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are characterized in terms of principal dominator ideals. It is then proved that
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characterize closure ideals of M S-algebras. Finally some properties of closure

ideals are studied with respect to homomorphisms.

Keywords: M S-algebras, ideals, dominator ideals, principal dominator ideals,
closure ideals, homomorphisms

2000 Mathematics Subject Classification: 06D05, 06D30

Introduction

An Ockham algebra is a bounded distributive lattice with a dual endomorphism.
The class of all Ockham algebras contains the well-known classes for examples
Boolean algebras, de Morgan algebras, Kleene algebras and Stone algebras [4]. T.
S. Blyth and J. C. Varlet [2] defined a subclass of Ockham algebras so called M S-
algebras which generalizes both de Morgan algebras and Stone algebras. These
algebras belong to the class of Ockham algebras introduced by J. Berman [1]. The
class of all M S-algebras form an equational class. T. S. Blyth and J. C. Var-
let characterized the subvarieties of M S-algebras in [3]. Recently, Luo and Zeng
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[6] characterized the MS-algebras on which all congruences are in a one-to-one
correspondence with the kernel ideals. In [7], M. Sambasiva Rao, introduced the
concepts of boosters and [-filters of M S-algebras.

In this paper, we defined dominators, dominator ideals and principal dominator
ideals in M S-algebras and some basic properties of dominators, dominator ideals
and principal dominator ideals are studied. It is proved that the set of all prin-
cipal dominator ideals of an M S-algebra can be made into a de Morgan algebra.
The concept of closure ideals is introduced in M S-algebras. Many properties of
closure ideals of an M S-algebra are observed. It is proved that the class I.(L)
of all closure ideals of an M S-algebra L is a bounded distributive lattice. It is
proved that I.(L) is isomorphic to the ideal lattice of Moo (L). A set of equivalent
conditions is obtained to characterize closure ideals of M .S-algebras by means of
principal dominator ideals. Finally, some properties of closure ideals are studied
with respect to homomorphisms. The concept of dominator ideal preserving homo-
morphism from an M S-algebra L into another M S-algebra L, is introduced as
a homomorphism h satisfying the condition h(Iloo) = {h(I)}eo, for any ideal I of
L. Tt is proved that the images and the inverse images, under this homomorphism,
of a closure ideal are again closure ideals. If an M S-algebras L is homomorphic
to an M S-algebra L;, then the lattice Myo(L) of all principal dominators of L
is homomorphic to Moo(L1) the lattice Moo(Ly) of all principal dominators of
L1 and the lattice of all closure ideals of L is homomorphic to the lattice of all

closure ideals of Lj.

1 Preliminaries

In this section, we present certain definitions and results which are taken mostly
from the papers [2], [3] and [4] for the ready reference of the reader.

Definition 1.1. A de Morgan algebra is an algebra (L,V,A,”,0,1) of type
(2,2,1,0,0) where (L,V,A,0,1) is a bounded distributive lattice and ~ the unary

operation of involution satisfies :

T=x,(xVy =ZAY,(xAy)=TVT.

Definition 1.2. An M S-algebra is an algebra (L,V,A,°,0,1) of type (2,2,1,0,0)
where (L,V,A,0,1) is a bounded distributive lattice and ° the unary operation

of involution satisfies :
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x <z (xAy)° =2°Vy1°=0.

We recall some of the basic properties of M .S-algebras which were proved in
[2].
Theorem 1.3. For any two elements a,b of an MS -algebra L, we have
(1) 0° =
(2) a<b=10b°<a
(3) a°®° = a°
(4) (aVb)° =a®Ab°
(5) (aVb)°° =a°Vb>°
(6) (a ADb)°° =a® ADb>°.
For any M S-algebra L we can define the set of skeleton elements L°° = {a €
L:a=a°°}. It is known that (L°°,V,A,°,0,1) is a de Morgan subalgebra of L.

An element a € L is called a dense element if ¢° = 0. Then the set D(L) of all
dense elements of L forms a filter in L.

2 Dominators, dominator ideals and principal dom-

inator ideals

In this section, the concepts of dominators, dominator ideals and principal dom-
inator ideals are introduced in M S-algebras. Many properties of dominators,

dominator ideals and principal dominator ideals are investigated.

Definition 2.1. For any non-empty subset A of an M S-algebra L, define the
dominator of A as follows :

Ao ={z € L: 2 < a®° for some a € A}.
Obviously {0}oo = {0} and Lo, = L.

Lemma 2.2. For any two subsets A, B of an MS-algebra L, We have the fol-
lowing :

(1) AC A,

(2) A C B implies Aoo C Boo,
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(3) {Aoo}oo = Aoo .

Proof. (1). Since a < a°°, it is clear that A C Ay, .
(2). Tt is obvious
(3). Clearly Aoo C {Aco}oo- Let @ € {Aoo}oo. Then z < a°° for some a € Ay, .

Hence a < ¢®° for some ¢ € A. Thus we have z < ¢°°. Then =z € A,, and
{Aco}oo € {Ass}. Consequently, {Aoo}oo = Aoo. O

Lemma 2.3. For any two ideals I and J of an MS-algebra L, the following
hold:

(1) Iso is an ideal of L,
(2) (ImJ)oo - oomJ007
(3) (IV J)oo =1IooV Joo.

Proof. (1) . Clearly 0 € I,,. Let z,y € Ioo. Then z < i°°,y < j°° for some
1,7 € I. Hence xVy <i°°Vj°° = (iV7)°° implies zVy € Io,. Again, let z € I,
and z < z. Then x < i°° for some i € I. So, z < ¢°° implies z € I,,. Therefore
I, is an ideal of L.

(2). Clearly (INJ)oo C IooNJoo. Let & € Ioo N Joo. Then z < i°° and z < j°°
forsome i €T and j € J. So x < (iAj)°°. Thus zx € (INJ)oo as iAjeETINJ.
Then Ioo N Joo € (INJ)oo. Therefore (I N J)oo = oo N Joo-

(3). Clearly Ioo V Joo € (IV J)oo. Conversely, let € (I'V J)oo. Then z < a°°
for some a € IV J. Hence a =iV j for some i € I and j € J. So, we have
x<a®®=(1Vy7)° =i°Vj% e lwnVJo. Therefore (IV J)oo C IooV Joo. O

The result (2) of the above Lemma 3.3 can be generalized as follows:

Corollary 2.4. If {I; : i € A} is a family of ideals of L, then {[\;ca li}oo =
nieA(Ii)oo'

Definition 2.5. An ideal I of an M S-algebra L is called a dominator ideal if
I=1,.

We denote the set of all dominator ideals of L by I.o(L). Then by above

lemma, it is obvious that I,,(L) is a bounded distributive lattice.

Definition 2.6. For any element a of an M S-algebra L, the dominator {a}eo

is called a principal dominator ideal.
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Then it can be easily observed that {0}.o = {0} and {1}, = L. The following

Lemma is a direct consequence of the above definition.

Lemma 2.7. For any two elements a,b of an MS -algebra L, we have
(1) {a}oo = (a]oo = (a*°],

(2) (aloo = (a°°]oo

(8) a € (bloo < (a]oo T (b]oo

(4) a <b=(aloo € (b]oo,

(5) a is fized point of L implies (a]oo = (a°]oo,

(6) (aloo = (a] = a e L,

(7) (a)Joo =L < a€ D(L),

(8) (aloo ={0} ©a=0.

Let us denote the set of all principal dominator ideals of L by Myo(L). Then
some of the basic properties of M,,(L) are investigated in the following Theorem.
Theorem 2.8. Let L be an M S -algebra. Then we have the following conditions
(1) Moo(L) is a bounded sublattice of the lattice Ioo(L),

(2) L is homomorphic to Moo (L),
(3) Moo(L) is a de Morgan algebra,
(4) L°° is isomorphic to Moo(L).
Proof. (1). Clearly {0}, L € Myo(L). For every (a]oo, (b]oo of Moo(L), by Lemma
3.3(2),(3), we have
(@oo V (bloo ((a] vV (b])oo = (@ V Bloo
(@loo N (bloo ((a] N (B])oo = (@ A bloo-
Then (Moo(L),V,N,{0}, L) is a bounded sublattice of Ioo(L).

(2). Define the map f: L — Moo(L) by f(a) = (a]oo. Clearly f(0) ={0}, f(1) =
L. Using Lemma 3.3(2),(3), it can be easily seen that f is a homomorphism.

(3). Define the unary operation ~ on Moo (L) by (a],, = (a°]oo. Then we get

e = (a°]oo = (¢°°]oo = (oo,
(oo N (Bos) = (aAblye = ((aNb) o0 = (a° Voo = (a%oo V (6]00 = (a]oo V
((aloo V (Mloc) = (a Voo = ((aV1)%oo = (a° Aboo = ("Joo N (b]eo = (al5, N

—~

j|OO7

b]OO’
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Therefore (Moo(L),V,N,~,{0}, L) is a de Morgan algebra.

(4). It is easy to check that the map g : L°° — Moo (L) defined by g(a) = (a°°]oo
is an isomorphism. Then L°° = My (L). O

Theorem 2.9. Let I be an ideal of an MS-algebra L. Then oo = J;c (oo -

Proof. Let x € U;c;(i]oo- Then x € (a]oo for some a € I. Then x < a°° implies
x € Ioo. Therefore (J;c;(iloo € foo. Conversely, let o € Ioo. Then x < i°° for
some i € 1. So, x € (I°]oo = (100 € U;cs(foo. Thus Ioo € |J;cs(iloo. Therefore
Ioo = U;er (oo - 0

3 Closure ideals of M S-algebras

In this section, the notion of closure ideals is introduced in M S-algebras. The
class of all closure ideals is characterized by means of principal dominator ideals.

Definition 3.1. Let L be an M S-algebra. For any ideal I of L, define an
operator o : I(L) = I(Mso(L)) as follows :
o(I) ={(i]oo : 1 € I}

Definition 3.2. Let L be an MS-algebra. For any ideal I of Mo, (L), define an
operator & : Moo (L) — I(L) as follows:

S ={zel:(z]o cl}
Lemma 3.3. Let L be an MS -algebra. Then we have the following :
(1) for any ideal I of L, o(I) is an ideal of Moo(L),
(2) for any ideal T of Moo(L), 5 (I) is an ideal of L,
(3) T and o are isotones,
(4) o' (I) =1, for all ideal I of Moo(L),
(5) o is a homomorphism.
Proof. (1). Let I be an ideal of L. Clearly {0} € o() as 0 € I. For any
(Z]oo, (Yoo € a(I), we get (T]oo V (Yoo = (V yloo € o(I) as zVy € I. Again
let (2]oo € o(I) and (2]oo € Moo(L) such that (z]oo C (Z]oo. S0, (2]oo =

(z]oo N (Z]oo = (2 Ax]oo € 0(I) as z Ax € I. Thus (z]oo € o(I). Therefore o(I)
is an ideal of My, (L).
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(2). Let I be an ideal of Moo(L). Then 0 € & (I) as (0]oo € 1. Let x,y € T (I).
Then (2 V yloo = (#]oo V (y]oo € I implies #Vy € T (). Now let z € & (I) and
y < . Since (Y]oo = (Yloo N (2]oo € I, then y € G (I). Therefore & (I) is an
ideal of L.

(3). Let I,H be two ideals of Mo(L). Suppose I C H and x € % (I). Then
(2)oo € T C H implies = € & (H). Therefore & is an isotone operator from the
lattice I(Moo(L)) of all ideals of Moo(L) to the lattice I(L) of all ideals of L.
Similarly, we can also prove that ¢ is an isotone operator.

(4). Let I be an ideal of Mo,(L). Then (1) is an ideal of L (by (2)). So we

have
(2)oo €I © z € T(I) & (2]oo € 0T (1)

Then o5 (I) =1. So 07 : I(Moo(L)) — I(Moo(L)) is the identity map.

(5). Let I,J € I(L). Since o is isotone, we get that o(INJ) C o(I) No(J).
Conversely, let (z]oo € o(I)No(J). Then (z]oo = (i]oo and (z]oo = (jloo for some
i€l and j € J. Now (Z]oo = (iJoo N (Jloo = (i A jloo € (I N J). Therefore
o(I)Nao(J) Co(INJ). Since o is an isotone, we get o(I)V o(J) C o(IV J).
Conversely, let © € o(IV.J). Then (z]oo = (Yoo for some y € IV.J. Hence y = iVj
for some i € I and j € J. Thus (Yloo = (1 V floo = (iloo V (jloo € o(I) V a(J).
Therefore o(I vV J) C o(I)V o(J). Then o is a homomorphism from the lattice
of ideals of L into the lattice of ideals of M. (L). O

Theorem 3.4. The map T o(I): I(L) — I(L) is a closure operator, that is
(1) 1CFo(l),

(2) I C H implies 5o(I) C To(H),

(38) To{oo(I)} = To(l), for any I, H € I(L)

Proof. (1). Let = € I, then (z]oo € o(I). Since o(I) is an ideal of Moo(L), then
z € To(I). Therefore I C To(I).

(2). Suppose I C H. Let = € 5o (I). Hence (]oo € o(I). We have (2]oo = (y]oo
for some y € I C H. Then (z]oo = (yloo € o(H). Since o(H) is an ideal of
Moo (L), then = € Go(H). Therefore To(I) C To(H).

(3). We have 5 o(I) C 5o{Ta(I)} as To(I)} is an ideal of I(L). Conversely,
let © € To{T0o(I)}. Then (z]oo € o{To(I)}. Hence (z]oo = (y]oo for some
y e To(I). Thus (2]eo = (y]oo € o(I). So z € To(I). O
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Corollary 3.5. For any two ideals 1, H of an MS -algebra L, we have the fol-

lowing:
So(INH)=%o()NTo(H)

Proof. Clearly To(INH) C To(I)nvo(H). Conversely, let # € To(I)N
S o(H). Then (2]oo € o(I)No(H) = o(I N H) as o is a homomorphism. Then
we have z € 5 o(I N H). Therefore To(I)NGTo(H) C To(INH). O

Definition 3.6. An ideal I of an M S-algebra L is called a closure ideal if
%
co(l)=1.

Theorem 3.7. Let I be an ideal of an M S -algebra L. Then the following con-

ditions are equivalent:

(1) T is a closure ideal,

(2) For all z,y € L,(x])oo = (Yloo and xz € I imply y € I,
(3) I=1I,

(4) I = Uie](ﬂoo;
(5) x € I implies (x]oo C I.

Proof. (1)=(2) : Assume that I is a closure ideal. Let x,y € L be such that
(2]oo = (y]oo. Suppose that # € I = To(I). Then (z]oo = (¥)oo € o(I). Hence
yeoo(l)=1.

(2) =(3) : By Lemma 3.2(1), I C Io,. Let z € I,o, z < 3°°, for some i € I.
Then (z]oo C (i°°]oo = (i]oo,@ € I imply ¢°° € I by condition (2). Hence z € I.
Therefore Ioo C I and I,o = 1.

(3)=(4) : By Theorem 3.9, it is clear.

(4)=(5) : Assume the condition (4). Let « € I, then = € (2] C (2]oo. Hence by
condition (4) we get x € [J;c;(iloo = 1.

(5) = (1) : Assume the condition (5). Clearly, I C To(I). Conversely, let
x € To(I). Then (z]oo € o(I). Hence (2]oo = (y]oo for some y € I. Since y € I,
by condition (5), it yields z € (2]oo = (y]oo C I. O

Lemma 3.8. The following conditions are hold in any M S -algebra L
(1) (a] is a closure ideal if and only if a € L°°,
(2) For any ideal I of L, To(I) = I,
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(3) For any ideal I of L, 1o is a closure ideal,

(4) The map 5 o(I): I(L) — I(L) is a (0,1)-homomorphism.
Proof. (1). For all a € L°°, we have (a]oo = (a] by Lemma 3.7(6). Then

o((alos) = o((a]) ={(z]eo : @ € (a]}
(Z]oo 1 x < a}
( :

(z]oo € (aloo}

([
—— -

T]oo
= ((a]oo],
To((ales) = T{((a]oo]}
= {zeL:(x]oo € ((aoo]}
= {z€L:(2° = (2]oo C (a]}
= {xelL:z°° € (a}
= {zel:xz<z2%°<a}

= (a] = (afeo.

Then any principal ideal of an M S-algebra L generated by a closed element is a
closure ideal. Conversely, let I = (a] be a closure ideal of L. By Lemma 3.7(2),
we have (a]oo = (a°°]oo. Then a € (a] implies a°° € (a] (by Theorem 4.7(2)). So,
a®® < a. But a < a®°. Therefore a = a®°° and a is a closed element of L.

(2). For any ideal I of L, I, = |J;c;(i]oo (See Theorem 3.9). Then we prove that
To(l) = Uicr(ioo. Let x € (J;c;(iloo. Then we get 2 € (i]oo for some i € I.
Hence (z]oo C (i]oo. Now, i € I implies (i]oo € o(I). So, (z]oo € o(I) as o(I) is
an ideal of M,o(L). Then x € T o(I). Therefore Uier (oo € T o(I). Conversely,
let 2 € To(I). Then we get (z]oo € o(I). Hence (#]oo = (i]oo for some i € I.
Thus = € (z]oo = (100 € U,/ (oo, which yields that To(l) C Uier(iloo . Hence
To(I) = U,c;(iloo- Then To(I) = Ios.

(3). From (2), we have 5 0(Ioo) = {Ioo}oo. By Lemma 3.2(3), {Ioo}oo = Ioo.
Then <FJ(IOO) = I,.. Therefore I, is a closure ideal of L.

(4). Firstly, we observe

To((0]) = T{(0]} = {0} and To(L) = T{Mo(L)} = L
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Let I,J € I(L). Then by (2) and Lemma 3.3(2),(3) we get

To(InJg) = (INJ)eo
= TooNJoo
= To)nTo()),
To(IvJI) = (INJ)e
= IooV Joo
= Go()vTo(J)
Therefore & o is a (0,1)-homomorphism. O

Now, for any M S-algebra L, let I.(L) denote to the set of all closure ideals
of L. We will prove that the set I.(L) forms a bounded distributive lattice.

Theorem 3.9. Let L be an MS -algebra, the set I.(L) forms a bounded distribu-
tive lattice.

Proof. We have to show that the set I.(L) = {I € I(L) : To(I) = I} is a
sublattice of I(L). Clearly, {0} and L are closure ideals. Let I,J € I.(L). Then
by Corollary 4.5, we get
Go(InJ)=Fc(I)NTo(l)=1INJ
Then INJ € I.(L). Now Lemma 4.7(3) gives I = I,, and J = J,, and Lemma
3.3(3) gives (IV J)oo = Ioo V Joo. Then we have
Go(IVI) =TV J)eo=IooVJoo =1V J

Then IV J is a closure ideal of L. Then I.(L) is a bounded sublattice of I(L).
Consequently, (I.(L),V,N, {0}, L) is a bounded distributive lattice. O

Theorem 3.10. Let L be an MS -algebra. Then there is an isomorphism of
the lattice of closure ideals of L onto the ideal lattice of Moo(L). Under this

isomorphism the prime closure ideals corresponds to prime ideals of Moo (L) .

Proof. Define the mapping g : I.(L) — I(Moo(L)) by g(I) = o(I). Obviously,
g9({0}) = {0} and ¢g(L) = Moo(L). Now for any two closure ideals I and J of L.

Since o is a homomorphism, we get

gInJ) = o(InJ)=c()No(J)=
gIVvJ) = o(IVJ)=c(l)Va(J)=
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Then g is a (0,1)-lattice homomorphism. Let o(I) = o(.J), then I = To(I) =

?J(J) = J. Hence g is an injective map. Now we prove that g is a surjective
map. Let I € I(Myo(L)). Then % (I) is an ideal of L (by Lemma 4.3(2)) and
oo (I) = I (by Lemma 4.3(4)). We observe that & (I) € CI(L) because of
To{ ()} = (). Then we have ¢(%(I)) = 65 (I) = I. Therefore I is a
surjective map. Therefore ¢ is an isomorphism. We have obtained a one-to-one
correspondence between prime closure ideals of L and the prime ideals of Moo(L).
Let I be a prime closure ideal of L. Suppose (z A yloo = (T]oo A (Yoo € o(I).
Then 2 Ay € 5 o(I) =1 (because I is a closure ideal). Since I is prime ideal,
we get © € I or y € I, which implies (2]oo € () or (yloo € o(I). Therefore
g(I) = o(I) is a prime ideal of M,o(L). Conversely, suppose that I is a prime
ideal in Moo (L). Since g is a surjective map, there exists a closure ideal I in L
such that I = g(I) = o(I). Let z,y € L such that Ay € I. Then (2]oo N (Y]oo =
(x A yloo € o(I). Hence (z]oo € 0(I) or (yloo € o(I). Since I is a closure ideal,
we get x € Go(I)=1 or y € GTo(I)=1. Therefore I is a prime ideal of L. [J

4 Closure ideals and homomorphisms

In this section, some properties of the homomorphic images and the inverse images

of closure ideals are studied. By a homomorphism on an M S-algebra L, we mean

(o)

a lattice homomorphism h which preserves °, that is, (h(z))® = h(z°) for all
rze L.

Lemma 4.1. Let L and M be two MS -algebras and h : L — M a homomor-
phism. Then we have the following:

(1) for any non-empty subset A of L, h(Aco) C {h(A)}eo

(2) for any non-empty subset B of M, {h™'(B)}oo C h™1(Bso).

Proof. (1). Let © € h(Aoco). Then there exists b € Ay, such that = h(b) and
b < a°° for some a € A. Then we get

x = h(b) < h(a®) = (h(a))* € {h(A)}oo

So z € {h(A)}oo and h(Aco) C {h(A)}oo-
(2). Let x € {h™1(B)}oo. Then z < a°° for some a € h™'(B). Then h(a) € B
implies h(x) < h(a®°) = (h(a))°® € Boo. Then z € h™1(Bo,). O
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N

In the following example we show that h(Ac.) € {h(A)}oo and h™1(Boo)

{h=Y(B)}oo are not true in general.

Example 4.2. Let L be the five element chain 0 < a < b < d < 1 and a° =
b° = b,d° = 0. Clearly L is an M S-algebra. Define h : L — L by h(0) =
0,h(a) = h(b) = b,h(d) = d and h(1) = 1. Then clearly h is a homomorphism
on L. Take A = B = {0,a}. Then clearly Ao = {0,a,b} and h(A) = {0,b}.
Hence h(Ao.) = {0,b} and {h(A)}oo = {0,a,b}. Thus {h(A)}oo} Z h(Aso).
Also, we have h='(B) = {0} and Boo = {0,a,b}. Then {h™1(B)}o, = {0} and
h™Y(Boso) = {0,a,b}. Thus h™1(Bso) Z {h=1(B)}eo.

We now define the concept of dominator ideal preserving homomorphism.

Definition 4.3. Let h: L — M be a homomorphism of an M S-algebra L into an
M S-algebra M . Then h is called dominator ideal preserving if h(Ioo) = {h(I)}oo,
for any ideal I of L.

Theorem 4.4. Let h : L — M be a homomorphism of an MS -algebra L onto

an MS -algebra M . Then h is dominator ideal preserving.

Proof. Let I be an ideal of L. Since h is an onto homomorphism, then h(I)
and h(Il,,) are ideals of M. Thus by Lemma 3.1 we have h(loo) C {h(I)}oo.-
Conversely, let y € {h(I)}oo. Then we have

y <z, for some x € h(I) = y <z = (h(a))®,ael
= y < hla) < (h(a))*® =h(a®) € h(ls)
= y € h(l).
Then {h(I)}oo C h(Iso). Therefore h is dominator ideal preserving. O

Now we study some properties of closure ideals of M S-algebras with respect
to homomorphisms.

Theorem 4.5. Let h : L — M be a homomorphism of an MS -algebra L onto
an M S -algebra M . Then we have

(1) for any a € L, h((aloo) = (h(a)loo,

(2) for any closure ideal I of L, h(I) is a closure ideal of M,

(3) for any closure ideal I of L, h(I) = J;c;(h(i)]oo -
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Proof. (1). For all a € L, we get

h((aloo) = h{zeL:xz<a’}
= {h(z) € M : h(z) < (h(a))°°}
((h(a))*°)oo = (h(a)]oo-

(2). For every ideal I of L, it is known that h(I) is an ideal of M. By Theorem
3.7(1), we have h(I) C T o (h(I). So we have to prove only that & o(h(I)) C h(I)

y € To(h(I)) (Y]oo € a(h(I))
(Y]oo = (2]oo, for some z € h(I)
y < 2°° € h(loo) = h(I)

y € h(I).

R R

Then h(I) is a closure ideal of M .

(3). For any closure ideal I of L, I = I, = UZE[( iJoo. Now, for any i € I,
(iJoo € I. Then (h(i)loo € h(I). So U;c;(h(i)]oo € h(I). Conversely, let y €
h(I). Then there exists x € I such that y = h(i) € (h(i)]oo € U;cs(iloo- O

Theorem 4.6. Let L and M be two MS -algebras and h: L — M a homomor-
phism. Then we have the following :

(1) for any closure ideal H of M, h=*(H) is a closure ideal of L,
(2) kerh is a closure ideal of L,
(3) for a closure ideal B of M, h™'(Boo) = {h™1(B)}oo-

Proof. (1). Slnce h=1(H) is an ideal of L, then by Theorem 3.7(1), we have
h=Y(H) C To(h~'(H)). Conversely,

zevo(h™\(H)) t]oo € o(h™H(H))

Yloo = (2]oo, for some y € h™'(H)
h(¥)loo = (h(x)]oo), h(y) € H
h(z) € H by Lemma 4.2(2)

r€h H(H).

—~ o~

A

Therefore h~1(H) is a closure ideal of L.
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(2). Since kerh = {z € L : h(x) = 0} is an ideal of L, then kerh C T o(kerh).

For the converse, we get

z € To(kerh) (x]oo € o(kerh)
(2]oo = (Y]oo, for some y € kerh
x <y°° €kerh as h(y°°) =0

T € ker h.

Pl

Then T o(kerh) C kerh. So kerh is a closure ideal of L.

(3). Since B is a closure ideal of M, then B = Bo, and h~!(B) is a closure
ideal of L. Then we get h™!(Boo) = h™1(B) = {h"1(B)}oo. Therefore h=1 is
dominator ideal preserving. O

Theorem 4.7. Let h: L — Ly be an onto homomorphism between M S -algebras
L and Ly. Then we have

(1) Moo(L) is homomorphic of Moo(L1),

(2) I.(L) is homomorphic of I.(Ly).

Proof. (1). Define g : Moo(L) — Moo(L1) by g(aloo = h(aloo. For every
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(a]oo, (b]OO € MOO(L) we get,

9((aloo N (B]oo)

g((a]oo V (b]oo)
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g(a A bloo

h(a A bloo

(h(a A b)loo

(h(a) A h(b)]oo

(h(a)]oo N (h(b)]oo
h(a]oo M A(b]oo

9(aloo N g(bloo,

h(a V bloo = (h(aV b)]oo
(h(a) V h(b)]oo

(h(a)]oo V (A(D)]oo

h(aloo V h(b]oo
9(aJoo V g(bloo,
((a]oo)
(

h a]O
h(a®]oo = ((7(a))oo
(h(aloo) = (g(aloo)-

Clearly g(0r]oo = (01,]o0 and g(1p]oo = (1L,]oo, where 0r,0r, are the smallest

elements of L and L; respectively and 17,1, are the greatest elements of L and

L, respectively. Therefore g is a de Morgan homomorphism.
(2). Define the map 7 : I.(L) = I.(L1) by w(I) = h(I). It is clear that 7{0;} =

{0z,} and w(L)

w(IVJ)

w(INJ)

= L. Also, we get

Therefore 7 is a (0,1)-lattice homomorphism. O
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