⋃

a∈I(a)4 = I .

(4) ⇒ (1): Assume the condition (4). Clearly, I ⊆ ←−σ σ(I). Conversely, let
x ∈ ←−σ σ(I). Then (x)4 ∈ σ(I). Hence (x)4 = (y)4 for some y ∈ I . Since y ∈ I ,
by condition (4), it yields x ∈ (x)4 ⊆ (y)4 ⊆ I .

Lemma 3.3. For any distributive p-algebra L , the principal ideal (a] is a σ -ideal
if and only if a is a closed element of L .
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Proof. For all a ∈ B(L), we have (a)4 = (a] . Then σ((a)4) = σ((a]) = {(x)4 :
x ∈ (a]} = {(x)4 : x ≤ a} = {(x)4 : (x)4 ⊆ (a)4} = ((a)4]←−σ σ((a)4) =
←−σ {((a)4]} = {x ∈ L : (x)4 ∈ ((a)4]} = {x ∈ L : (x∗∗)4 = (x)4 ⊆ (a]} = {x ∈
L : x ≤ x∗∗ ≤ a} = (a] = (a)4 . Then any principal ideal of L generated by a
closed element is a σ -ideal. Conversely, let I = (a] be a σ -ideal of L . Then we
get (a)4 = (a∗∗)4 . Then a ∈ I implies a∗∗ ∈ I . Hence a = a∗∗ .

Theorem 3.4. Let L be a distributive p-algebra. If P is a minimal in the class
of all prime ideals containing a given σ -ideal, then P is a σ -ideal.

Proof. Let I be a σ -ideal of L and P minimal in the class of all prime ideals of L

such that I ⊆ P . Suppose P is not a σ -ideal. Then there exist elements x, y ∈ L

and y 6∈ P . Consider the filter F = (L−P )∨ [x∧y). Then F ∩I = ∅ . Otherwise,
choose a ∈ F ∩ I . Then a = r ∧ s for some r ∈ L− P and s ∈ [x ∧ y). Then

a = r ∧ s = r ∧ (s ∨ (x ∧ y)) = (r ∧ s) ∨ (r ∧ x ∧ y) ∈ I as s ≥ x ∧ y

Since s ≥ x∧y , then a = r∧s ≥ r∧x∧y . Thus r∧x∧y ∈ I . Since (x)4 = (y)4 ,
then we get (r ∧ y)4 = (r ∧ x ∧ y)4 . since I is a σ -ideal and r ∧ x ∧ y ∈ I ,
we get r ∧ y ∈ I ⊆ P . Hence r ∈ P or y ∈ P , which is a contradiction. Thus
F ∩ I = φ . Then there exists a prime ideal H such that H ∩H = φ and I ⊆ H .
Since F ∩H = φ , we get H ⊆ P . Also x∧ y 6∈ H and x∧ y ∈ P . Hence H ⊂ P .
Therefore P is not minimal in the class of all prime ideals containing I , which is
a contradiction. Therefore P is a σ -ideal of L .

Theorem 3.5. Let L be a distributive p-algebra. Then every proper σ -ideal of L

is the intersection of all prime σ -ideals containing it.

Proof. Let I be a proper σ -ideal of L. Consider the following set

I0 = {P : P is a prime ideal and I ⊆ P}

Clearly I ⊆ I0 . Conversely, let a 6∈ I . Take R = {H : H is a σ -ideal, I ⊆ H ,
a 6∈ H} . Clearly R satisfies the hypothesis of Zorn’s Lemma. Let M be a maximal
element of R . Let b, c ∈ L be such that b 6∈ M and c 6∈ M . Then

M ⊆ M ∨ (b] ⊆ ←−σ σ{M ∨ (b]} and M ⊆ M ∨ (c] ⊆ ←−σ σ{M ∨ (c]}

By maximality of M , we get

a ∈ ←−σ σ{M ∨ (b]} and a ∈ ←−σ σ{M ∨ (c]}
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Thus we get

a ∈ ←−σ σ{M ∨ (b]} ∩←−σ σ{M ∨ (c]}
= ←−σ σ{{M ∨ (b]} ∩ {M ∨ (c]}}
= ←−σ σ{M ∨ (b ∧ c]}

If b∧c ∈ M , then a ∈ ←−σ σ(M) = M , which is a contradiction. Thus M is a prime
σ -ideal such that a 6∈ M . Therefore a ∈ I0 . Then I0 ⊆ I . Therefore I0 = I .

Now, for any distributive p-algebra L , let I(L) denotes the set of all ideals of
L and Iσ(L) denotes the set of all σ -ideals of L . It is known that (I(L),∧,∨) is a
distributive lattice, where I∧J = I∩J and I∨J = {x ∈ L : x ≥ i∨j, i ∈ I, j ∈ J} .
We will prove that the set Iσ(L) of all σ -ideal of a distributive p-algebra L forms
a bounded distributive lattice.

Theorem 3.6. Let L be a distributive p-algebra. Then the set Iσ(L) forms a
bounded distributive lattice on its own.

Proof. Define the operations ∧ and Y on Iσ(L) as follows :

I ∧ J = I ∩ J and I Y J = ←−σ σ(I ∨ J) for all I, J ∈ Iσ(L)

where I ∨ J is the supremum of both I and J in the lattice I(L). For every
I, J ∈ Iσ(L), we get

←−σ σ(I ∩ J) = ←−σ σ(I) ∩←−σ σ(J) = I ∩ J ⇒ I ∩ J ∈ Iσ(L)

Since I, J ⊆ I∨J , we get I ⊆ ←−σ σ(I), J ⊆ ←−σ σ(J) ⊆ ←−σ σ(I∨J ). Then ←−σ σ(I∨J) is
an upper bound of both I and J . Suppose K ∈ Iσ(L) such that I, J ⊆ K . Then
I∨J ⊆ K . Thus ←−σ σ(I∨J) ⊆ ←−σ σ(K) = K . Then ←−σ σ(I∨J) is the supremum of
I and J . Clearly ←−σ σ(I ∨J) is a σ -ideal of L . It is clear that {0}, L ∈ Iσ(L). So
(Iσ(L), Y,∧, {0}, L) is a bounded lattice. Now, let I, J,H ∈ Iσ(L). Then by the
distributivity of I(L) we get I∧(J YH) = I∩←−σ σ(J∨H) = ←−σ σ(I)∩←−σ σ(J∨H) =
←−σ σ(I ∩ (J ∨H)) = ←−σ σ((I ∩ J)∨ (I ∩H)) = (I ∩ J) Y (I ∩H) = (I ∧ J) Y (I ∧H).
Therefore (Iσ(L),Y,∧, {0}, L) is a distributive lattice.

Theorem 3.7. Let L be distributive p-algebra. Then the lattice Iσ(L) is isomor-
phic to the lattice I(B∗(L)) of all ideals of B∗(L) .
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Proof. Let ϕ be the restriction of σ : I(L) → I(B∗(L)) to Iσ(L). Then ϕ(I) =
σ(I), I ∈ Iσ(I). Let ϕ(I) = ϕ(J). Then σ(I) = σ(J) implies I = ←−σ σ(I) =
←−σ σ(J) = J . So ϕ is an injective map. Now we prove that ϕ is a surjective map.
For any I ∈ I(B∗(L)). Then ←−σ (I) is an ideal of L and σ←−σ (I) = I . We observe
that ←−σ (I) ∈ Iσ(L) because of ←−σ σ{←−σ (I)} = ←−σ (I). Then we have ϕ(←−σ (I)) =
σ←−σ (I) = I . Therefore ϕ is a surjective map. Since σ is a homomorphism and
σ←−σ σ(I ∨ J)) = σ(I ∨ J) we get

ϕ(I ∧ J) = σ(I ∩ J) = σ(I) ∩ σ(J) = ϕ(I) ∩ ϕ(J)

ϕ(I Y J) = σ←−σ σ(I ∨ J) = σ(I ∨ J) = σ(I) t σ(J) = ϕ(I) t ϕ(J)

for every I, J ∈ Iσ(L). Therefore ϕ is an isomorphism.

For any ideal I of a distributive p-algebra L . Consider I∗ = {x ∈ L : x ≥
i∗, i ∈ I} and I∗∗ = {x ∈ L : x ≤ i∗∗, i ∈ I} . It is easy to check that I∗ ia a filter
of L and I∗∗ is an ideal of L . If I = (a] , we observe that (a]∗∗ = (a∗∗] = (a)4 .

Theorem 3.8. Let I be an ideal of be a distributive p-algebra L . Then

(1) I = I∗∗ if and only if (i ∈ I ⇒ i∗∗ ∈ I) ,

(2) I is a σ -ideal of L if and only if I = I∗∗ ,

(3) I is a σ -ideal of L implies (i)4 ⊆ I for all i ∈ I .

Proof. (1). Let I = I∗∗ and i ∈ I . Then we get i ≤ a∗∗ ∈ I∗∗ for some a ∈ I .
Then i∗∗ ≤ a∗∗ ∈ I implies i∗∗ ∈ I . Conversely, Suppose (i ∈ I ⇒ i∗∗ ∈ I) and
x ∈ I∗∗ . Then x ≤ i∗∗ for some i ∈ I . Hence i∗∗ ∈ I . Therefore x ∈ I . Thus
I∗∗ ⊆ I . Obviously I ⊆ I∗∗ . Therefore I = I∗∗ .

(2). Suppose I = I∗∗ . Then I ⊆ ←−σ σ(I). Let x ∈ ←−σ σ(I), then (x)4 ∈ σ(I).
Thus (x)4 = (y)4 for some y ∈ I . Then x ∧ y∗ = 0 implies x ≤ y∗∗ ∈ I . So
x ∈ I and ←−σ σ(I) ⊆ I . Therefore I is a σ -ideal of L . Conversely, let z ∈ I∗∗ .
So we have x ≤ i∗∗ for some i ∈ I and (i)4 ∈ σ(I). Since (i)4 = (i∗∗)4 , we get
i∗∗ ∈ I . Therefore z ∈ I and I∗∗ ⊆ I . Clearly I ⊆ I∗∗ . Thus I∗∗ = I .

(3). Let x ∈ (i)4 , then x∧ i∗ = 0. Thus x ≤ i∗∗ ∈ I∗∗ = I . Therefore x ∈ I .

4 σ-ideals and homomorphisms

In this section, some properties of the homomorphic images and the inverse
images of σ -ideals are studied. By a homomorphism on a distributive p-algebra L ,
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we mean a lattice homomorphism h which preserves the pseudo-complementation
i.e. (h(x))∗ = h(x∗) for all x ∈ L .

Theorem 4.1. Let h : L → M be a homomorphism of a distributive p-algebra L

onto a distributive p-algebra M . Then

(1) h(a)4 = (h(a))4 for all a ∈ L ,

(2) h(I) ∈ Iσ(M) for all I ∈ Iσ(L) ,

(3) I ∈ Iσ(L) ⇒ (h(i))4 ⊆ (h(i))4 ⊆ h(I) for all i ∈ I .

Proof. (1). Let a ∈ L . Then we get h(a)4 = h{x ∈ L : x ∧ a∗ = 0} = {h(x) ∈
M : h(x) ∧ h(a∗) = h(0)} = {h(x) ∈ M : h(x) ∧ (h(a))∗ = 0} = (h(a))4 .

(2). For every ideal I of L , it is known that h(I) is an ideal of M . Hence h(I) ⊆
←−σ σ(h(I)). So we have to prove only that ←−σ σ(h(I)) ⊆ h(I). Let y ∈ ←−σ σ(h(I)).
Then (y)4 ∈ σ(h(I)). Hence (y)4 = (z)4 for some z ∈ h(I). Thus we get
y ∧ (h(a))∗ = 0 where z = h(a), a ∈ I . Hence y ≤ (h(a))∗∗ = h(a∗) ∈ h(I∗∗) =
h(I) ⇒ y ∈ h(I). Therefore h(I) is a σ -ideal of M .

(3). It can be proved similarly.

Theorem 4.2. Let h : L → M be a homomorphism of a distributive p-algebra L

into a distributive p-algebra M . Then

(1) h−1(H) ∈ Iσ(L) for all H ∈ Iσ(M) ,

(2) Kerh ∈ Iσ(L) .

Proof. (1). Since h−1(H) is an ideal of L , we get h−1(H) ⊆ ←−σ σ(h−1(H)). Let
x ∈ ←−σ σ(h−1(H)). Then (x)4 ∈ σ(h−1(H)). Hence (y)4 = (x)4 for some
y ∈ h−1(H). Thus (h(y)4) = (h(x)4), h(y) ∈ H . Hence h(x) ∈ H which implies
x ∈ h−1(H). Then h−1(H) is a σ -ideal of L .

(2). Clearly Kerh ⊆ ←−σ σ(Kerh). Let x ∈ ←−σ σ(Kerh). Then (x)4 ∈ σ(kerh).
Hence (x)4 = (y)4 for some y ∈ Kerh . Hence x ∧ y∗ = 0. Then h(x ∧ y∗) = 0.
Hence h(x)∧(h(y))∗ = 0, which means h(x) = 0 as (h(y))∗ = 1. Thus x ∈ Kerh .
Then ←−σ σ(Kerh) ⊆ Kerh . Hence Kerh is a σ -ideal of L .

Theorem 4.3. Let h : L → M be a homomorphism of a distributive p-algebra L

onto a distributive p-algebra M . Then

(1)B∗(L) is homomorphic of B∗(M) ,

(2)Iσ(L) is homomorphic of Iσ(M) .
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Proof. (1). Define g : B∗(L) → B∗(M) by g(a)4 = h(a)4 . For every (a)4, (b)4 ∈
B∗(L), we have g((a)4 ∩ (b)4) = g(a ∧ b)4 = h(a ∧ b)4 = (h(a ∧ b))4 =
(h(a)∧h(b))4 = h(a)4∩h(b)4 = g(a)4∩g(b)4 . Also g((a)4t(b)4) = g(a∨b)4 =
h(a∨b)4 = (h(a∨∨b))4 = (h(a)∨h(b))4 = h(a)4th(b)4 = g(a)4tg(b)4 . Also
g((a)4−) = h((a)4−) = h(a∗)4 = ((h(a))∗)4 = (h(a)4)− . Clearly g(0L)4 =
(0M )4 and g(1L)4 = (1M )4 , where 0L, 0M are the smallest elements of L and
M respectively and 1L, 1M are the greatest elements of L and M respectively.
Therefore g is a Boolean homomorphism.

(2). Define the map π : Iσ(L) → Iσ(M) by π(I) = h(I). It is clear that π is
a {0, 1,∧} -homomorphism. So we have to prove that π(I Y J) = π(I) Y π(J).
Since ←−σ σ(I ∨ J) is a σ -ideal of L then h{←−σ σ(I ∨ J)} is a σ -ideal of M . Now
we have π(I) Y π(J) = h(I) Y h(J) = ←−σ σ{h(I) ∨ h(J)} = ←−σ σ{h(I ∨ J)} ⊆
←−σ σ{h{←−σ σ(I ∨ J)}} = h{←−σ σ(I ∨ J)} = π(I Y J).

Conversely, for (i)4, (j)4 ∈ Iσ(L), we have

(i)4 Y (j)4 = ←−σ σ{(i)4 ∨ (j)4} = ←−σ σ(i ∨ j)4 = (i ∨ j)4 = (i)4 t (j)4

Now, we can get

y ∈ π(I Y J) = h{←−σ σ(I ∨ J)} ⇒ y = h(x) where x ∈ ←−σ σ(I ∨ J)

⇒ (x)4 ∈ σ(I ∨ J)

⇒ (x)4 = (z)4 for some z ∈ I ∨ J

⇒ (x)4 = (z)4 and z ≤ i ∨ j, i ∈ I, j ∈ J

⇒ (x)4 = (z)4 ⊆ (i ∨ j)4

⇒ (y)4 = (h(x))4 = h((x)4) ⊆ h(i ∨ j)4

⇒ y ∈ (y)4 ⊆ (h(i))4 t (h(j))4

⇒ y ∈ h(I) Y h(J)

⇒ y ∈ π(I) Y π(J)

Therefore π is a homomorphism and the proof is completed.
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