

σ -ideals of Distributive p-algebras

Abd El-Mohsen Badawy and M. Sambasiva Rao*

Received 13 October 2013

Revised 1 April 2014

Accepted 4 April 2014

Abstract: The concepts of boosters and σ -ideals are introduced in distributive p-algebras. Many properties of σ -ideals are studied in terms of boosters. It is proved that the class of all boosters of a distributive p-algebra is a Boolean algebra. It is also observed that the lattice of all σ -ideals of a distributive p-algebra is isomorphic to the ideal lattice of the lattice of all boosters. Finally, some properties of σ -ideals are studied with respect to homomorphisms.

Keywords: Distributive p-algebras; boosters; σ -ideals; homomorphisms

2000 Mathematics Subject Classification: 92D25, 34D20, 92D40

Introduction

The theory of pseudo-complements was introduced in semi-lattices and distributive lattices by O. Frink [6] and G. Birkhof [3]. Later pseudo-complements in Stone algebras has been studied by many authors like R. Balbes[1], O. Frink[6], G. Gratzer[4] etc.

In this paper, the notion of boosters is introduced in distributive p-algebras and then many properties of boosters are studied. It is proved that the set $B_*(L)$ of all boosters of a distributive p-algebra L forms a Boolean algebra on its own. It is also observed that a distributive p-algebra L is homomorphic to $B_*(L)$. The concept of σ -ideals is introduced in distributive p-algebras. Some properties of σ -ideals of a distributive p-algebra are studied in terms of boosters and then proved

* Corresponding author

that the set $I_\sigma(L)$ of all σ -ideals can be made into a distributive lattice. It is proved that $I_\sigma(L)$ is isomorphic to the ideal lattice of $B_*(L)$. It is proved that every minimal prime ideal of a distributive p-algebra containing a given σ -ideal is a σ -ideal. Also, it is proved that every proper σ -ideal of a distributive p-algebra is the intersection of all prime σ -ideals containing it. Finally, some properties of σ -ideals are studied with respect to homomorphisms. If a distributive p-algebras L is homomorphic to a distributive p-algebra M , then the lattice $B_*(L)$ of boosters is homomorphic to $B_*(M)$ the lattice of Boosters of M and the ideal lattice of $B_*(L)$ is homomorphic to the ideal lattice of $B_*(M)$.

1 Preliminaries

In this section, we present certain definitions and results which are taken mostly from the papers [2], [5] and [6] for the ready reference of the reader.

A (distributive)p-algebra is a universal algebra $(L, \vee, \wedge, *, 0, 1)$ where $(L, \vee, \wedge, 0, 1)$ is a bounded (distributive)lattice and the unary operation $*$ is defined by

$$x \leq a^* \Leftrightarrow x \wedge a = 0$$

Here the above operation $*$ is called pseudo-complementation on L . It is will known that the class of all p-algebras is equational(See [6]). A distributive p-algebra L in which $x^* \vee x^{**} = 1$ for all $x \in L$ holds is called a Stone algebra.

We shall frequently use the following rules of the computations in p-algebras. For any two elements a, b of a p-algebra L , we have (see [2],[5])

- (1) $0^{**} = 0$ and $1^{**} = 1$,
- (2) $a \wedge a^* = 0$,
- (3) $a \leq b$ implies $b^* \leq a^*$,
- (4) $a \leq a^{**}$,
- (5) $a^{***} = a^*$,
- (6) $(a \vee b)^* = a^* \wedge b^*$,
- (7) $(a \wedge b)^* \geq a^* \vee b^*$,
- (8) $(a \wedge b)^{**} = a^{**} \wedge b^{**}$,
- (9) $(a \vee b)^{**} = (a^* \wedge b^*)^* = (a^{**} \vee b^{**})^{**}$.

An element x of a p-algebra L is called closed if $x^{**} = x$ and the set of all

closed elements of L is denoted by $B(L) = \{a \in L : a = a^{**}\}$. It is known that $(B(L), \vee, \wedge, ^*, 0, 1)$ is a Boolean algebra, where $a \vee b = (a^* \wedge b^*)^*$. An element a is called dense if $a^* = 0$. The set $D(L) = \{d \in L : d^* = 0\}$ is a filter of L .

2 Boosters of distributive p-algebras

In this section, the concept of boosters is introduced in a distributive p-algebra. Some properties of boosters are investigated in a distributive p-algebra. It is proved that the class of all boosters forms a Boolean algebra.

Definition 2.1. Let L be a distributive p-algebra. Then for every $a \in L$, define the booster of a as follows :

$$(a)^\Delta = \{x \in L : x \wedge a^* = 0\}$$

It is obvious that $(0)^\Delta = \{0\}$ and $(1)^\Delta = L$. Moreover, the class of boosters of a distributive p-algebra satisfies the following properties.

Lemma 2.2. Let L be a distributive p-algebra. Then for any $a, b \in L$ we have

- (1) $(a)^\Delta$ is an ideal of L containing a ,
- (2) $(a)^\Delta = (a^{**})^\Delta = (a^{**}]$,
- (3) $(a)^\Delta = (a] \Leftrightarrow a \in B(L)$,
- (4) $(a)^\Delta = L \Leftrightarrow a \in D(L)$,
- (5) $a \in (b)^\Delta \Rightarrow (a)^\Delta \subseteq (b)^\Delta$.

Proof. (1). Clearly $0 \in (a)^\Delta$. Let $x, y \in (a)^\Delta$. Then $(x \vee y) \wedge a^* = (x \wedge a^*) \vee (y \wedge a^*) = 0$. Thus $x \vee y \in (a)^\Delta$. Now let $x \in (a)^\Delta$ and $z \leq x$. Then $z \wedge a^* \leq x \wedge a^* = 0$. So, $z \in (a)^\Delta$. Thus $(a)^\Delta$ is an ideal of L . Clearly $a \in (a)^\Delta$.

(2). $(a)^\Delta = (a^{**})^\Delta$ follows from the fact $a^* = a^{***}$. Since $a^{**} \wedge a^* = 0$, we get that $a^{**} \in (a)^\Delta$. To show that a^{**} is the greatest element of $(a)^\Delta$, let $y \in (a)^\Delta$. Then $y \wedge a^* = 0$, which implies that $y \leq a^{**}$. Therefore $(a)^\Delta = (a^{**}]$.

(3). Let $a \in B(L)$. Then $a^{**} = a$. So by (2), we get $(a)^\Delta = (a]$. Conversely, let $(a)^\Delta = (a]$. But (2) gives $(a)^\Delta = (a^{**}]$. Thus $a = a^{**}$ and $a \in B(L)$.

(4). Let $a \in D(L)$. Then $x \wedge a^* = 0$ for all $x \in L$. So $(a)^\Delta = L$. Conversely, let $(a)^\Delta = L$. Then $(a)^\Delta = (a^{**}] = L$ and $(1)^\Delta = (1^{**}] = L$ imply that $a^* = 0$.

(5). Suppose $a \in (b)^\Delta$. Then $a \wedge b^* = 0$ and hence $b^* \leq a^*$. Let $x \in (a)^\Delta$.

Then $x \wedge a^* = 0$ and thus $a^* \leq x^*$. Thus it concludes $b^* \leq a^* \leq x^*$. Hence $x \wedge b^* \leq x \wedge a^* = 0$. Thus it yields $x \in (b)^\Delta$. Therefore $(a)^\Delta \subseteq (b)^\Delta$. \square

Lemma 2.3. *For any two elements a, b of a distributive p -algebra L , we have*

- (1) $a \leq b$ implies $(a)^\Delta \subseteq (b)^\Delta$,
- (2) $a^* = b^* \Leftrightarrow (a)^\Delta = (b)^\Delta$,
- (3) $(a)^\Delta \cap (b)^\Delta = (a \wedge b)^\Delta$,
- (4) $(a)^\Delta = (b)^\Delta$ implies $(a \wedge c)^\Delta = (b \wedge c)^\Delta$ for all $c \in L$,
- (5) $(a)^\Delta = (b)^\Delta$ implies $(a \vee c)^\Delta = (b \vee c)^\Delta$ for all $c \in L$,
- (6) $(a)^\Delta = (0)^\Delta$ if and only if $a = 0$.

Proof. (1). Assume that $a \leq b$. Let $x \in (a)^\Delta$. Then we get $x \wedge b^* \leq x \wedge a^* = 0$, which implies that $x \in (b)^\Delta$. Therefore $(a)^\Delta \subseteq (b)^\Delta$.

(2). Using (3) of Lemma 2.2, we get

$$a^* = b^* \Leftrightarrow a^{**} = b^{**} \Leftrightarrow (a^{**}) = (b^{**}) \Leftrightarrow (a)^\Delta = (b)^\Delta$$

(3). It is clear that $(a \wedge b)^\Delta$ is a lower bound of both $(a)^\Delta$ and $(b)^\Delta$. Let $(c)^\Delta \subseteq (a)^\Delta$ and $(c)^\Delta \subseteq (b)^\Delta$ for some $c \in L$. Let $x \in (c)^\Delta$. Then $x \in (a)^\Delta = (a^{**})$ and $x \in (b)^\Delta = (b^{**})$. Then $x \leq a^{**} \wedge b^{**} = (a \wedge b)^{**}$ implies $x \in ((a \wedge b)^{**}) = (a \wedge b)^\Delta$. Therefore $(a \wedge b)^\Delta$ is the greatest lower bound of $(a)^\Delta$ and $(b)^\Delta$.

(4). Suppose $(a)^\Delta = (b)^\Delta$. Let $x \in (a \wedge c)^\Delta$, then we have

$$\begin{aligned} x \wedge (a^* \vee c^*) &\leq x \wedge (a \wedge c)^* = 0 \Rightarrow (x \wedge a^*) \vee (x \wedge c^*) = 0 \\ &\Rightarrow x \wedge a^* = 0 \text{ and } x \wedge c^* = 0 \\ &\Rightarrow x \in (a)^\Delta = (b)^\Delta \text{ and } x \in (c)^\Delta \\ &\Rightarrow x \in (b)^\Delta \cap (c)^\Delta = (b \wedge c)^\Delta \text{ by (3)} \end{aligned}$$

Thus $(a \wedge c)^\Delta \subseteq (b \wedge c)^\Delta$. By similar way we can prove that $(b \wedge c)^\Delta \subseteq (a \wedge c)^\Delta$.

(5). Suppose $(a)^\Delta = (b)^\Delta$. Let $x \in (a \vee c)^\Delta$, then we have

$$\begin{aligned} x \wedge (a \vee c)^* &= 0 \Rightarrow x \wedge a^* \wedge c^* = 0 \\ &\Rightarrow x \wedge c^* \in (a)^\Delta = (b)^\Delta \\ &\Rightarrow x \wedge c^* \wedge b^* = 0 \\ &\Rightarrow x \wedge (c \vee b)^* = 0 \\ &\Rightarrow x \in (b \vee c)^\Delta \end{aligned}$$

Thus $(a \vee c)^\Delta \subseteq (b \vee c)^\Delta$. Similarly we can show that $(b \vee c)^\Delta \subseteq (a \vee c)^\Delta$. (6). It is obvious. \square

The following is an easy consequence of (4) and (5) of the above Lemma 2.3.

Proposition 2.4. *Let L be a distributive p -algebra. For any $x, y \in L$, define a binary relation Ψ on L as follows :*

$$\Psi = \{(x, y) : (x)^\Delta = (y)^\Delta\}$$

Then Ψ is a congruence on L .

Now, let us denote the set of all boosters of a distributive p -algebra L by $B_*(L)$. Then we get the following:

$$B_*(L) = \{(x)^\Delta : x \in L\} = \{(x^{**})^\Delta : x \in L\}$$

Theorem 2.5. *Let L be a distributive p -algebra. Then the following hold.*

- (1) $B_*(L)$ is a Boolean algebra on its own,
- (2) L is homomorphic of $B_*(L)$,
- (3) $B(L) \cong B_*(L)$.

Proof. (1). It is easy to observe that $B_*(L)$ is a partially ordered set with respect to the set inclusion. Clearly $(0)^\Delta = \{0\}$ is the zero element of $B_*(L)$ and $(1)^\Delta = L$ is the unit element of it. Define the operations \cap and \sqcup on $B_*(L)$ as follows :

$$(x)^\Delta \cap (y)^\Delta = (x \wedge y)^\Delta \text{ and } (x)^\Delta \sqcup (y)^\Delta = (x \vee y)^\Delta$$

Clearly $(x \wedge y)^\Delta$ is the infimum of both $(x)^\Delta$ and $(y)^\Delta$ in $B_*(L)$. Since $x, y \leq x \vee y$, we get $(x)^\Delta, (y)^\Delta \subseteq (x \vee y)^\Delta$. So $(x \vee y)^\Delta$ is an upper bound for both $(x)^\Delta$ and $(y)^\Delta$. Suppose $(z)^\Delta$ is an upper bound of $(x)^\Delta$ and $(y)^\Delta$ for some $z \in L$. Then $(x)^\Delta, (y)^\Delta \subseteq (z)^\Delta$. Thus we get

$$\begin{aligned} a \in (x \vee y)^\Delta &\Rightarrow a \wedge (x \vee y)^* = 0 \\ &\Rightarrow a \wedge x^* \wedge y^* = 0 \\ &\Rightarrow a \wedge x^* \in (y)^\Delta \subseteq (z)^\Delta \\ &\Rightarrow a \wedge x^* \wedge z^* = 0 \\ &\Rightarrow a \wedge z^* \in (x)^\Delta \subseteq (z)^\Delta \\ &\Rightarrow a \wedge z^* = 0 \\ &\Rightarrow a \in (z)^\Delta \end{aligned}$$

Then $(x \vee y)^\Delta$ is the supremum for $(x)^\Delta$ and $(y)^\Delta$ in $B_*(L)$. Therefore $(B_*(L), \cap, \sqcup, 0, L)$ is a bounded lattice. For all $(x)^\Delta, (y)^\Delta$ and $(z)^\Delta$ in $B_*(L)$ we have

$$\begin{aligned} (x)^\Delta \cap ((y)^\Delta \sqcup (z)^\Delta) &= (x)^\Delta \cap (y \vee z)^\Delta \\ &= (x \wedge (y \vee z))^\Delta \\ &= ((x \wedge y) \vee (x \wedge z))^\Delta \\ &= (x \wedge y)^\Delta \sqcup (x \wedge z)^\Delta \\ &= ((x)^\Delta \wedge (y)^\Delta) \sqcup ((x)^\Delta \wedge (z)^\Delta) \end{aligned}$$

Therefore it concludes that $B_*(L)$ is a distributive lattice. Define a unary operation ${}^-$ on $B_*(L)$ by $(x)^{\Delta*} = (x^*)^\Delta, \forall (x) \in B_*(L)$, so we get

$$\begin{aligned} (x)^\Delta \wedge (x)^{\Delta-} &= (x)^\Delta \wedge (x^*)^\Delta = (x \wedge x^*)^\Delta = (0)^\Delta = \{0\}, \\ (x)^\Delta \vee (x)^{\Delta-} &= ((x \vee x^*)^{**})^\Delta = ((x^* \wedge x^{**}))^\Delta = (1)^\Delta = L \end{aligned}$$

Thus it yields that $B_*(L)$ is a complemented lattice. Therefore $(B_*(L), \cap, \sqcup, {}^-, 0, L)$ forms a Boolean algebra.

(2). Define $\varphi : L \rightarrow B_*(L)$ by $\varphi(x) = (x^{**})^\Delta$. Then by Lemma 2.2(2), we get $(x^{**})^\Delta = (x)^\Delta$. Clearly $\varphi(0) = \{0\}$ and $\varphi(1) = L$. For every $x, y \in L$ we have

$$\begin{aligned} \varphi(x \wedge y) &= (x \wedge y)^\Delta = (x)^\Delta \cap (y)^\Delta = \varphi(x) \cap \varphi(y), \\ \varphi(x \vee y) &= (x \vee y)^\Delta = (x)^\Delta \sqcup (y)^\Delta = \varphi(x) \sqcup \varphi(y), \\ \varphi(x^*) &= (x^*)^\Delta = (x)^{\Delta-} = [\varphi(x)]^- \end{aligned}$$

Obviously φ is an onto map. Therefore φ is an onto homomorphism. Moreover φ is not a one-one, because of $(a)^\Delta = (x)^\Delta$ defined by $a^* = x^*$ and $a \neq x$.

(3). Clearly the map $f : B(L) \rightarrow B_*(L)$ with $f(a) = (a)^\Delta$ is an isomorphism. \square

Definition 2.6. Let L be a distributive p-algebra. Then define as follows:

- (1) For any ideal I of L , define an operator σ as $\sigma(I) = \{(x)^\Delta : x \in I\}$
- (2) For any ideal I of $B_*(L)$, define an operator $\overleftarrow{\sigma}$ as $\overleftarrow{\sigma}(I) = \{x \in L : (x)^\Delta \in I\}$

Lemma 2.7. *The following conditions hold in a distributive p-algebra L .*

- (1) *for any ideal I of L , $\sigma(I)$ is an ideal of $B_*(L)$,*
- (2) *for any ideal I of $B_*(L)$, $\overleftarrow{\sigma}(I)$ is an ideal of L ,*
- (3) *$\overleftarrow{\sigma}$ and σ are isotones,*

(4) $\sigma(\overleftarrow{\sigma}(I)) = I$, for all ideal I of $B_*(L)$.

Proof. (1). Let I be an ideal of L . Clearly $(0)^\Delta \in \sigma(I)$ as $0 \in I$. For any $(x)^\Delta, (y)^\Delta \in \sigma(I)$, we get $(x)^\Delta \sqcup (y)^\Delta = (x \vee y)^\Delta \in \sigma(I)$ as $x \vee y \in I$. Again let $(x)^\Delta \in \sigma(I)$ and $(z)^\Delta \in B_*(L)$ such that $(z)^\Delta \subseteq (x)^\Delta$, then $(z)^\Delta = (z)^\Delta \cap (x)^\Delta = (x \wedge z)^\Delta \in \sigma(I)$ as $z \wedge x \in I$. Therefore $\sigma(I)$ is an ideal of $B_*(L)$.

(2). Let I be an ideal of $B_*(L)$. Then $0 \in \overleftarrow{\sigma}(I)$ as $(0)^\Delta \in I$. Let $x, y \in \overleftarrow{\sigma}(I)$. Then $(x \vee y)^\Delta = (x)^\Delta \sqcup (y)^\Delta \in I$ implies $x \vee y \in \overleftarrow{\sigma}(I)$. Now let $x, y \in \overleftarrow{\sigma}(I)$ and $y \leq x$, for some $y \in L$. Since $(y)^\Delta = (y)^\Delta \cap (x)^\Delta \in I$. Then $y \in \overleftarrow{\sigma}(I)$. Therefore $\overleftarrow{\sigma}(I)$ is an ideal of L .

(3). Let I, H be two ideals of $B_*(L)$. Suppose $I \subseteq H$ and $x \in \overleftarrow{\sigma}(I)$. Then $(x)^\Delta \in I \subseteq H$ implies $x \in \overleftarrow{\sigma}(H)$. Therefore $\overleftarrow{\sigma}$ is an isotone operator from the lattice $I(B_*(L))$ of all ideals of $B_*(L)$ to the lattice $I(L)$ of all ideals of L . Similarly, we can also prove that σ is an isotone operator.

(4). Let I be an ideal of $B_*(L)$, then $\overleftarrow{\sigma}$ is an ideal of L (by (2)). So we have

$$(x)^\Delta \in I \Leftrightarrow x \in \overleftarrow{\sigma}(I) \Leftrightarrow (x)^\Delta \in \sigma \overleftarrow{\sigma}(I)$$

Then $\sigma \overleftarrow{\sigma}(I) = I$. So $\sigma \overleftarrow{\sigma} : I(B_*(L)) \rightarrow I(B_*(L))$ is the identity map. \square

Theorem 2.8. *The map $I \rightarrow \overleftarrow{\sigma}\sigma(I)$ is a closure operator of a lattice of ideals of L , that is*

- (1) $I \subseteq \overleftarrow{\sigma}\sigma(I)$,
- (2) $I \subseteq H$ implies $\overleftarrow{\sigma}\sigma(I) \subseteq \overleftarrow{\sigma}\sigma(H)$,
- (3) $\overleftarrow{\sigma}\sigma\{\overleftarrow{\sigma}\sigma(I)\} = \overleftarrow{\sigma}\sigma(I)$ for any ideals I, H of L .

Proof. (1). Let $x \in I$. Then we get $(x)^\Delta \in \sigma(I)$. Since $\sigma(I)$ is an ideal of $B_*(L)$, we get that $x \in \overleftarrow{\sigma}\sigma(I)$. Therefore $I \subseteq \overleftarrow{\sigma}\sigma(I)$.

(2). Suppose $I \subseteq H$. Let $x \in \overleftarrow{\sigma}\sigma(I)$. Hence $(x)^\Delta \in \sigma(I)$. We have $(x)^\Delta = (y)^\Delta$ for some $y \in I \subseteq H$. Then $(x)^\Delta = (y)^\Delta \in \sigma(H)$. Since $\sigma(H)$ is an ideal of $B_*(L)$, then $x \in \overleftarrow{\sigma}\sigma(H)$. Therefore $I \subseteq \overleftarrow{\sigma}\sigma(I)$.

(3). We have $\overleftarrow{\sigma}\sigma(I) \subseteq \overleftarrow{\sigma}\sigma\{\overleftarrow{\sigma}\sigma(I)\}$ as $\sigma\{\overleftarrow{\sigma}\sigma(I)\}$ is an ideal of $B_*(L)$. Conversely, let $x \in \overleftarrow{\sigma}\sigma\{\overleftarrow{\sigma}\sigma(I)\}$. Then $(x)^\Delta \in \sigma\{\overleftarrow{\sigma}\sigma(I)\}$. Hence $(x)^\Delta = (y)^\Delta$ for some $y \in \overleftarrow{\sigma}\sigma(I)$. Thus $(x)^\Delta = (y)^\Delta \in \sigma(I)$. So $x \in \overleftarrow{\sigma}(I)$. \square

Corollary 2.9. *Let I, H be two ideals of a distributive p -algebra L . Then $\overleftarrow{\sigma}\sigma(I \cap H) = \overleftarrow{\sigma}\sigma(I) \cap \overleftarrow{\sigma}\sigma(H)$*

Proof. Clearly $\overleftarrow{\sigma}(I \cap H) \subseteq \overleftarrow{\sigma}(I) \cap \overleftarrow{\sigma}(H)$. Conversely, let $x \in \overleftarrow{\sigma}(I) \cap \overleftarrow{\sigma}(H)$. Then we get $(x)^\Delta \in \sigma(I) \cap \sigma(H) = \sigma(I \cap H)$ as h is a homomorphism. Then we have $x \in \overleftarrow{\sigma}(I \cap H)$. Therefore $\overleftarrow{\sigma}(I) \cap \overleftarrow{\sigma}(H) \subseteq \overleftarrow{\sigma}(I \cap H)$. \square

3 σ -ideals of distributive p-algebras

In this section, the notion of σ -ideals is introduced in distributive p-algebras. The class of σ -ideals is characterized by means of boosters.

Definition 3.1. An ideal I of a distributive p-algebra L is called σ -ideal if $\overleftarrow{\sigma}(I) = I$.

Theorem 3.2. Let I be an ideal of a distributive p-algebra L . The following conditions are equivalent.

- (1) I is a σ -ideal,
- (2) for all $x, y \in L$, $(x)^\Delta = (y)^\Delta$ and $x \in I$ imply $y \in I$,
- (3) $I = \bigcup_{x \in I} (x)^\Delta$,
- (4) $x \in I$ implies $(x)^\Delta \subseteq I$.

Proof. (1) \Rightarrow (2): Assume that I is a σ -ideal of L . Let $x, y \in L$ be such that $(x)^\Delta = (y)^\Delta$. Suppose $x \in I$. Then $(x)^\Delta = (y)^\Delta \in \sigma(I)$. Since $\sigma(I)$ is an ideal of $B_*(L)$, we have $y \in \overleftarrow{\sigma}(I) = I$.

(2) \Rightarrow (3): For any $x \in I$, we have $[x] \subseteq (x)^\Delta$. Hence $I = \bigcup_{x \in I} [x] \subseteq \bigcup_{x \in I} (x)^\Delta$. Conversely, let $x \in I$ and $y \in (x)^\Delta$. Then we get $(y)^\Delta \subseteq (x)^\Delta$. Hence $(y)^\Delta = (y)^\Delta \cap (x)^\Delta = (y \wedge x)^\Delta$. Since $y \wedge x \in I$, by condition (2), we get $y \in I$. Hence $(x)^\Delta \subseteq I$ for all $x \in I$. This it yields $\bigcup_{x \in I} (x)^\Delta \subseteq I$. Therefore $I = \bigcup_{x \in I} (x)^\Delta$.

(3) \Rightarrow (4): Assume the condition (3). Let $x \in I$. Then by condition (3), we get $x \in (a)^\Delta$ for some $a \in I$. Let $t \in (x)^\Delta$. Then it concludes $t \in (x)^\Delta \subseteq (a)^\Delta$ and $a \in I$. Hence $t \in \bigcup_{a \in I} (a)^\Delta = I$.

(4) \Rightarrow (1): Assume the condition (4). Clearly, $I \subseteq \overleftarrow{\sigma}(I)$. Conversely, let $x \in \overleftarrow{\sigma}(I)$. Then $(x)^\Delta \in \sigma(I)$. Hence $(x)^\Delta = (y)^\Delta$ for some $y \in I$. Since $y \in I$, by condition (4), it yields $x \in (x)^\Delta \subseteq (y)^\Delta \subseteq I$. \square

Lemma 3.3. For any distributive p-algebra L , the principal ideal $(a]$ is a σ -ideal if and only if a is a closed element of L .

Proof. For all $a \in B(L)$, we have $(a)^\Delta = (a]$. Then $\sigma((a)^\Delta) = \sigma((a]) = \{(x)^\Delta : x \in (a]\} = \{(x)^\Delta : x \leq a\} = \{(x)^\Delta : (x)^\Delta \subseteq (a)^\Delta\} = ((a)^\Delta] \overleftarrow{\sigma} \sigma((a)^\Delta) = \overleftarrow{\sigma}\{(a)^\Delta\} = \{x \in L : (x)^\Delta \in ((a)^\Delta)\} = \{x \in L : (x^{**})^\Delta = (x)^\Delta \subseteq (a)\} = \{x \in L : x \leq x^{**} \leq a\} = (a] = (a)^\Delta$. Then any principal ideal of L generated by a closed element is a σ -ideal. Conversely, let $I = (a]$ be a σ -ideal of L . Then we get $(a)^\Delta = (a^{**})^\Delta$. Then $a \in I$ implies $a^{**} \in I$. Hence $a = a^{**}$. \square

Theorem 3.4. *Let L be a distributive p -algebra. If P is a minimal in the class of all prime ideals containing a given σ -ideal, then P is a σ -ideal.*

Proof. Let I be a σ -ideal of L and P minimal in the class of all prime ideals of L such that $I \subseteq P$. Suppose P is not a σ -ideal. Then there exist elements $x, y \in L$ and $y \notin P$. Consider the filter $F = (L - P) \vee [x \wedge y]$. Then $F \cap I = \emptyset$. Otherwise, choose $a \in F \cap I$. Then $a = r \wedge s$ for some $r \in L - P$ and $s \in [x \wedge y]$. Then

$$a = r \wedge s = r \wedge (s \vee (x \wedge y)) = (r \wedge s) \vee (r \wedge x \wedge y) \in I \text{ as } s \geq x \wedge y$$

Since $s \geq x \wedge y$, then $a = r \wedge s \geq r \wedge x \wedge y$. Thus $r \wedge x \wedge y \in I$. Since $(x)^\Delta = (y)^\Delta$, then we get $(r \wedge y)^\Delta = (r \wedge x \wedge y)^\Delta$. since I is a σ -ideal and $r \wedge x \wedge y \in I$, we get $r \wedge y \in I \subseteq P$. Hence $r \in P$ or $y \in P$, which is a contradiction. Thus $F \cap I = \emptyset$. Then there exists a prime ideal H such that $H \cap H = \emptyset$ and $I \subseteq H$. Since $F \cap H = \emptyset$, we get $H \subseteq P$. Also $x \wedge y \notin H$ and $x \wedge y \in P$. Hence $H \subset P$. Therefore P is not minimal in the class of all prime ideals containing I , which is a contradiction. Therefore P is a σ -ideal of L . \square

Theorem 3.5. *Let L be a distributive p -algebra. Then every proper σ -ideal of L is the intersection of all prime σ -ideals containing it.*

Proof. Let I be a proper σ -ideal of L . Consider the following set

$$I_0 = \{P : P \text{ is a prime ideal and } I \subseteq P\}$$

Clearly $I \subseteq I_0$. Conversely, let $a \notin I$. Take $R = \{H : H \text{ is a } \sigma\text{-ideal, } I \subseteq H, a \notin H\}$. Clearly R satisfies the hypothesis of Zorn's Lemma. Let M be a maximal element of R . Let $b, c \in L$ be such that $b \notin M$ and $c \notin M$. Then

$$M \subseteq M \vee (b] \subseteq \overleftarrow{\sigma} \sigma\{M \vee (b]\} \text{ and } M \subseteq M \vee (c] \subseteq \overleftarrow{\sigma} \sigma\{M \vee (c]\}$$

By maximality of M , we get

$$a \in \overleftarrow{\sigma} \sigma\{M \vee (b]\} \text{ and } a \in \overleftarrow{\sigma} \sigma\{M \vee (c]\}$$

Thus we get

$$\begin{aligned} a &\in \overleftarrow{\sigma}\sigma\{M \vee (b]\} \cap \overleftarrow{\sigma}\sigma\{M \vee (c]\} \\ &= \overleftarrow{\sigma}\sigma\{\{M \vee (b]\} \cap \{M \vee (c]\}\} \\ &= \overleftarrow{\sigma}\sigma\{M \vee (b \wedge c]\} \end{aligned}$$

If $b \wedge c \in M$, then $a \in \overleftarrow{\sigma}\sigma(M) = M$, which is a contradiction. Thus M is a prime σ -ideal such that $a \notin M$. Therefore $a \in I_0$. Then $I_0 \subseteq I$. Therefore $I_0 = I$. \square

Now, for any distributive p-algebra L , let $I(L)$ denotes the set of all ideals of L and $I_\sigma(L)$ denotes the set of all σ -ideals of L . It is known that $(I(L), \wedge, \vee)$ is a distributive lattice, where $I \wedge J = I \cap J$ and $I \vee J = \{x \in L : x \geq i \vee j, i \in I, j \in J\}$. We will prove that the set $I_\sigma(L)$ of all σ -ideal of a distributive p-algebra L forms a bounded distributive lattice.

Theorem 3.6. *Let L be a distributive p-algebra. Then the set $I_\sigma(L)$ forms a bounded distributive lattice on its own.*

Proof. Define the operations \wedge and \vee on $I_\sigma(L)$ as follows :

$$I \wedge J = I \cap J \text{ and } I \vee J = \overleftarrow{\sigma}\sigma(I \vee J) \text{ for all } I, J \in I_\sigma(L)$$

where $I \vee J$ is the supremum of both I and J in the lattice $I(L)$. For every $I, J \in I_\sigma(L)$, we get

$$\overleftarrow{\sigma}\sigma(I \cap J) = \overleftarrow{\sigma}\sigma(I) \cap \overleftarrow{\sigma}\sigma(J) = I \cap J \Rightarrow I \cap J \in I_\sigma(L)$$

Since $I, J \subseteq I \vee J$, we get $I \subseteq \overleftarrow{\sigma}\sigma(I), J \subseteq \overleftarrow{\sigma}\sigma(J) \subseteq \overleftarrow{\sigma}\sigma(I \vee J)$. Then $\overleftarrow{\sigma}\sigma(I \vee J)$ is an upper bound of both I and J . Suppose $K \in I_\sigma(L)$ such that $I, J \subseteq K$. Then $I \vee J \subseteq K$. Thus $\overleftarrow{\sigma}\sigma(I \vee J) \subseteq \overleftarrow{\sigma}\sigma(K) = K$. Then $\overleftarrow{\sigma}\sigma(I \vee J)$ is the supremum of I and J . Clearly $\overleftarrow{\sigma}\sigma(I \vee J)$ is a σ -ideal of L . It is clear that $\{0\}, L \in I_\sigma(L)$. So $(I_\sigma(L), \vee, \wedge, \{0\}, L)$ is a bounded lattice. Now, let $I, J, H \in I_\sigma(L)$. Then by the distributivity of $I(L)$ we get $I \wedge (J \vee H) = I \cap \overleftarrow{\sigma}\sigma(J \vee H) = \overleftarrow{\sigma}\sigma(I) \cap \overleftarrow{\sigma}\sigma(J \vee H) = \overleftarrow{\sigma}\sigma(I \cap (J \vee H)) = \overleftarrow{\sigma}\sigma((I \cap J) \vee (I \cap H)) = (I \cap J) \vee (I \cap H) = (I \wedge J) \vee (I \wedge H)$. Therefore $(I_\sigma(L), \vee, \wedge, \{0\}, L)$ is a distributive lattice. \square

Theorem 3.7. *Let L be distributive p-algebra. Then the lattice $I_\sigma(L)$ is isomorphic to the lattice $I(B_*(L))$ of all ideals of $B_*(L)$.*

Proof. Let φ be the restriction of $\sigma : I(L) \rightarrow I(B_*(L))$ to $I_\sigma(L)$. Then $\varphi(I) = \sigma(I), I \in I_\sigma(I)$. Let $\varphi(I) = \varphi(J)$. Then $\sigma(I) = \sigma(J)$ implies $I = \overleftarrow{\sigma}\sigma(I) = \overleftarrow{\sigma}\sigma(J) = J$. So φ is an injective map. Now we prove that φ is a surjective map. For any $I \in I(B_*(L))$. Then $\overleftarrow{\sigma}(I)$ is an ideal of L and $\sigma\overleftarrow{\sigma}(I) = I$. We observe that $\overleftarrow{\sigma}(I) \in I_\sigma(L)$ because of $\overleftarrow{\sigma}\sigma\{\overleftarrow{\sigma}(I)\} = \overleftarrow{\sigma}(I)$. Then we have $\varphi(\overleftarrow{\sigma}(I)) = \sigma\overleftarrow{\sigma}(I) = I$. Therefore φ is a surjective map. Since σ is a homomorphism and $\sigma\overleftarrow{\sigma}\sigma(I \vee J) = \sigma(I \vee J)$ we get

$$\begin{aligned}\varphi(I \wedge J) &= \sigma(I \cap J) = \sigma(I) \cap \sigma(J) = \varphi(I) \cap \varphi(J) \\ \varphi(I \vee J) &= \sigma\overleftarrow{\sigma}\sigma(I \vee J) = \sigma(I \vee J) = \sigma(I) \sqcup \sigma(J) = \varphi(I) \sqcup \varphi(J)\end{aligned}$$

for every $I, J \in I_\sigma(L)$. Therefore φ is an isomorphism. \square

For any ideal I of a distributive p-algebra L . Consider $I^* = \{x \in L : x \geq i^*, i \in I\}$ and $I_{**} = \{x \in L : x \leq i^{**}, i \in I\}$. It is easy to check that I^* is a filter of L and I_{**} is an ideal of L . If $I = (a)$, we observe that $(a)_{**} = (a^{**}) = (a)^\Delta$.

Theorem 3.8. *Let I be an ideal of be a distributive p-algebra L . Then*

- (1) $I = I_{**}$ if and only if $(i \in I \Rightarrow i^{**} \in I)$,
- (2) I is a σ -ideal of L if and only if $I = I_{**}$,
- (3) I is a σ -ideal of L implies $(i)^\Delta \subseteq I$ for all $i \in I$.

Proof. (1). Let $I = I_{**}$ and $i \in I$. Then we get $i \leq a^{**} \in I_{**}$ for some $a \in I$. Then $i^{**} \leq a^{**} \in I$ implies $i^{**} \in I$. Conversely, Suppose $(i \in I \Rightarrow i^{**} \in I)$ and $x \in I_{**}$. Then $x \leq i^{**}$ for some $i \in I$. Hence $i^{**} \in I$. Therefore $x \in I$. Thus $I_{**} \subseteq I$. Obviously $I \subseteq I_{**}$. Therefore $I = I_{**}$.

(2). Suppose $I = I_{**}$. Then $I \subseteq \overleftarrow{\sigma}\sigma(I)$. Let $x \in \overleftarrow{\sigma}\sigma(I)$, then $(x)^\Delta \in \sigma(I)$. Thus $(x)^\Delta = (y)^\Delta$ for some $y \in I$. Then $x \wedge y^* = 0$ implies $x \leq y^{**} \in I$. So $x \in I$ and $\overleftarrow{\sigma}\sigma(I) \subseteq I$. Therefore I is a σ -ideal of L . Conversely, let $z \in I_{**}$. So we have $x \leq i^{**}$ for some $i \in I$ and $(i)^\Delta \in \sigma(I)$. Since $(i)^\Delta = (i^{**})^\Delta$, we get $i^{**} \in I$. Therefore $z \in I$ and $I_{**} \subseteq I$. Clearly $I \subseteq I_{**}$. Thus $I_{**} = I$.

(3). Let $x \in (i)^\Delta$, then $x \wedge i^* = 0$. Thus $x \leq i^{**} \in I_{**} = I$. Therefore $x \in I$. \square

4 σ -ideals and homomorphisms

In this section, some properties of the homomorphic images and the inverse images of σ -ideals are studied. By a homomorphism on a distributive p-algebra L ,

we mean a lattice homomorphism h which preserves the pseudo-complementation i.e. $(h(x))^* = h(x^*)$ for all $x \in L$.

Theorem 4.1. *Let $h : L \rightarrow M$ be a homomorphism of a distributive p -algebra L onto a distributive p -algebra M . Then*

- (1) $h(a)^\Delta = (h(a))^\Delta$ for all $a \in L$,
- (2) $h(I) \in I_\sigma(M)$ for all $I \in I_\sigma(L)$,
- (3) $I \in I_\sigma(L) \Rightarrow (h(i))^\Delta \subseteq (h(i))^\Delta \subseteq h(I)$ for all $i \in I$.

Proof. (1). Let $a \in L$. Then we get $h(a)^\Delta = h\{x \in L : x \wedge a^* = 0\} = \{h(x) \in M : h(x) \wedge h(a^*) = h(0)\} = \{h(x) \in M : h(x) \wedge (h(a))^* = 0\} = (h(a))^\Delta$.

(2). For every ideal I of L , it is known that $h(I)$ is an ideal of M . Hence $h(I) \subseteq \overleftarrow{\sigma}(h(I))$. So we have to prove only that $\overleftarrow{\sigma}(h(I)) \subseteq h(I)$. Let $y \in \overleftarrow{\sigma}(h(I))$. Then $(y)^\Delta \in \sigma(h(I))$. Hence $(y)^\Delta = (z)^\Delta$ for some $z \in h(I)$. Thus we get $y \wedge (h(a))^* = 0$ where $z = h(a), a \in I$. Hence $y \leq (h(a))^{**} = h(a^*) \in h(I_{**}) = h(I) \Rightarrow y \in h(I)$. Therefore $h(I)$ is a σ -ideal of M .

(3). It can be proved similarly. \square

Theorem 4.2. *Let $h : L \rightarrow M$ be a homomorphism of a distributive p -algebra L into a distributive p -algebra M . Then*

- (1) $h^{-1}(H) \in I_\sigma(L)$ for all $H \in I_\sigma(M)$,
- (2) $\text{Ker}h \in I_\sigma(L)$.

Proof. (1). Since $h^{-1}(H)$ is an ideal of L , we get $h^{-1}(H) \subseteq \overleftarrow{\sigma}(h^{-1}(H))$. Let $x \in \overleftarrow{\sigma}(h^{-1}(H))$. Then $(x)^\Delta \in \sigma(h^{-1}(H))$. Hence $(y)^\Delta = (x)^\Delta$ for some $y \in h^{-1}(H)$. Thus $(h(y))^\Delta = (h(x))^\Delta, h(y) \in H$. Hence $h(x) \in H$ which implies $x \in h^{-1}(H)$. Then $h^{-1}(H)$ is a σ -ideal of L .

(2). Clearly $\text{Ker}h \subseteq \overleftarrow{\sigma}(\text{Ker}h)$. Let $x \in \overleftarrow{\sigma}(\text{Ker}h)$. Then $(x)^\Delta \in \sigma(\text{Ker}h)$. Hence $(x)^\Delta = (y)^\Delta$ for some $y \in \text{Ker}h$. Hence $x \wedge y^* = 0$. Then $h(x \wedge y^*) = 0$. Hence $h(x) \wedge (h(y))^* = 0$, which means $h(x) = 0$ as $(h(y))^* = 1$. Thus $x \in \text{Ker}h$. Then $\overleftarrow{\sigma}(\text{Ker}h) \subseteq \text{Ker}h$. Hence $\text{Ker}h$ is a σ -ideal of L . \square

Theorem 4.3. *Let $h : L \rightarrow M$ be a homomorphism of a distributive p -algebra L onto a distributive p -algebra M . Then*

- (1) $B_*(L)$ is homomorphic of $B_*(M)$,
- (2) $I_\sigma(L)$ is homomorphic of $I_\sigma(M)$.

Proof. (1). Define $g : B_*(L) \rightarrow B_*(M)$ by $g(a)^\Delta = h(a)^\Delta$. For every $(a)^\Delta, (b)^\Delta \in B_*(L)$, we have $g((a)^\Delta \cap (b)^\Delta) = g(a \wedge b)^\Delta = h(a \wedge b)^\Delta = (h(a \wedge b))^\Delta = (h(a) \wedge h(b))^\Delta = h(a)^\Delta \cap h(b)^\Delta = g(a)^\Delta \cap g(b)^\Delta$. Also $g((a)^\Delta \sqcup (b)^\Delta) = g(a \vee b)^\Delta = h(a \vee b)^\Delta = (h(a \vee b))^\Delta = h(a)^\Delta \sqcup h(b)^\Delta = g(a)^\Delta \sqcup g(b)^\Delta$. Also $g((a)^\Delta^-) = h((a)^\Delta^-) = h(a^*)^\Delta = ((h(a))^*)^\Delta = (h(a)^\Delta)^-$. Clearly $g(0_L)^\Delta = (0_M)^\Delta$ and $g(1_L)^\Delta = (1_M)^\Delta$, where $0_L, 0_M$ are the smallest elements of L and M respectively and $1_L, 1_M$ are the greatest elements of L and M respectively. Therefore g is a Boolean homomorphism.

(2). Define the map $\pi : I_\sigma(L) \rightarrow I_\sigma(M)$ by $\pi(I) = h(I)$. It is clear that π is a $\{0, 1, \wedge\}$ -homomorphism. So we have to prove that $\pi(I \vee J) = \pi(I) \vee \pi(J)$. Since $\overleftarrow{\sigma}(I \vee J)$ is a σ -ideal of L then $h\{\overleftarrow{\sigma}(I \vee J)\}$ is a σ -ideal of M . Now we have $\pi(I) \vee \pi(J) = h(I) \vee h(J) = \overleftarrow{\sigma}\{h(I) \vee h(J)\} = \overleftarrow{\sigma}\{h(I \vee J)\} \subseteq \overleftarrow{\sigma}\{h\{\overleftarrow{\sigma}(I \vee J)\}\} = h\{\overleftarrow{\sigma}(I \vee J)\} = \pi(I \vee J)$.

Conversely, for $(i)^\Delta, (j)^\Delta \in I_\sigma(L)$, we have

$$(i)^\Delta \vee (j)^\Delta = \overleftarrow{\sigma}\{(i)^\Delta \vee (j)^\Delta\} = \overleftarrow{\sigma}(i \vee j)^\Delta = (i \vee j)^\Delta = (i)^\Delta \sqcup (j)^\Delta$$

Now, we can get

$$\begin{aligned} y \in \pi(I \vee J) = h\{\overleftarrow{\sigma}(I \vee J)\} &\Rightarrow y = h(x) \text{ where } x \in \overleftarrow{\sigma}(I \vee J) \\ &\Rightarrow (x)^\Delta \in \sigma(I \vee J) \\ &\Rightarrow (x)^\Delta = (z)^\Delta \text{ for some } z \in I \vee J \\ &\Rightarrow (x)^\Delta = (z)^\Delta \text{ and } z \leq i \vee j, i \in I, j \in J \\ &\Rightarrow (x)^\Delta = (z)^\Delta \subseteq (i \vee j)^\Delta \\ &\Rightarrow (y)^\Delta = (h(x))^\Delta = h((x)^\Delta) \subseteq h(i \vee j)^\Delta \\ &\Rightarrow y \in (y)^\Delta \subseteq (h(i))^\Delta \sqcup (h(j))^\Delta \\ &\Rightarrow y \in h(I) \vee h(J) \\ &\Rightarrow y \in \pi(I) \vee \pi(J) \end{aligned}$$

Therefore π is a homomorphism and the proof is completed. \square

References

- [1] R. Balbes and A. Horn, *Stone lattices*, Duke Math.J., **37** (1970), 537-543.
- [2] R. Balbes and P. Dwinger, *Distributive lattice*, Univ. of press, Columbia, 1974.

- [3] G. Birkhof, *Lattice theory*, Amer. Math. Soc., Colloquium Publications, **25**, New York, 1967.
- [4] G. Gratzer, *A generalization on Stone's representations theorem for Boolean algebras*, Duke Math. J., **30** (1963), 469-474.
- [5] G. Gratzer, *General lattice theory*, Math. Reihe **52**, Birkhauser Verlag, Basel, Stuttgart, 1978.
- [6] O. Frink, *Pseudo-complements in semi-lattices*, Duke Math. J., **29** (1962), 505-514.

Abd El-Mohsen Badawy
 Department of Mathematics
 Faculty of Science, Tanta University
 Tanta, Egypt
 Email: abdelmohsen.badawy@yahoo.com

M. Sambasiva Rao
 Department of Mathematics
 MVGR College of Engineering
 Chintalavalasa, Vizianagaram
 Andhra Pradesh, INDIA-535005
 Email: mssraomaths35@rediffmail.com