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Abstract: J. Freed-Brown, M. Holder, M. E. Orrison and M. Vrable introduced a
new generalization of Euler’s totient function, Mj(n), defined to be the number
of sequences (g1, ..., gx) of elements in Z, such that if G; is the subgroup of Z,
generated by {g1,...,9:}, then

{0}<G1<"'<Gk_1<Gk:Zn.

They also defined the function M (n) to be My(n) where k is the largest integer
such that My(n) is nonzero. They gave the formulas for M (p®) and M (pq?)
where p and ¢ are distinct primes and k,e and f are natural numbers. In this
article, some more properties of My(n) and M(n) are investigated.
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1 Introduction

Euler’s totient function, ¢(n), is the number of natural numbers less than or equal
to m which are relatively prime to n. Many generalizations of the Euler’s totient
function are given, see e.g. [1] and [3]. In [2], J. Freed-Brown, M. Holden, M. E.

Orrison and M. Vrable introduced a new generalization of Euler’s totient function,
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M (n), which is defined to be the number of sequences (g1, ..., gr) of elements in
Z,, such that if G; is the subgroup generated by {g¢1,...,¢9:}, then

{0} <Gy <+ < Gio1 < Gy, =7y,

Together with the convention that M;(1) = 1, we have that M;(n) = ¢(n) for all
natural numbers n.

Let Q(n) be the number of prime factors of n with multiplicity. Note that for
a fixed n, My(n) will eventually become 0. In fact,

Remark 1.1. For k,n € N, Mi(n) #0 if and only if 1 <k < Q(n).

Let M(n) = My (n) where k is the largest integer such that My (n) is nonzero.
By the above remark, M(n) = Mgq)(n). Mg(n) has the following recursive
identities:

Theorem 1.2. [2] If n,k,l € N, then
n
Myi(n)= ) dle(d)Ml(E).
1<dc‘i<n

From this we have the following theorem.

Theorem 1.3. If n € N with n > 2, then

M(n) =3 p" 7 (p = DM().
pln P
Proof. The theorem clearly holds when Q(n) =1, so assume that m = Q(n) > 2.
By Theorem 1.2,

M(n) = Mu(n) = >~ d" " ¢(d)Mp-1(5).
l1<d<n
d|n

By Remark 1.1, M,,_1(%) is nonzero only if d is a prime. Thus
T n n)— n
Mn)= > d" o dMna(z) = > PR -DM(E)

1<d<n pln
dln p is a prime

O

In case n = p°® for some prime p and natural number e, it has been proved in
[2] that
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Theorem 1.4. [2] If p is a prime and e,k € N with e > k£ > 1, then

k=1 o4
k(k—3 -1
=) TT P

My (p®) = (p — 1)Fp*t —
k(p9)=@—-1)" P

i=1
Also in [2], the formulas for M (p®) and M(p°q/) in terms of cyclotomic

polynomials and symmetric polynomials, respectively, were given.

2 More Properties of My (n)

By using Theorem 1.2 recursively, we get a formula for My(n) concerning the
sequences of divisors instead of the sequences of subgroups and generators as in
the definition of My(n).

Theorem 2.1. For k,n € N with k£ > 2,

dg dk,1 n
n)= d _) ... d ...d 1.
M. (n) > ¢( 1)¢(d1) ¢(dk_2)¢(dk_1) 1 di—y

1<di<--<dr=n
di|dit1

For M(n), we can instead consider a multiset of prime divisors of n, which is
denoted by P, .

Theorem 2.2. If n € N with n > 2 and m = Q(n), then

M(n)=My(n)= | [T-1" > QG A1

pan {q17Q27'~~;Q7n}:Pn

where the summation takes over all distinct permutations of elements in P, .

Proof. Using Theorem 1.3 recursively, we get

M(n) = Z Z Z (@1 —=1)(gm-1—1)

qm—1|n Qm,72|qmn71 f11|,12,13..7fqm71

n
M(————)qig3 - g~
(QIq2"'Qm71) 2 dmed

= Y (@-D@e-1 (gm-1— DM(gm)d3 g1
{q1,92;---,4m }=Pn

= Y @-D@-1 (Gmer — Dam — Dardd i
{q1,92,---,qm }=Pn
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For any permutation ¢1,¢o, ..., ¢m of prime divisors (counting multiplicity) of n,
(@1 =12 =1) - (gm1—Digm—1) = [[(p—D"
p*lin
Hence

Mm) = [[-1)* > adgnt

pFIn {q1,92,--,qm }=Pn

O

Next, we will investigate the increasing of My(n). Recall that if m,n € N and
d = (m,n), then

(mn) — d p
p(m)p(n) — o(d) gp— 1

We see that M;(4) =2 = M»(4). For n > 4, we have
Theorem 2.3. If n € N such that n >4 and 2 < Q(n), then M;(n) < Ma(n).

Proof. Assume that 2 < Q(n) and n > 4. Let p be the least prime dividing n.

(%) n
We see that Wf’%)) <5 Hence

M) = o) = 90)0(%) 5P < Mooy < 3 syl = Mot
' d|n
1<d<n

O

For 2 < k < Q(n) — 2, the increasing of My(n) requires these additional
definitions and lemmas.

Definition 2.4. Let k,n € N such that & < Q(n) — 1. We call a sequence
(di,da,...,dk) a d-sequence if 1 < dj <dy <---<d <mn, d;ldiy1 and dg|n. In
this case, (d1,da,...,dy) is a d-sequence of length k.

Remark 2.5. For k,n € N, if (dy,ds,...,d;) is a d-sequence, then €2(d;) > ¢ for
all 1 << k.

Definition 2.6. Let k,n € N such that 2 < k < Q(n) and (dy,ds,...,dx) be a
d-sequence of length k. For each i € N with 1 < i <k, let (di1,di2,--.,dik-1)
be the sequence (di,ds,...,d;) excluding d;.
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Lemma 2.7. Let k,n € N with k£ > 2 and (dy,da,...,dx) be a d-sequence. Then

. di o
D 6(din)o(72) o

i=1

di k-1 n

)¢ (

——)diadi o di g1
dig—2 " “dig—1" '

2.
P(dr)p(R) - P(F2=) (- )dady - - - dy, <

Proof. Set dy = 1. For each 1 <14 <k, by Remark 2.5, it follows that Q(d;) > 1,

SO

¢(di,1)¢(32:j) e ‘25(3::; (g )dindiz - dig—1 ¢(%)
Hd1)S(F) - D7) o (g )drdy -+ di O ) (252 ) d;
_r _pb
}_d[i -1 o2 P 1 1
< < - =
— dz — 91 22—1
Hence
k d; 2 d; k—1 n
Z¢(di’1)¢(di:1)md)(mw(di,kq)di’ldmMdi’k_l k (1)
i=1 < Z di—1
S(d1)( )+ (2 ) P (4 )drds - - - di TS o(g)e(Yd;
k
1
S Z 9i—1 <2
=1

Definition 2.8. Let k,n € N with & < Q(n) — 1 and (dy,ds,...,d;) be a d-
sequence. For convenience, let dy = 1 and dg41 = n unless it is said otherwise.
We say that the sequence (di,ds,...,d;) can be extended if there exist a,i € N
such that d;—1 < a < d; and d;_1]ald;.

Remark 2.9. Let k,n € N. If 2 < k < Q(n) — 2, then any d-sequence of length

k — 1 can be extended to at least two different d-sequences of length k.

Lemma 2.10. Let k,n € N with k > 2. If any d-sequence of length k£ — 1 can be
extended to at least two different d-sequences, then My (n) < Myi1(n).
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Proof. By Theorem 2.1 and Lemma 2.7,

My 41(n)
d2 dk n
= Z ¢(d1)¢(d*1) : "¢(dk71)¢(@)d1 o dy,

1<dy < <dp<dpy1=n

di|dit1
d d n
= D> Sd)$(F) b )= )da - d
dy dp—1"" " dy
(d1,d2, ,d)
is a d-sequence
1 k d; d; n
5 di)$(F2) (S () ydis - dipes.
> 5 S > e ’1)¢(di,1) ¢(di,k—2)¢(di,k—l) adig - dig—y

(dy,dz, - ,di) =1
is a d-sequence

By the assumption that any d-sequence of length k£ — 1 can be extended to at
least two different sequences, that is, there are at least two different d-sequences

of length k which are extensions of a d-sequence of length k — 1, then

2 Y o) o E e dy

(d1,da, - ,dr—1)
is a d-sequence

Mk+1 (’I’L) >

M| —

= Mk(n)

Using the above lemmas, we can easily prove
Theorem 2.11. Let k,n € N. If 2 <k < Q(n) — 2, then My(n) < My1(n).

If £ = Q(n)—1, then Mi(n) < Mgy1(n) does not necessarily hold. For
example, Ms(12) =44 < 76 = M3(12), while M5(8) = 12 > 8 = M3(8).

Recall the definition of Mj(n). We can view the definition of Mj(n) in

number theoretically perspective as the number of sequences (g1, 92, ..., gx) from
{1,2,...,n} such that

n>(n,g1) > (n,91,92) > > (n,91,92,---,9x) = L.

It is well-known that M; = ¢ is multiplicative, however this is not true for
other My (n) with k > 2.

Theorem 2.12. Let m,n,k € N such that (m,n) =1. If 2 < k < Q(mn), then
M. (mn) > My (m)Mg(n).
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Proof. Let m,n € N such that (m,n) = 1. For each sequence (my,ma, ..., my)

for My(m) and (ni,ne,...,n;) for Mg(n), we can form a distinct sequence

(a1,az,...,a) for Mp(mn) from {1,2,...,mn} such that a; = m; (mod m)

and a; =n; (mod n). So Mi(mn) > My(m)My(n). Next, for a sequence

(mq, ma,...,my) for My(m), we can form a sequence for My (mn) by
(a1,az2,...,a) = (min,man,...,mg_1n,1).

Since a; = min =0 (mod n), so n % (n,a;). Thus there exists a sequence for
My, (mn) that is not formed from any pair of (my,ma,...,my) and (nq,ng,...,ng).
Hence

My (mn) > My (m)M(n).

Theorem 2.13. For n € N, ¢(n)|M(n).

Proof. It is clear if n =1 or n is a prime. Now let n > 1 be a composite number
such that for every natural number m < n, ¢(m)|M(m). By Theorem 1.3,

M(n) =3 p™ = (p - 1>M<§>.

pln
For each prime p dividing n, QS(%) is either @ or ﬂ. Since Q(n) > 2,
in either case, ¢(n)|p™=1(p — 1)¢(%) for any p|n. By induction hypothesis,

P(B)M(2), so ¢(n)[p?™ =1 (p — 1)M(%). Thus

o(n)| 3 p2 1 (p — 1)M(§) = M(n).
pln

Definition 2.14. For n € N, let
m(n) = Z Qg ...qny.
{QI7QZ7“-7Q'I71}:P7L

Theorem 2.15. Let e € N and p, g, be distinct primes. Then

(e+1)(et2) 1
2

mpqr)= >, |p" > q"r®

k= (6—21)6 atb= (e+1)2(e+2)_k

a#b
0<a,b<e+1
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Proof. By the definition of m(n),

m(p°qr) = > AR e

{a1,--qet2}={p,p;--..p,q,7}
~——

e terms

Since there are e copies of p’s, so the least and the greatest powers of p are
O+14+2+--+(—-1) =" and 243444 - + (e +1) = HUAD
respectively. If the power of p is k, then what is left for ¢ and r is %2(6%2) —k.
And we see that ¢ and r occupy different positions so they have the different

powers, both of which are between 0 and e + 1. O
In fact, the proof works for the following generalization.

Theorem 2.16. Let e, f € N and p,p1,p2,...,ps be distinct primes. Then

(etf=D(etf) (fF=Df
2 pl

m(p°pip2 ... ps) = > " > P -py
k:@ a1+a2+--»+af:M—k
aﬁéaj
0<a;<e+f-—1
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