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Abstract: J. Freed-Brown, M. Holder, M. E. Orrison and M. Vrable introduced a
new generalization of Euler’s totient function, Mk(n), defined to be the number
of sequences (g1, . . . , gk) of elements in Zn such that if Gi is the subgroup of Zn

generated by {g1, . . . , gi} , then

{0} < G1 < · · · < Gk−1 < Gk = Zn.

They also defined the function M(n) to be Mk(n) where k is the largest integer
such that Mk(n) is nonzero. They gave the formulas for Mk(pe) and M(peqf )
where p and q are distinct primes and k, e and f are natural numbers. In this
article, some more properties of Mk(n) and M(n) are investigated.
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1 Introduction

Euler’s totient function, φ(n), is the number of natural numbers less than or equal
to n which are relatively prime to n . Many generalizations of the Euler’s totient
function are given, see e.g. [1] and [3]. In [2], J. Freed-Brown, M. Holden, M. E.
Orrison and M. Vrable introduced a new generalization of Euler’s totient function,
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Mk(n), which is defined to be the number of sequences (g1, . . . , gk) of elements in
Zn such that if Gi is the subgroup generated by {g1, . . . , gi} , then

{0} < G1 < · · · < Gk−1 < Gk = Zn.

Together with the convention that M1(1) = 1, we have that M1(n) = φ(n) for all
natural numbers n .

Let Ω(n) be the number of prime factors of n with multiplicity. Note that for
a fixed n , Mk(n) will eventually become 0. In fact,

Remark 1.1. For k, n ∈ N , Mk(n) 6= 0 if and only if 1 ≤ k ≤ Ω(n).

Let M(n) = Mk(n) where k is the largest integer such that Mk(n) is nonzero.
By the above remark, M(n) = MΩ(n)(n). Mk(n) has the following recursive
identities:

Theorem 1.2. [2] If n, k, l ∈ N , then

Mk+l(n) =
∑

1<d<n
d|n

dlMk(d)Ml(
n

d
).

From this we have the following theorem.

Theorem 1.3. If n ∈ N with n ≥ 2, then

M(n) =
∑

p|n
pΩ(n)−1(p− 1)M(

n

p
).

Proof. The theorem clearly holds when Ω(n) = 1, so assume that m = Ω(n) ≥ 2.
By Theorem 1.2,

M(n) = Mm(n) =
∑

1<d<n
d|n

dm−1φ(d)Mm−1(
n

d
).

By Remark 1.1, Mm−1(n
d ) is nonzero only if d is a prime. Thus

M(n) =
∑

1<d<n
d|n

dm−1φ(d)Mm−1(
n

d
) =

∑

p|n
p is a prime

pΩ(n)−1(p− 1)M(
n

p
).

In case n = pe for some prime p and natural number e , it has been proved in
[2] that
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Theorem 1.4. [2] If p is a prime and e, k ∈ N with e ≥ k ≥ 1, then

Mk(pe) = (p− 1)kpe+
k(k−3)

2

k−1∏

i=1

pe−i − 1
pi − 1

.

Also in [2], the formulas for Mk(pe) and M(peqf ) in terms of cyclotomic
polynomials and symmetric polynomials, respectively, were given.

2 More Properties of Mk(n)

By using Theorem 1.2 recursively, we get a formula for Mk(n) concerning the
sequences of divisors instead of the sequences of subgroups and generators as in
the definition of Mk(n).

Theorem 2.1. For k, n ∈ N with k ≥ 2,

Mk(n) =
∑

1<d1<···<dk=n
di|di+1

φ(d1)φ(
d2

d1
) · · ·φ(

dk−1

dk−2
)φ(

n

dk−1
)d1 · · · dk−1.

For M(n), we can instead consider a multiset of prime divisors of n , which is
denoted by Pn .

Theorem 2.2. If n ∈ N with n ≥ 2 and m = Ω(n), then

M(n) = Mm(n) =


 ∏

pk‖n
(p− 1)k


 ∑

{q1,q2,...,qm}=Pn

q1q
2
2q3

3 · · · qm−1
m−1 ,

where the summation takes over all distinct permutations of elements in Pn .

Proof. Using Theorem 1.3 recursively, we get

M(n) =
∑

qm−1|n

∑

qm−2| n
qm−1

· · ·
∑

q1| n
q2q3···qm−1

(q1 − 1) · · · (qm−1 − 1)

M(
n

q1q2 · · · qm−1
)q1q

2
2 · · · qm−1

m−1

=
∑

{q1,q2,...,qm}=Pn

(q1 − 1)(q2 − 1) · · · (qm−1 − 1)M(qm)q1q
2
2 · · · qm−1

m−1

=
∑

{q1,q2,...,qm}=Pn

(q1 − 1)(q2 − 1) · · · (qm−1 − 1)(qm − 1)q1q
2
2 · · · qm−1

m−1 .
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For any permutation q1, q2, . . . , qm of prime divisors (counting multiplicity) of n ,

(q1 − 1)(q2 − 1) · · · (qm−1 − 1)(qm − 1) =
∏

pk‖n
(p− 1)k.

Hence

M(n) =


 ∏

pk‖n
(p− 1)k


 ∑

{q1,q2,...,qm}=Pn

q1q
2
2 · · · qm−1

m−1 .

Next, we will investigate the increasing of Mk(n). Recall that if m, n ∈ N and
d = (m,n), then

φ(mn)
φ(m)φ(n)

=
d

φ(d)
=

∏

p|d

p

p− 1
.

We see that M1(4) = 2 = M2(4). For n > 4, we have

Theorem 2.3. If n ∈ N such that n > 4 and 2 ≤ Ω(n), then M1(n) < M2(n).

Proof. Assume that 2 ≤ Ω(n) and n > 4. Let p be the least prime dividing n .
We see that

(p, n
p )

φ((p, n
p )) < n

p . Hence

M1(n) = φ(n) = φ(p)φ(
n

p
)

(p, n
p )

φ((p, n
p ))

<
n

p
φ(p)φ(

n

p
) ≤

∑

d|n
1<d<n

dφ(d)φ(
n

d
) = M2(n).

For 2 ≤ k ≤ Ω(n) − 2, the increasing of Mk(n) requires these additional
definitions and lemmas.

Definition 2.4. Let k, n ∈ N such that k ≤ Ω(n) − 1. We call a sequence
(d1, d2, . . . , dk) a d-sequence if 1 < d1 < d2 < · · · < dk < n , di|di+1 and dk|n . In
this case, (d1, d2, . . . , dk) is a d-sequence of length k .

Remark 2.5. For k, n ∈ N , if (d1, d2, . . . , dk) is a d-sequence, then Ω(di) ≥ i for
all 1 ≤ i ≤ k .

Definition 2.6. Let k, n ∈ N such that 2 ≤ k < Ω(n) and (d1, d2, . . . , dk) be a
d-sequence of length k . For each i ∈ N with 1 ≤ i ≤ k , let (di,1, di,2, . . . , di,k−1)
be the sequence (d1, d2, . . . , dk) excluding di .
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Lemma 2.7. Let k, n ∈ N with k ≥ 2 and (d1, d2, . . . , dk) be a d-sequence. Then

k∑

i=1

φ(di,1)φ(
di,2

di,1
) · · ·φ(

di,k−1

di,k−2
)φ(

n

di,k−1
)di,1di,2 · · · di,k−1

φ(d1)φ(d2
d1

) · · ·φ( dk

dk−1
)φ( n

dk
)d1d2 · · · dk

< 2.

Proof. Set d0 = 1. For each 1 ≤ i ≤ k , by Remark 2.5, it follows that Ω(di) ≥ i ,
so

φ(di,1)φ(di,2
di,1

) · · ·φ(di,k−1
di,k−2

)φ( n
di,k−1

)di,1di,2 · · · di,k−1

φ(d1)φ(d2
d1

) · · ·φ( dk

dk−1
)φ( n

dk
)d1d2 · · · dk

=
φ( di+1

di−1
)

φ( di

di−1
)φ(di+1

di
)di

≤

∏

p|di

p

p− 1

di
≤

∏

p|2i

p

p− 1

2i
=

1
2i−1

.

Hence

k∑

i=1

φ(di,1)φ(
di,2

di,1
) · · ·φ(

di,k−1

di,k−2
)φ(

n

di,k−1
)di,1di,2 · · · di,k−1

φ(d1)φ(d2
d1

) · · ·φ( dk

dk−1
)φ( n

dk
)d1d2 · · · dk

≤
k∑

i=1

φ( di+1
di−1

)

φ( di

di−1
)φ(di+1

di
)di

≤
k∑

i=1

1
2i−1

< 2.

Definition 2.8. Let k, n ∈ N with k ≤ Ω(n) − 1 and (d1, d2, . . . , dk) be a d-
sequence. For convenience, let d0 = 1 and dk+1 = n unless it is said otherwise.
We say that the sequence (d1, d2, . . . , dk) can be extended if there exist a, i ∈ N
such that di−1 < a < di and di−1|a|di .

Remark 2.9. Let k, n ∈ N . If 2 ≤ k ≤ Ω(n) − 2, then any d-sequence of length
k − 1 can be extended to at least two different d-sequences of length k .

Lemma 2.10. Let k, n ∈ N with k ≥ 2. If any d-sequence of length k − 1 can be
extended to at least two different d-sequences, then Mk(n) < Mk+1(n).
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Proof. By Theorem 2.1 and Lemma 2.7,

Mk+1(n)

=
∑

1<d1<···<dk<dk+1=n
di|di+1

φ(d1)φ(
d2

d1
) · · ·φ(

dk

dk−1
)φ(

n

dk
)d1 · · · dk

=
∑

(d1,d2,··· ,dk)
is a d-sequence

φ(d1)φ(
d2

d1
) · · ·φ(

dk

dk−1
)φ(

n

dk
)d1 · · · dk

>
1
2

∑

(d1,d2,··· ,dk)
is a d-sequence

k∑

i=1

φ(di,1)φ(
di,2

di,1
) · · ·φ(

di,k−1

di,k−2
)φ(

n

di,k−1
)di,1di,2 · · · di,k−1.

By the assumption that any d-sequence of length k − 1 can be extended to at
least two different sequences, that is, there are at least two different d-sequences
of length k which are extensions of a d-sequence of length k − 1, then

Mk+1(n) >
1
2


2

∑

(d1,d2,··· ,dk−1)
is a d-sequence

φ(d1)φ(
d2

d1
) · · ·φ(

dk−1

dk−2
)φ(

n

dk−1
)d1d2 · · · dk−1




= Mk(n).

Using the above lemmas, we can easily prove

Theorem 2.11. Let k, n ∈ N . If 2 ≤ k ≤ Ω(n)− 2, then Mk(n) < Mk+1(n).

If k = Ω(n) − 1, then Mk(n) < Mk+1(n) does not necessarily hold. For
example, M2(12) = 44 < 76 = M3(12), while M2(8) = 12 > 8 = M3(8).

Recall the definition of Mk(n). We can view the definition of Mk(n) in
number theoretically perspective as the number of sequences (g1, g2, . . . , gk) from
{1, 2, . . . , n} such that

n > (n, g1) > (n, g1, g2) > · · · > (n, g1, g2, . . . , gk) = 1.

It is well-known that M1 = φ is multiplicative, however this is not true for
other Mk(n) with k ≥ 2.

Theorem 2.12. Let m,n, k ∈ N such that (m, n) = 1. If 2 ≤ k ≤ Ω(mn), then
Mk(mn) > Mk(m)Mk(n).
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Proof. Let m,n ∈ N such that (m,n) = 1. For each sequence (m1,m2, . . . ,mk)
for Mk(m) and (n1, n2, . . . , nk) for Mk(n), we can form a distinct sequence
(a1, a2, . . . , ak) for Mk(mn) from {1, 2, . . . , mn} such that ai ≡ mi (mod m)
and ai ≡ ni (mod n). So Mk(mn) ≥ Mk(m)Mk(n). Next, for a sequence
(m1,m2, . . . , mk) for Mk(m), we can form a sequence for Mk(mn) by

(a1, a2, . . . , ak) = (m1n, m2n, . . . , mk−1n, 1).

Since a1 = m1n ≡ 0 (mod n), so n ≯ (n, a1). Thus there exists a sequence for
Mk(mn) that is not formed from any pair of (m1,m2, . . . , mk) and (n1, n2, . . . , nk).
Hence

Mk(mn) > Mk(m)Mk(n).

Theorem 2.13. For n ∈ N , φ(n)|M(n).

Proof. It is clear if n = 1 or n is a prime. Now let n > 1 be a composite number
such that for every natural number m < n , φ(m)|M(m). By Theorem 1.3,

M(n) =
∑

p|n
pΩ(n)−1(p− 1)M(

n

p
).

For each prime p dividing n , φ(n
p ) is either φ(n)

p or φ(n)
p−1 . Since Ω(n) ≥ 2,

in either case, φ(n)|pΩ(n)−1(p − 1)φ(n
p ) for any p|n . By induction hypothesis,

φ(n
p )|M(n

p ), so φ(n)|pΩ(n)−1(p− 1)M(n
p ). Thus

φ(n)|
∑

p|n
pΩ(n)−1(p− 1)M(

n

p
) = M(n).

Definition 2.14. For n ∈ N , let

m(n) =
∑

{q1,q2,...,qm}=Pn

q1q
2
2 . . . qm−1

m−1 .

Theorem 2.15. Let e ∈ N and p, q, r be distinct primes. Then

m(peqr) =

(e+1)(e+2)
2 −1∑

k=
(e−1)e

2




pk
∑

a+b=
(e+1)(e+2)

2 −k
a 6=b

0≤a,b≤e+1

qarb




.
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Proof. By the definition of m(n),

m(peqr) =
∑

{q1,...,qe+2}={p,p,...,p︸ ︷︷ ︸
e terms

,q,r}
q1q

2
2 · · · qe+1

e+1 .

Since there are e copies of p ’s, so the least and the greatest powers of p are
0 + 1 + 2 + · · ·+ (e− 1) = (e−1)e

2 and 2 + 3 + 4 + · · ·+ (e + 1) = (e+1)(e+2)
2 − 1,

respectively. If the power of p is k , then what is left for q and r is (e+1)(e+2)
2 −k .

And we see that q and r occupy different positions so they have the different
powers, both of which are between 0 and e + 1.

In fact, the proof works for the following generalization.

Theorem 2.16. Let e, f ∈ N and p, p1, p2, . . . , pf be distinct primes. Then

m(pep1p2 . . . pf ) =

(e+f−1)(e+f)
2 − (f−1)f

2∑

k=
(e−1)e

2




pk
∑

a1+a2+···+af=
(e+f−1)(e+f)

2 −k
ai 6=aj

0≤ai≤e+f−1

pa1
1 · · · paf

f




.
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