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Abstract: The λ -calculus is a symbolic formalism for describing and calculating

with functions. To give meaning to expressions in the λ -calculus they must be

interpreted in terms of standard mathematical objects such as sets and functions.

Each such interpretation is called a model of the λ -calculus. Because the concept

of function embodied in the λ -calculus is very general—for example, a λ -calculus

function can be applied to itself—we cannot model λ -calculus functions as ordinary

mathematical functions. Consequently such models require some new ideas that

turn out to have applications in other areas of mathematics, and in computer

science as well. This paper presents an introduction to models of the λ -calculus

that is largely self-contained, although most technical details are omitted. It starts

with a brief exposition of the λ-calculus itself, followed by some basic theory of

λ -models in general and then descriptions of two specific models, including Dana

Scott’s D∞ , the first non-trivial model discovered. It concludes with suggestions

for further reading.
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1 Introduction

Surely every mathematician is at least acquainted with predicate logic. If noth-

ing else, we all use it at times as a precise, unambiguous shorthand for writing

mathematical statements, such as the condition for the function f : R → R to be

continuous at the number a :

∀ϵ > 0 ∃δ > 0 ∀x ∈ R
(
|x− a| < δ ⇒

∣∣f(x)− f(a)
∣∣ < ϵ

)
.

If we want to be rigorous, however, then we must recognize that the statements we

write in predicate logic are just strings of symbols that have no inherent meaning.

To give a statement a meaning it must be interpreted relative to a structure, which

assigns a concrete mathematical meaning to each symbol in the statement. If the

interpretation of the statement in the structure yields the value “true” then we

call the structure a model of the statement. (The reader interested in the details

of statements, structures, interpretations, and models in predicate logic can look

in any of several good books on the subject, such as [10].)

Less familiar among our ranks is the λ -calculus, which is a formal notation

for working with functions invented by Alonzo Church (see [5]). The basic idea

of the λ -calculus is surprisingly simple: We use the notation λx.E to describe

the function that maps x to E . For example, λx.x+ 1 denotes the function that

maps x to x + 1 (i.e., the successor function on the natural numbers) and λx.x

denotes the identity function that maps every object to itself. When the function

denoted by λx.E is applied to an argument the resulting value can be calculated by

substituting the argument for x in E . For instance, we calculate (λx.x+1)(3) by

substituting 3 for x in x+1, obtaining 3+1, which of course equals 4. Functions

of multiple variables are handled via a trick known as currying, in which a function

of one variable applied to the first argument has a value that is again a function

and can be applied to the second argument, and so forth, until all of the arguments

have been used. For example, the addition function can be denoted by λx.λy.x+y ;

applying it to the arguments 2 and 3 produces the expected final result of 5 as

follows:

(λx.λy.x+ y)(2)(3) =
((
λx.(λy.x+ y)

)
(2)

)
(3) = (λy.2 + y)(3) = 2 + 3 = 5.

For a more extensive discussion of the intuition behind the λ-calculus, see Chap-

ter I of Church’s original book, [6].
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The most interesting aspect of the λ-calculus is the fact that an expression in

the λ -calculus, called a λ-term, can be applied to any λ -term—including itself.

For example, if T = λx.xxx then T (T ) = (λx.xxx)(T ) = TTT . It is this capa-

bility that gives the λ-calculus its power. For instance, it allows us to construct

a fixed-point combinator, which is a λ-term Y with the property that for any

λ -term f we have f
(
Y (f)

)
= Y (f); that is, Y (f) is a fixed point of f . The

existence of a fixed-point combinator ensures that every λ -term f has a fixed

point p ; this in turn allows us to define functions recursively in the λ -calculus.

As an example, let us look at how we can use fixed points to show the existence

of a λ-term that calculates the factorial function. Consider the λ-term

T = λF.λx.if x = 0 then 1 else x · F (x− 1)

and let f be a fixed point of T , so that T (f) = f . Note that

T (f) =
(
λF.λx.if x = 0 then 1 else x · F (x− 1)

)
(f)

= λx.if x = 0 then 1 else x · f(x− 1).

Now the fact that f = T (f) shows that for any n we have

f(n) = T (f)(n) =
(
λx.if x = 0 then 1 else x · f(x− 1)

)
(n)

= if n = 0 then 1 else n · f(n− 1),

and hence f does indeed compute the factorial function.

Thus the λ -calculus formalizes a very general and powerful concept of function

(some authors prefer the word “operation”, to distinguish it from the standard

mathematical notion of function). With such generality comes the potential for

broad applicability, and consequently the influence of the λ -calculus is slowly

growing, especially in computer science. This influence is most readily apparent

in the area of functional programming languages, where it not only provides a

theoretical foundation (see [20], Chapter 3) but is also a source of implementation

ideas (see [19]). However, in the last several years even mainstream programming

languages such as C# ([18]) and C++ ([8]) have come to support the use of

lambda expressions to define simple, anonymous functions. The influence of the

λ -calculus is not limited to computer science, however. It provided one of the

earliest definitions of computable function and inspired much of the early work

in recursion theory. Another example is Klaus Grue’s Map Theory (see [12]),

an alternative foundation for mathematics that takes mappings as its primitive
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objects; it uses the λ-calculus as the formal language for stating its axioms and

their consequences. For a much more extensive and detailed discussion of the

influence of the λ -calculus see Barendregt’s article, [2].

As with predicate logic, λ -terms are just strings of symbols that have no mean-

ing. To give them meaning we must construct a model of the λ -calculus, which

interprets all λ -terms as elements of some set and also describes what it means to

apply one λ -term to another. Unfortunately, as will be explained in more detail

later on, the fact that every λ-term can be applied to itself means we cannot model

a λ -term with an ordinary function; we must be more clever than that. Thus we

are faced with the challenging—and intriguing—problem of how to model objects

that behave much like functions, yet cannot be represented by standard mathe-

matical functions. It is no surprise that more than 30 years passed between the

time Church invented the λ -calculus and Dana Scott and Christopher Strachey

constructed its first non-trivial model (see [25], [21], and [22]). Nonetheless, the

effort required to construct and understand λ -models is worthwhile, because of

the insight they give us into the λ-calculus. Furthermore, some of the concepts

introduced in these constructions have proven useful in other fields. For example,

the continuous lattices in Scott and Strachey’s original model became the basis

for domain theory, which plays an important role in the theory of denotational se-

mantics and related areas in the theory of programming languages. In fact, Scott

and Strachey’s model was born from their efforts to rigorously define the meanings

of recursively-defined programs.

The goal of this article is to give the reader an introduction to how we can model

the expanded concept of operation embodied in the λ-calculus using the sets and

functions of everyday mathematics. It is organized as follows: Section 2 gives

a brief, semi-rigorous introduction to the λ-calculus; the reader who is already

acquainted with it can safely skip this section, since in the rest of the article we

only make use of basic concepts and definitions and adhere to standard notation.

Section 3 presents two equivalent definitions of a λ-model, plus a few general

results about λ -models that will be useful when we construct some specific models,

and are interesting in their own right. Section 4 briefly describes the term model,

an essentially trivial model of the λ -calculus, then shows how to construct one of

the simplest non-trivial λ-models: Engeler’s model DA . This is followed by an

overview of the construction of Scott’s model D∞ , which was the first non-trivial

λ -model discovered, in Section 5. We finish up with a few suggestions for further

reading in Section 6.
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2 An Overview of the λ-Calculus

Since we do not assume the reader is familiar with the λ -calculus, an introduction

to its basic theory is provided in this section. For those interested in more details,

[14] (or the earlier version [13]) is an excellent introductory account, while [1] is a

standard reference for the core theory, although a bit challenging to read.

2.1 λ-Terms

As noted in the Introduction, the λ-calculus is a notation for talking about func-

tions (operations), which formalizes their two key concepts:

1. Defining a function, by giving a formula that tells how to compute the func-

tion’s value for any given argument (called abstraction).

2. Applying a function to an argument (called application).

For abstraction, if E is an expression then λx.E denotes the function whose value

is E when the argument is x , while (fa) denotes the application of the function f

to the argument a . Precise definitions of these are as follows:

Note 2.1. There are in fact several varieties of λ -calculus; the one we will be

defining and working with here is technically called the pure, untyped λ-calculus.

Definition 2.2. Let Var be a countably infinite set of symbols, called variables.

An expression is a finite sequence of symbols each of which is either an element of

Var or one of the symbols λ , . , ( , or ). The set of all λ-terms, Λ, is the smallest

set of expressions satisfying the following properties:

(a) Var ⊆ Λ;

(b) if M,N ∈ Λ then (MN) ∈ Λ; and

(c) if M ∈ Λ and x ∈ Var then (λx.M) ∈ Λ.

A λ-term of the form (MN) is called an application, while a λ-term of the

form (λx.M) is called an abstraction. Since we will not be talking about any

other type of terms, from here on we will refer to λ -terms as just terms.

When writing terms we will make use of two notational shorthand devices

to reduce the number of symbols we need to write. The first shorthand device
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we will make use of is to omit parentheses whenever we can do so while still

making the intended meaning clear. This includes adopting the convention of

association to the left when interpreting sequences of unparenthesized applications,

whereby we group the two leftmost terms together, then group this pair with

the third term from the left, and so on. Thus, for example, MNPQ means((
(MN)P

)
Q
)
and xz(yz) means

(
(xz)(yz)

)
. Another convention we will adopt

is that when interpreting an unparenthesized abstraction we will take the term

following the dot to be the longest term that is consistent with the syntax of

terms and any parentheses that do exist. Hence, for example, λx.λy.xz(yz) means

λx.
(
λy.

(
xz(yz)

))
.

The second shorthand device we will make use of is to combine the λ ’s in

abstractions of abstractions into a single λ . For example, λx.λy.λz.xz(yz) will

often be written as λxyz.xz(yz).

There are several notions of equality and equivalence in the λ -calculus, so to

avoid confusion we use different symbols for each one. In particular, if M and

N are terms then the notation M ≡ N denotes that M and N are syntactically

equal, which means that they are the exact same sequences of symbols.

A term will often contain several variables, and each variable may occur mul-

tiple times in the term. Note, however, that occurrences of the variable x in the

term M ≡ λx.N have a special role, since they denote the value of the argument

when the “function” M is applied to an argument. Thus, we say that all occur-

rences of x in the term λx.N are bound ; any occurrence of a variable that is not

bound is said to be free. A variable that occurs in a term is said to be a free

variable of the term iff it has at least one free occurrence in the term. Note that

a precise definition of free and bound occurrences is more complicated than the

above suggests. The details may be found in [14], Definition 1.11.

As will be discussed in greater detail shortly, in order to calculate the result

of applying a “function” λx.M to an argument N we must replace all free occur-

rences of x in M with N . The notation [N/x]M will denote the term obtained

by performing this replacement. Again, a precise definition of [N/x]M is much

more subtle and complex than the above description would suggest—in fact it is

surprisingly complex—primarily because we must ensure that every free occur-

rence of a variable in N remains free in [N/x]M . Such precision is not needed

for this exposition so we will not go into the details here; however, the reader is

encouraged to look at them in [14], Definition 1.12, or a similar exposition.
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Example 2.3. Let M ≡ λx.xy(λy.yx) ≡ λx.
(
(xy)(λy.yx)

)
and N ≡ λz.z . Then

the first occurrence of y in M is free but the second occurrence is bound, so

[N/y]M ≡ λx.
(
x(λz.z)(λy.yx)

)
.

We all recognize that the functions f and g defined on the real numbers

by f(x) = x2 and g(y) = y2 are really the same function; the use of the two

different variables x and y is irrelevant. Similarly, given an abstraction λx.N , it

is reasonable to expect that if we replace all free occurrences of x in N with some

other variable y that is not free in N and change the λx to λy then the term

obtained is essentially the same as the original term. In symbols, we are converting

M ≡ λx.N to λy.[y/x]N . This conversion is called a change of bound variable,

or an α-conversion, in M . If the term P can be converted to the term Q by a

finite (perhaps empty) sequence of changes of bound variables then we say that P

is α-equivalent to Q , and write P ≡α Q .

Example 2.4. Note that

λxyz.xz(yz) ≡ λx.λy.λz.xz(yz) ≡α λx.λy.λu.[u/z]
(
xz(yz)

)
≡ λx.λy.λu.xu(yu)

≡α λv.[v/x]
(
λy.λu.xu(yu)

)
≡ λv.λy.λu.vu(yu) ≡ λvyu.vu(yu).

Thus λxyz.xz(yz) ≡α λvyu.vu(yu).

2.2 β -Reduction and β -Equality

The λ-calculus also has a notion of computation, called β -reduction. The idea is

that since the term (λx.M)N denotes the “function” λx.M described above ap-

plied to the argument N , we can calculate the “value” of (λx.M)N by substituting

N for all free occurrences of x in M . That is, (λx.M)N “evaluates” to [N/x]M .

The term (λx.M)N is called a β -redex and the corresponding term [N/x]M is

called its contractum. If a term P contains a β -redex and Q is obtained from P

by replacing that β -redex with its contractum then we say P β -contracts to Q . If

the term P can be converted to the term Q via a finite (perhaps empty) sequence

of β -contractions and α -conversions then we say P β -reduces to Q , and write

P ▷β Q . Finally, if there is a sequence of terms P ≡ P0, P1, . . . , Pn ≡ Q such that
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P1

P ≡ P0 P2

P3

· · ·

Pn−1

Pn ≡ Q

▷β

▷β

▷β◁β

◁β

◁β

Figure 1: Illustration of P =β Q

for each i either Pi ▷β Pi+1 or Pi+1 ▷β Pi then we say that P β -equals Q and

write P =β Q . Figure 1 illustrates P =β Q .

Example 2.5. First a simple example. Let I be the term λx.x denoting the

universal identity operation that was mentioned above. Then for any term M we

have

IM ≡ (λx.x)M ▷β [M/x]x ≡M,

i.e., IM ▷β M , which also implies that IM =β M . Hence I has the behavior we

expect of the identity operation.

Example 2.6. Now for a more complicated example. Consider the term

M ≡ (λxy.y)
(
(λu.u)v

)
z ≡

(
(λx.λy.y)

(
(λu.u)v

))
z.

The subterm (λx.λy.y)
(
(λu.u)v

)
is a β -redex, which we can contract as follows:

M ≡
(
(λx.λy.y)

(
(λu.u)v

))
z ▷β [(λu.u)v/x](λy.y)z ≡ (λy.y)z,

since x does not occur in λy.y . On the other hand, the subterm (λu.u)v is also

a β -redex, so we can contract it as well:

M ≡
(
(λx.λy.y)

(
(λu.u)v

))
z ▷β

(
(λx.λy.y)([v/u]u)

)
z ≡

(
(λx.λy.y)(v)

)
z

≡ (λxy.y)vz.

Hence we have that M ▷β (λy.y)z and M ▷β (λxy.y)vz , which also means that

(λy.y)z =β (λxy.y)vz .

As the above example illustrates, a term can contain multiple β -redexes, and

thus can β -reduce to different terms, depending on which β -redexes are con-

tracted, and in what order. If we are thinking of β -reduction as computing,
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this could be a problem, since it suggests the possibility that a single term could

compute multiple different values. Fortunately, the following theorem, called the

Church-Rosser Theorem, shows that while computations starting from the same

term can yield different intermediate values, ultimately they must all produce the

same value.

Theorem 2.7 ([14], Theorem 1.32; [1], Theorem 3.2.8(i)). Let M be a term and

suppose P and Q are terms such that M ▷β P and M ▷β Q . Then there exists a

term T such that P ▷β T and Q ▷β T (see Figure 2).

M

P Q

T

◁β

▷β ◁β

▷β

Figure 2: The Church-Rosser Theorem

As a corollary we get the following result, often called the Church-Rosser The-

orem for β -equality, which says that if two terms are β -equal then they both

compute the same value (note that the converse is obvious from the definition of

β -equality).

Corollary 2.8 ([14], Theorem 1.41; [1], Theorem 3.2.8(ii)). Suppose P and Q

are terms such that P =β Q . Then there exists a term T such that P ▷β T and

Q ▷β T .

Because of this all terms that are β -equal to one another denote the same

value. Therefore, when we construct models of the λ-calculus we must ensure

that whenever two terms are β -equal they are interpreted in the same way in the

model.

In practice, the Church-Rosser Theorem for β -equality is often used in its

contrapositive form to prove that two terms are not β -equal. One special case is

common enough to be worth mentioning here.

Corollary 2.9. If M and N are terms that are not α-equivalent and neither M

nor N contains a β -redex then M ̸=β N .
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As the above comments suggest, β -equality is important in the theory of λ -

models. The following proposition lists some of its basic properties (see [1], Defi-

nition 2.1.4, Proposition 3.2.1, and Lemmas 3.2.4 and 3.2.7).

Proposition 2.10. (a) β -Equality is an equivalence relation on Λ .

(b) Suppose M , N , and P are terms, x is a variable, and M =β N . Then

PM =β PN , MP =β NP , λx.M =β λx.N , and [P/x]M =β [P/x]N .

3 General Theory of λ-Models

Before we look at any specific λ-models we obviously need a definition of what a

λ -model is (although it should be noted that historically several specific models

of the λ-calculus were constructed before any general definition of a λ -model was

proposed). In fact, there are three equivalent definitions of a λ -model, each of

which is useful in certain situations. In this section we will describe two of these

definitions, showing how they are related to each other, and present a few basic

results from the general theory of λ -models that will be needed in our constructions

of specific λ-models. The third definition is more abstract, and although it is also

useful it is not needed for this exposition, and has been omitted to help shorten

its length.

Before starting the two definitions of a λ -model let us explain rigorously why

it is not possible to model a λ-term M as an ordinary function fM : A→ B and

application MN as applying fM to fN , i.e., fM (fN ). The problem arises when

we consider the term MM , which would have to be modeled as fM (fM ), implying

that fM must be an element of A , the domain of fM . In the standard set-theoretic

definition of a function, this would mean there is a chain of membership relations,

fM ∈ · · · ∈ fM , which would allow us to construct an infinite descending chain of

membership relations, · · · ∈ fM ∈ · · · ∈ fM ∈ · · · ∈ fM , violating the Axiom of

Regularity in ZFC set theory (see [9] or [16]). Hence such an approach does not

work. Dana Scott’s model D∞ , described in Section 5 below, uses a clever trick

to get around this problem.

3.1 First Definition: Interpretations

The first definition of a λ-model is similar to the definition of a model in first-order

logic: We want to interpret terms as elements of some set (which, to help avoid
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trivial models, is assumed to contain at least two elements), in such a way that

if M =β N then M and N have the same interpretation. Specifically, we will

have a set D and an interpretation function [[ ]] : Λ → D with the property that

M =β N implies [[M ]] = [[N ]] . Now, many terms contain free variables, which can

have arbitrary interpretations—after all, a free variable can be replaced by any

term via substitution. Thus, when interpreting a term we must first assign values

to its free variables, which is done via a function ρ : Var → D , called a valuation

(of variables). Hence, we actually have a separate interpretation [[ ]]ρ : Λ → D for

each valuation ρ .

Notation 3.1. Let D be a set and ρ : Var → D a valuation. For each variable x ∈
Var and element d ∈ D , [d/x]ρ will denote the valuation σ : Var → D such that

σ(y) = ρ(y) for all variables y ̸= x and σ(x) = d .

As we noted above, we cannot interpret terms as ordinary functions and ap-

plication as function application. The key to getting around this problem is to

observe that application is a binary operation that combines two terms to produce

another term. Thus, we want to have a binary operation • on D , so we can define

[[MN ]]ρ to be [[M ]]ρ • [[N ]]ρ . This also gives us a clue as to how we can interpret

abstractions. Since (λx.M)N =β [N/x]M we must have that

[[λx.M ]]ρ • [[N ]]ρ = [[(λx.M)N ]]ρ = [[[N/x]M ]]ρ. (1)

Furthermore, since [N/x]M replaces each free occurrence of x in M with N , it

is reasonable to expect that the interpretation of [N/x]M should be the same as

the interpretation of M under the valuation that assigns the interpretation of N

to x ; in symbols, [[[N/x]M ]]ρ = [[M ]][d/x]ρ , where d = [[N ]]ρ . Combining this with

equation (1) yields the conclusion that [[λx.M ]]ρ should satisfy the property that

for all d ∈ D , [[λx.M ]]ρ • d = [[M ]][d/x]ρ . Let us look at precise definitions now.

Definition 3.2. An applicative structure is a pair D = ⟨D, •⟩ , where D is a set

with at least two elements and • is a binary operation on D .

We do not assume the operation • in an applicative structure is associative,

so to reduce the number of parentheses we need to write we adopt the convention

of association to the left; for example, a • b • c • d means
(
(a • b) • c

)
• d .

Definition 3.3. A λ-model is a triple
⟨
D, •, [[ ]]

⟩
, where ⟨D, •⟩ is an applica-

tive structure and [[ ]] is a function that assigns an element [[M ]]ρ of D to each

valuation ρ and term M in such a way that the following properties are satisfied:
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(a) For all variables x , [[x]]ρ = ρ(x).

(b) For all terms M and N , [[MN ]]ρ = [[M ]]ρ • [[N ]]ρ .

(c) For all variables x , terms M , and elements d ∈ D , [[λx.M ]]ρ•d = [[M ]][d/x]ρ .

(d) For all terms M and all valuations ρ and σ , [[M ]]ρ = [[M ]]σ whenever

ρ(x) = σ(x) for all free variables x of M .

(e) For all terms M and all variables x and y , [[λx.M ]]ρ = [[λy.[y/x]M ]]ρ ,

provided that y is not a free variable of M .

(f) For all terms M and N , if for all d ∈ D we have [[M ]][d/x]ρ = [[N ]][d/x]ρ then

[[λx.M ]]ρ = [[λx.N ]]ρ .

The above definition may seem long and cumbersome to the reader, but, from

the discussion above, each of the properties (a)–(e) is one we would expect a

reasonable λ -model to have. What about property (f)? First, observe that by

property (c) the condition ∀d ∈ D
(
[[M ]][d/x]ρ = [[N ]][d/x]ρ

)
is equivalent to the

condition ∀d ∈ D
(
[[λx.M ]]ρ • d = [[λx.N ]]ρ • d

)
. Moreover, we are thinking of

the abstraction λx.M as describing a function and [[λx.M ]]ρ as its interpretation

in D . We would expect this interpretation to act like a function on D , and in-

deed [[λx.M ]]ρ • d models the application of the interpretation of λx.M to the

argument d . We can make this explicit by associating with each a ∈ D a func-

tion fa : D → D , defined by fa(d) = a • d . In this new notation the condition

∀d ∈ D
(
[[λx.M ]]ρ • d = [[λx.N ]]ρ • d

)
becomes ∀d ∈ D

(
f[[λx.M ]]ρ(d) = f[[λx.N ]]ρ(d)

)
,

which is equivalent to saying f[[λx.M ]]ρ = f[[λx.N ]]ρ , and property (f) becomes the

statement that if f[[λx.M ]]ρ = f[[λx.N ]]ρ then [[λx.M ]]ρ = [[λx.N ]]ρ . In other words,

property (f) is saying that if the interpretations of two abstractions both induce

the same function on D then in fact those interpretations should be the same.

This is certainly a reasonable requirement, and it turns out it is needed to help

prove that [[M ]]ρ = [[N ]]ρ whenever M =β N .

The concept of two elements of an applicative structure D inducing the same

function on D will be needed again below, so let us give it a name and its own

notation.

Definition 3.4. Let ⟨D, •⟩ be an applicative structure and let a, b ∈ D . We say

that a is extensionally equivalent to b iff a • d = b • d for all d ∈ D (i.e., iff

fa = fb ). We write a ∼ b to denote that a and b are extensionally equivalent.
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It is easy to check that ∼ is an equivalence relation on D , and that using the

new notation property (f) above is equivalent to saying that if [[λx.M ]]ρ ∼ [[λx.N ]]ρ

then [[λx.M ]]ρ = [[λx.N ]]ρ .

The following theorem summarizes several fundamental properties of λ -models

that can be proved from the above definition.

Theorem 3.5 ([14], Lemma 15.8, Lemma 15.10(a), and Theorem 15.12). Let⟨
D, •, [[ ]]ρ

⟩
be a λ-model and let x, y be variables, M,N be terms and ρ, σ be

valuations.

(a) (Berry’s extensionality property) If [[λx.M ]]ρ ∼ [[λy.N ]]σ then [[λx.M ]]ρ =

[[λy.N ]]σ .

(b) [[[N/x]M ]]ρ = [[M ]][d/x]ρ , where d = [[N ]]ρ .

(c) If M =β N then [[M ]]ρ = [[N ]]ρ .

3.2 Second Definition: Syntax-Free λ-Models

The above definition is reasonably intuitive, especially for someone familiar with

models in first-order logic. However, it is closely tied to the syntax of terms, and

does not give much insight into what properties an applicative structure must have

in order to be suitable for use in a λ -model. In this subsection we will give an

alternative, equivalent definition that is phrased solely in terms of the applicative

structure.

Let us start by assuming we have an applicative structure D = ⟨D, •⟩ and

consider what additional properties it must satisfy in order for us to be able to

define the interpretation [[M ]]ρ of every term M in such a way that we obtain a

λ -model. It should be clear that the only difficult case is when M ≡ λx.N is an

abstraction. Specifically, we need to determine how to define [[λx.N ]]ρ , assuming

that we know [[N ]]σ for all valuations σ . From Definition 3.3, property (c), a

crucial step is finding an element a ∈ D such that

a • d = [[N ]][d/x]ρ for all d ∈ D . (2)

Define the function gM : D → D by gM (d) = [[N ]][d/x]ρ . Then the crucial step

amounts to finding an element a ∈ D such that gM (d) = a•d for all d ∈ D , which

is often expressed by saying that gM is representable in D . Since D contains at

least two elements the cardinality of the set of all functions from D to D is greater
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than the cardinality of D , so showing that gM is representable in D is clearly

going to be non-trivial. Let us first consider the special case that M is of the form

λx1x2 · · ·xn.P , where P consists only of variables combined using application.

A term P is called a combination of variables iff P ≡ x for some variable x or

P ≡ (QR) for some combinations of variables Q and R . Let P be a combination

of variables whose free variables all lie in the set {x1, x2, . . . , xn} . We can define

a function fP : Dn → D using induction on the length of P , by

fP (d1, d2, . . . , dn) =

dk if P ≡ xk,

fQ(d1, d2, . . . , dn) • fR(d1, d2, . . . , dn) if P ≡ (QR).

Intuitively, fP (d1, d2, . . . , dn) is a combination of the elements d1, d2, . . . , dn (per-

haps repeated) using • .

Example 3.6. Let P ≡ x(yx)yy . Then P is a combination of variables with free

variables x and y , and for all d1, d2 ∈ D we have

fP (d1, d2) = d1 • (d2 • d1) • d2 • d2.

Suppose now that we are able to construct a λ -model using D . Let P be a

combination of variables whose free variables all lie in the set {x1, x2, . . . , xn} and

let M ≡ λx1x2 · · ·xn.P . By repeated application of property (c) of Definition 3.3

we obtain that for any valuation ρ and any elements d1, d2, . . . , dn ∈ D ,

[[M ]]ρ • d1 • d2 • · · · • dn = [[λx1x2 · · ·xn.P ]]ρ • d1 • d2 • · · · • dn
= [[P ]][dn/xn]...[d2/x2][d1/x1]ρ.

Note that M has no free variables, so by property (d) of Definition 3.3 [[M ]]ρ is

independent of ρ . Let aP = [[M ]]ρ ; we now have that

aP • d1 • d2 • · · · • dn = [[P ]][dn/xn]...[d2/x2][d1/x1]ρ

for all d1, d2, . . . , dn ∈ D . It is easy to show that [[P ]][dn/xn]...[d2/x2][d1/x1]ρ =

fP (d1, d2, . . . , dn), so in fact we see that for any combination of variables P there

is an element aP ∈ D such that aP • d1 • d2 • · · · • dn = fP (d1, d2, . . . , dn) for all

d1, d2, . . . , dn ∈ D .

Definition 3.7. An applicative structure ⟨D, •⟩ is combinatorially complete iff

for every combination of variables P there is an element aP ∈ D such that

aP • d1 • d2 • · · · • dn = fP (d1, d2, . . . , dn) for all d1, d2, . . . , dn ∈ D .
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From the above discussion it is clear that an applicative structure D must

be combinatorially complete in order to be used to construct a λ-model. The

definition suggests it is difficult to verify that D is combinatorially complete.

However, the following proposition shows that in fact it is sufficient to show that

D contains two elements with certain properties.

Proposition 3.8 ([14], Theorem 14.29; [1], Theorem 5.1.10). An applicative struc-

ture ⟨D, •⟩ is combinatorially complete iff there are elements k, s ∈ D such that

for all a, b, c ∈ D we have k • a • b = a and s • a • b • c = a • c • (b • c) .

Let us now return to the problem of defining the interpretation [[M ]]ρ of a

general abstraction M ≡ λx.N . From Definition 3.3, property (c) it might appear

that we can set [[M ]]ρ = a for any element a ∈ D with property (2). However, in

fact we must use a specific element a . Indeed, let y and z be variables that do

not appear in N and let E ≡ λyz.yz . Then

EM ≡ (λyz.yz)(λx.N) ▷β λz.(λx.N)z ▷β λz.[z/x]N ≡α λx.N ≡M,

so EM =β M . This implies that [[M ]]ρ = [[EM ]]ρ = [[E]]ρ • [[M ]]ρ , i.e., that

[[M ]]ρ = e • [[M ]]ρ , where e = [[E]]ρ . Therefore, when we define [[M ]]ρ for an

abstraction M we must find an element a of D that satisfies both property (2)

and the condition a = e • a . How can we find such an element a?

First, we note that although there are potentially many elements of D that

satisfy property (2), they are all related. Indeed, if a and a′ both satisfy prop-

erty (2), then for all d ∈ D we have that a • d = [[N ]][d/x]ρ = a′ • d , which implies

that a ∼ a′ . Similarly, if a satisfies property (2) and a ∼ a′ then a′ satisfies

property (2) as well. Hence the set of all elements of D that satisfy property (2)

forms an equivalence class under ∼ . To define [[M ]]ρ we just need to pick out one

element a in this equivalence class that satisfies a = e • a .
Define a function Λ : D → D by Λ(b) = e•b , and note that for any valuation ρ

we have that

Λ(b) = [[E]]ρ • b = [[λyz.yz]]ρ • b = [[λz.yz]][b/y]ρ

Is Λ(b) ∼ b? Let d be in D , and note that

Λ(b) • d = [[λz.yz]][b/y]ρ • d = [[yz]][d/z][b/y]ρ = [[y]][d/z][b/y]ρ • [[z]][d/z][b/y]ρ = b • d.

Hence we do indeed have Λ(b) ∼ b . In particular, if the element a satisfies

property (2) then Λ(a) also satisfies property (2). If we can show in addition that
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Λ(a) = e •Λ(a) then given any element a that satisfies property (2), Λ(a) will be

a good candidate for the definition of [[M ]]ρ .

Observe that e • Λ(a) = Λ
(
Λ(a)

)
, so we would like to show that Λ

(
Λ(a)

)
=

Λ(a). In fact, we will show a stronger property, namely that if a ∼ b then

Λ(a) = Λ(b); the result Λ
(
Λ(a)

)
= Λ(a) will then follow from the fact that

Λ(a) ∼ a . Assume therefore that a ∼ b . Then Λ(a) ∼ a ∼ b ∼ Λ(b), so given

a fixed valuation ρ we have that [[λz.yz]][a/y]ρ ∼ [[λz.yz]][b/y]ρ . By part(a) of

Theorem 3.5 this implies that [[λz.yz]][a/y]ρ = [[λz.yz]][b/y]ρ , i.e., Λ(a) = Λ(b).

We now have a complete solution for how to define [[M ]]ρ when M ≡ λx.N is an

abstraction. Indeed, given any element a of D that satisfies property (2), we know

that [[M ]]ρ ∼ a . Furthermore, [[M ]]ρ = e • [[M ]]ρ , so [[M ]]ρ = Λ
(
[[M ]]ρ

)
= Λ(a).

That is, we must have [[M ]]ρ = Λ(a).

The reader has surely noticed that in fact our solution for how to define [[M ]]ρ

is not truly complete, because we have not shown how to find an element a of D

that satisfies property (2), or even that such an element must exist. It is possible

to give a construction for an element a with the requisite property. However, the

details are a bit complicated and do not yield deeper insight into the fundamental

ideas of λ -models, so they have been omitted. The interested reader can find them

in any complete exposition on λ -models, such as pages 238–239 of [14]. In any

case, we now have enough background to motivate the following definition and

theorem.

Definition 3.9. A syntax-free λ-model is a triple ⟨D, •,Λ⟩ where D = ⟨D, •⟩ is

an applicative structure, Λ : D → D , and the following properties are satisfied:

(a) D is combinatorially complete;

(b) for all a ∈ D , Λ(a) ∼ a ;

(c) for all a, b ∈ D , if a ∼ b then Λ(a) = Λ(b); and

(d) there exists an element e ∈ D such that for all a ∈ D , Λ(a) = e • a .

Theorem 3.10 ([14], Theorem 15.20). If ⟨D, •,Λ⟩ is a syntax-free λ-model then

we can construct a λ-model
⟨
D, •, [[ ]]

⟩
by defining

(a) [[x]]ρ = ρ(x) if x is a variable;

(b) [[MN ]]ρ = [[M ]]ρ • [[N ]]ρ ; and
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(c) [[λx.N ]]ρ = Λ(a) , where a is any element of D such that a • d = [[N ]][d/x]ρ

for all d ∈ D .

Conversely, if
⟨
D, •, [[ ]]

⟩
is a λ-model then we can construct a syntax-free λ-

model ⟨D, •,Λ⟩ by defining Λ(a) = e•a , where e = [[λyz.yz]]ρ for any valuation ρ .

Recall that Proposition 3.8 characterized combinatorial completeness in terms

of the existence of two elements with certain properties. Since the function Λ in

a syntax-free λ -model can be defined using the element e , this raises the question

of whether the existence of Λ can be characterized in terms of the existence of an

element satisfying the appropriate properties. Indeed it can.

Theorem 3.11 ([14], Discussion 15.23). Let D = ⟨D, •⟩ be an applicative structure

such that D is combinatorially complete and there exists an element e ∈ D such

that

(a) for all a, b ∈ D , e • a • b = a • b ; and

(b) for all a, b ∈ D , if a ∼ b then e • a = e • b .

Then ⟨D, •,Λ⟩ is a syntax-free λ-model, where Λ : D → D is defined by Λ(a) =

e • a for all a ∈ D .

A triple ⟨D, •, e⟩ that satisfies the hypotheses of the preceding theorem is called

a loose Scott-Meyer λ-model (see [23] and [17]). It follows from Proposition 3.8

that loose Scott-Meyer λ-models can be characterized completely in terms of the

existence of elements of the applicative structure that satisfy certain properties,

i.e., they can be characterized in completely algebraic terms. In particular, we

now have a characterization of λ -models that is strictly internal to the applicative

structure, which is sometimes the most convenient way to verify that a structure

is indeed a λ-model.

There is one special case where defining Λ so as to obtain a syntax-free λ -model

is trivial:

Theorem 3.12 ([14], Theorem 15.30). Suppose ⟨D, •⟩ is a combinatorially com-

plete applicative structure such that for all a, b ∈ D , a ∼ b implies a = b . Then

defining Λ(a) = a for all a ∈ D makes ⟨D, •,Λ⟩ a syntax-free λ-model.

Proof. It is trivial that Λ satisfies parts (b) and (c) of Definition 3.9. For part (d),

note that P ≡ x1 is a combination of variables and for each a ∈ D , fP (a) = a .
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Hence by combinatorial completeness there exists an element e ∈ D such that

e • a = fP (a) = a for all a ∈ D . That is, Λ(a) = e • a for all a ∈ D .

An applicative structure ⟨D, •⟩ satisfying the property that for all a, b ∈ D ,

a ∼ b implies a = b is said to be extensional. Thus Theorem 3.12 can be stated

succinctly as “Every extensional combinatorially complete applicative structure

can be made into a syntax-free λ-model.”

4 Engeler’s Model DA

Before we start on Engeler’s model it should be noted that a very simple model,

called the term model, can be constructed using the terms of the λ -calculus itself.

In the term model the set D consists of all equivalence classes of λ -terms under

β -equality, which is an equivalence relation by Proposition 2.10, part (a). For

the binary operation • on D , define [M ]β • [N ]β = [MN ]β , where [M ]β denotes

the equivalence class of M . It is straightforward to show that D contains ele-

ments k , s , and e with the requisite properties, and thus by Proposition 3.8 and

Theorem 3.11 this yields a λ-model.

The construction of the term model is very simple, but because it is so closely

tied to the syntax of the λ-calculus the model does not yield much insight. A

much more useful model is DA , which has the shortest known model construction,

other than the term model. It was discovered by Erwin Engeler (see [11]), although

Gordon Plotkin and Robert Meyer each had similar ideas several years earlier. It

is constructed as a syntax-free λ -model, as follows.

Let A be a nonempty set. For any sets α and m let (α 7→ m) denote the

ordered pair
(
A, (α,m)

)
, and note that

(i) By the Axiom of Regularity in ZFC set theory, (α 7→ m) /∈ A .

(ii) For any sets α , β , m , and n , (α 7→ m) = (β 7→ n) iff α = β and m = n .

For any set X let F(X) denote the set of all finite subsets of X . Now, define an

increasing sequence of sets
{
Gn(A)

}∞
n=0

inductively by G0(A) = A and

Gn+1(A) = Gn(A) ∪
{
(α 7→ m)

∣∣ α ∈ F
(
Gn(A)

)
and m ∈ Gn(A)

}
for n ≥ 0.

Let G(A) =
∪∞

n=0Gn(A) and note that G(A) is the smallest set such that A ⊆
G(A) and for every α ∈ F

(
G(A)

)
and m ∈ G(A), (α 7→ m) ∈ G(A). Finally, let

DA = ℘
(
G(A)

)
, the set of all subsets of G(A).
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The applicative structure for this model is D = ⟨DA, •⟩ , where a • b is defined

for all a, b ∈ DA by

a • b =
{
m ∈ G(A)

∣∣ there exists β ∈ F(b) with (β 7→ m) ∈ a
}
.

Define elements k, s ∈ DA by

k =
{
(α 7→ (β 7→ m))

∣∣ α, β ∈ F
(
G(A)

)
and m ∈ α

}
,

s =
{
(α 7→ (β 7→ (γ 7→ m)))

∣∣ α, β, γ ∈ F
(
G(A)

)
and m ∈ α • γ • (β • γ)

}
.

It is a straightforward calculation to show that for all a, b, c ∈ DA we have k•a•b =
a and s • a • b • c = a • c • (b • c). Thus, by Proposition 3.8 D is combinatorially

complete.

Intuitively, most elements of DA act much like partial functions from F
(
G(A)

)
to G(A), with (α 7→ m) ∈ a denoting a(α) = m . The following definitions are

motivated by this intuition: For a ∈ DA let the range of a , denoted by Rng(a),

be the set

Rng(a) =
{
m ∈ G(A)

∣∣ there exists α ∈ F
(
G(A)

)
with (α 7→ m) ∈ a

}
and for m ∈ G(A) let the inverse image of m under a , denoted by a−1 (m), be

the set

a−1 (m) =
{
α ∈ F

(
G(A)

) ∣∣ (α 7→ m) ∈ a
}
.

Note that for any m ∈ G(A), m ∈ Rng(a) iff a−1 (m) is nonempty. For any

nonempty collection C of finite subsets of G(A) let Min(C) denote the set of all

minimal sets (under the subset relation) in C . We have the following characteri-

zation of the extensional equivalence relation ∼ on DA :

Lemma 4.1. For all a, b ∈ DA , a ∼ b iff Rng(a) = Rng(b) and for all m ∈
Rng(a) , Min

(
a−1 (m)

)
= Min

(
b−1 (m)

)
.

To finish our proof that DA is a λ-model we need a function Λ : DA → DA

that satisfies properties (b)–(d) of Definition 3.9. For a ∈ DA define

Λ(a) =
{
(β 7→ m)

∣∣ β ∈ F
(
G(A)

)
and m ∈ a • β

}
.

Combining this with the definition of • above we see that

Λ(a) =
{
(β 7→ m)

∣∣ β ∈ F
(
G(A)

)
and β ⊇ α for some (α 7→ m) ∈ a

}
.
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For α ∈ F
(
G(A)

)
define the upward cone of α , denoted by Up(α), by

Up(α) =
{
β ∈ F

(
G(A)

) ∣∣ β ⊇ α
}
,

and extend this definition to an arbitrary collection C of sets in F
(
G(A)

)
by

Up(C) =
∪
α∈C

Up(α).

It is easy to check that Up(C) = Up
(
Min(C)

)
. The proofs of the following basic

results about Λ(a) are straightforward:

Lemma 4.2. For all a ∈ DA we have

(a) Λ(a) =
∪

m∈Rng(a)

{
(β 7→ m)

∣∣ β ∈ Up
(
Min(a−1 (m))

)}
;

(b) Rng
(
Λ(a)

)
= Rng(a) and for all m ∈ Rng

(
Λ(a)

)
, Min

(
(Λ(a))

−1
(m)

)
=

Min
(
a−1 (m)

)
.

It follows immediately from Lemma 4.1 and part (a) of Lemma 4.2 that for

all a, b ∈ DA , if a ∼ b then Λ(a) = Λ(b), and from Lemma 4.1 and part (b)

of Lemma 4.2 that for all a ∈ DA , Λ(a) ∼ a . This shows that Λ satisfies

properties (b) and (c) of Definition 3.9.

For property (d) of the definition we need to find an element e ∈ DA such that

Λ(a) = e • a for all a ∈ DA . Let

e =
{
(α 7→ (β 7→ m))

∣∣ α, β ∈ F
(
G(A)

)
, m ∈ G(A), and m ∈ α • β

}
.

Then for each a ∈ DA we have that

e • a =
{
(β 7→ m)

∣∣ there exists α ∈ F(a), β ∈ F
(
G(A)

)
, and m ∈ G(A)

with (α 7→ (β 7→ m)) ∈ e
}

=
{
(β 7→ m)

∣∣ there exists α ∈ F(a), β ∈ F
(
G(A)

)
, and m ∈ G(A)

with m ∈ α • β
}

=
{
(β 7→ m)

∣∣ there exists α ∈ F(a), β, γ ∈ F
(
G(A)

)
, and m ∈ G(A)

with γ ⊆ β and (γ 7→ m) ∈ α
}

=
{
(β 7→ m)

∣∣ there exists β, γ ∈ F
(
G(A)

)
, and m ∈ G(A)

with γ ⊆ β and (γ 7→ m) ∈ a
}

=
{
(β 7→ m)

∣∣ there exists γ ∈ F
(
G(A)

)
, and m ∈ G(A)



Models of the λ -Calculus: An Introduction 77

with β ∈ Up(γ) and (γ 7→ m) ∈ a
}

=
∪

m∈Rng(a)

{
(β 7→ m)

∣∣ there exists γ ∈ a−1 (m) with β ∈ Up(γ)
}

=
∪

m∈Rng(a)

{
(β 7→ m)

∣∣ β ∈ Up
(
a−1 (m)

)
}

=
∪

m∈Rng(a)

{
(β 7→ m)

∣∣ β ∈ Up
(
Min(a−1 (m))

)
}

= Λ(a).

This completes the proof that DA is a syntax-free λ -model.

5 Scott’s Model D∞

Dana Scott’s1 model D∞ is important for several reasons: It was the first non-

trivial model of the untyped λ -calculus, appearing at a time when many re-

searchers in the field doubted it was possible to find an interpretation of all λ-terms

in standard set theory. (In fact, a month before D∞ was discovered Scott him-

self had argued strongly that finding such an interpretation was highly unlikely!)

Furthermore, as noted in the Introduction, many of the concepts introduced in

its construction have become standard tools in the semantics of programming lan-

guages.

The model presented below is a modified version of Scott’s original model,

which used complete lattices rather than the complete partial orders we will use.

However, this is only a minor difference. Our exposition is based on [14], Chap-

ter 16, which provides more detail, and in turn is derived from [1], Section 18.2.

5.1 Complete Partial Orders

Scott’s key insight, explained in more detail below, was to “approximate” the

object used to model a term using certain ordinary functions, then take a “limit”

to get the object itself. The mathematical structure that is the basis for this

process is the complete partial order, which we will now introduce. The reader

interested in more details can consult sources such as [7].

1As stated in the Introduction, this model was the result of joint work by Dana Scott and

Christopher Strachey; however, for the sake of brevity we will follow tradition and refer to it

simply as “Scott’s model”.
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Let ⟨D,⊑⟩ be a poset (partially-ordered set). An element b ∈ D is a least

element iff b ⊑ d for all d ∈ D . Note that D may not have a least element, but

if it does then the least element is unique, and will be denoted by ⊥ (pronounced

“bottom”). Let X be a subset of D . An upper bound of X is an element u ∈ D

such that x ⊑ u for all x ∈ X . A least upper bound of X is an element ℓ ∈ D

such that ℓ is an upper bound of X and ℓ ⊑ u for all upper bounds u of X .

Again, a subset X of D may not have a least upper bound, but if it does then the

least upper bound of X is unique and will be denoted by
⊔
X . A subset X of D

is said to be directed iff X is nonempty and for every pair of elements x, y ∈ X

there exists an element z ∈ X such that x ⊑ z and y ⊑ z .

Definition 5.1. A complete partial order (abbreviated as cpo) is a partial or-

der ⟨D,⊑⟩ such that

(a) D has a least element (denoted by ⊥) and

(b) every directed subset X of D has a least upper bound (denoted by
⊔
X ).

As is commonly done, we will normally write “the cpo D” rather than “the

cpo ⟨D,⊑⟩”. Furthermore, we will adopt the convention that if D , D′ , and D′′

are posets then the corresponding partial orderings will be denoted by ⊑ , ⊑′ , and

⊑′′ , respectively.

Example 5.2. Fix an object ⊥/∈ N and let N+ = N ∪ {⊥} . Define an ordering

on N+ by

a ⊑ b iff (a =⊥ and b ∈ N) or a = b

(see Figure 3). It is easy to check that the pair ⟨N+,⊑⟩ is a cpo; it will be denoted

simply by N+ .

⊥

N : 1 2 3 4 · · ·
· · ·

Figure 3: N+

The construction of D∞ starts with N+ . To take the next step we need to

know how to construct cpos out of certain sets of functions on cpos.
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5.2 Continuous Functions on Cpos

One important lesson from category theory is that any time we define a new kind of

mathematical object we should also determine what the corresponding morphisms

(mappings between objects of that kind) are. The basic rule is that the morphisms

should preserve the structure of the objects they are mapping between. For the

category of cpos the morphisms are the continuous functions defined below.

Definition 5.3. Let D and D′ be cpos and ϕ : D → D′ a function.

(a) We say that ϕ is monotonic iff a ⊑ b implies ϕ(a) ⊑′ ϕ(b).

(b) We say that ϕ is continuous iff for all directed subsets X of D ,

ϕ
(⊔

X
)
=

⊔
ϕ(X). (3)

We use the notation [D → D′] to denote the set of all continuous functions from

D to D′ .

Note that equation (3) means both that ϕ(X) has a least upper bound (there

is no guarantee it is a directed set) and that the least upper bound equals ϕ
(⊔

X
)
.

As the name suggests, it is also possible to give a topological definition of a

continuous function from one cpo to another. A topology called the Scott topology

can be defined on an arbitrary cpo, and a function is continuous in the sense above

iff it is continuous with respect to the Scott topologies on D and D′ .

It is a pair of easy exercises to prove that every continuous function is mono-

tonic and the composition of continuous functions is continuous.

For cpos D and D′ we can define a relation ⪯ on [D → D′] by

ϕ ⪯ ψ iff ϕ(d) ⊑′ ψ(d) for all d ∈ D . (4)

It is easy to check that ⪯ is a partial order on [D → D′] . Furthermore, [D → D′]

has a least element, defined by

⊥(d) =⊥′ for all d ∈ D . (5)

Finally, if Φ is a directed subset of [D → D′] then for each d ∈ D the set
{
ϕ(d)

∣∣
ϕ ∈ Φ

}
is a directed subset of D′ so we can define a function ψ : D → D′ by

ψ(d) =
⊔{

ϕ(d)
∣∣ ϕ ∈ Φ

}
for all d ∈ D . (6)

It is straightforward to show that ψ is continuous and is the least upper bound of

Φ. Hence we have the following result.
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Proposition 5.4 ([14], Lemma 16.18). If D and D′ are cpos then [D → D′] is

also a cpo under the partial ordering defined by (4). Its least element is given by

(5) and for any directed subset Φ of [D → D′] ,
⊔
Φ is the function ψ defined by

(6).

In particular, given a cpo D0 we can construct a sequence {Dn}∞n=0 of cpos

inductively by defining Dn+1 = [Dn → Dn] for all n ≥ 0. Scott’s model D∞

uses such a sequence starting with D0 = N+ , but the results that follow are valid

regardless of the choice of D0 . Now that we have the sequence of cpos {Dn}∞n=0

let us look at how they are related to one another.

5.3 Projections of Cpos

Given two cpos D and D′ it would seem natural to consider whether D can be

embedded in D′ (or vice versa), by which we would mean that there is a continuous

monomorphism from D into D′ . For our purposes we need a stronger relationship

between D and D′ .

Definition 5.5. Let D and D′ be cpos. A projection from D′ to D is a pair ⟨ϕ, ψ⟩
of functions with ϕ ∈ [D → D′] and ψ ∈ [D′ → D] , such that

ψ ◦ ϕ = ID and ϕ ◦ ψ ⪯ ID′ (7)

(here ID denotes the identity function on D and similarly for ID′ ).

It is easy to show that if ⟨ϕ, ψ⟩ is a projection from D′ to D then ϕ embeds D

into D′ . However, the additional existence of ψ with the properties in (7) turns

out to be quite useful, as we shall see.

First, let us note that for the sequence of cpos {Dn}∞n=0 constructed above

we can define a projection ⟨ϕn, ψn⟩ from Dn+1 to Dn for each n , starting with

a projection from D1 to D0 , as follows. For each d ∈ D0 , let κd denote the

constant function κd(c) = d for all c ∈ D0 . It is easy to see that κd is continuous,

so κd ∈ [D0 → D0] = D1 . Now define ϕ0 : D0 → D1 and ψ0 : D1 → D0 by

ϕ0(d) = κd for d ∈ D0 and ψ0(c) = c(⊥0) for c ∈ D1 (where ⊥0 is the least

element of D0 ). It is straightforward to check that ϕ0 and ψ0 are continuous,

ψ0 ◦ ϕ0 = ID0 , and ϕ0 ◦ ψ0 ⪯ ID1 , so that ⟨ϕ0, ψ0⟩ is indeed a projection from

D1 to D0 . Now we define ϕn : Dn → Dn+1 and ψn : Dn+1 → Dn inductively for

n > 0 by

ϕn(σ) = ϕn−1 ◦ σ ◦ ψn−1 and ψn(τ) = ψn−1 ◦ τ ◦ ϕn−1
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Figure 4: The sequence D0, D1, D2, . . .

for σ ∈ Dn and τ ∈ Dn+1 . It takes some work, but is not difficult, to show that

ϕn ∈ [Dn → Dn+1] , ψn ∈ [Dn+1 → Dn] , ψn ◦ϕn = IDn , and ϕn ◦ψn ⪯ IDn+1 . In

other words, ⟨ϕn, ψn⟩ is a projection from Dn+1 to Dn . The result is the picture

shown in Figure 4.

The functions ϕn and ψn only take us from one level of the sequence {Dn}∞n=0

to an adjacent level. However, by composing them in the appropriate ways we can

obtain functions that skip many levels.

Definition 5.6. For any m,n ≥ 0 define ϕm,n : Dm → Dn by

ϕm,n =


ϕn−1 ◦ ϕn−2 ◦ · · · ◦ ϕm+1 ◦ ϕm if m < n,

IDn if m = n,

ψn ◦ ψn+1 ◦ · · · ◦ ψm−2 ◦ ψm−1 if m > n.

Since we already know that ⟨ϕn, ψn⟩ is a projection from Dn+1 to Dn it is

easy to prove the following lemma:

Lemma 5.7 ([14], Lemma 16.33). Let m,n ≥ 0 . Then

(a) ϕm,n ∈ [Dm → Dn] ;

(b) if m ≤ n then ϕn,m ◦ ϕm,n = IDm ;
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(c) if m > n then ϕn,m ◦ ϕm,n ⪯ IDm ;

(d) if m < n then ⟨ϕm,n, ϕn,m⟩ is a projection from Dn to Dm ;

(e) if k is between m and n then ϕk,n ◦ ϕm,k = ϕm,n .

5.4 The Construction of D∞

We are now ready to define D∞ , the applicative structure used in Scott’s model.

As Figure 4 illustrates, the sequence {Dn}∞n=0 is much like an increasing chain of

sets, with each set nicely embedded inside the next one. Intuitively, we ought to

be able to take the “union” of the sequence to obtain a set D∞ such that each

Dn embeds nicely inside D∞ . Although we will not define D∞ as a union, this

is a good intuition to use when thinking about it and its relationship to the Dn ’s.

Definition 5.8. Let D∞ denote the set of all infinite sequences of the form

d = ⟨d0, d1, d2, . . .⟩

such that for all n ≥ 0 we have dn ∈ Dn and ψn(dn+1) = dn . Define a relation ⊑
on D∞ by

⟨d0, d1, d2, . . .⟩ ⊑ ⟨d′0, d′1, d′2, . . .⟩ iff dn ⊑ d′n for all n ≥ 0.

Notation 5.9. To save some writing, we will adopt the convention that a subscript

of n on an element of D∞ will always denote the nth term of that element’s

sequence. Thus, for example, if a, b are in D∞ then an will denote the nth term

of the sequence that is a and (a•b)n will denote the nth term of the sequence that

is a • b . Also, if X is a subset of D∞ then Xn will denote the set { an | a ∈ X } .

As expected, D∞ is a cpo:

Proposition 5.10 ([14], Lemma 16.36). The pair ⟨D∞,⊑⟩ defined above is a cpo,

with least element

⊥= ⟨⊥0,⊥1,⊥2, . . .⟩,

where ⊥n is the least element of Dn , and least upper bound of a directed subset

X of D∞ given by ⊔
X =

⟨⊔
X0,

⊔
X1,

⊔
X2, . . .

⟩
.

It should not come as a surprise that for each n ≥ 0 we have a pair of continuous

functions that forms a projection from D∞ to Dn . It is defined as follows:



Models of the λ -Calculus: An Introduction 83

Definition 5.11. For each n ≥ 0 define ϕn,∞ : Dn → D∞ and ϕ∞,n : D∞ → Dn

by

ϕn,∞(d) =
⟨
ϕn,0(d), ϕn,1(d), ϕn,2(d), . . .⟩

for all d ∈ Dn and

ϕ∞,n(d) = dn

for all d ∈ D∞ .

We have the following:

Proposition 5.12 ([14], Lemmas 16.38, 16.39, and 16.42). Let m,n ≥ 0 with

m ≤ n and a, b ∈ D∞ .

(a) The pair ⟨ϕn,∞, ϕ∞,n⟩ is a projection from D∞ to Dn .

(b) ϕm,n(am) ⊑ an

(c) ϕm,∞(am) ⊑ ϕn,∞(an)

(d) a =
⊔

n≥0 ϕn,∞(an)

(e) ϕn,∞
(
an+1(bn)

)
⊑ ϕn+1,∞

(
an+2(bn+1)

)
Parts (c) and (d) of Proposition 5.12 are particularly interesting, because they

suggest that intuitively we can regard the terms an of an element a ∈ D∞ as

a sequence of increasingly good approximations to a , and a as the limit of the

increasing sequence {an}∞n=0 . This is similar to the case of a function f : A→ B

where we have an increasing sequence of subsets A0 ⊆ A1 ⊆ A2 ⊆ · · · of A

whose union is A ,
∪∞

n=0An = A . In that case we can think of the restrictions

f |A0 , f |A1 , f |A2 , . . . as a sequence of increasingly good approximations to f .

Furthermore, combining part (d) with part (e) suggests a way to define the

binary operation • on D∞ . Suppose a, b are in D∞ . For each n , an and bn

are approximations of a and b , respectively. We cannot apply an to bn , but

we can apply an+1 to bn , since an+1 ∈ Dn+1 = [Dn → Dn] . Thus, in a sense

an+1(bn) is an approximation of a applied to b (more precisely, ϕn,∞
(
an+1(bn)

)
is the approximation, since a applied to b should yield an element of D∞ ). By

part (e) of Proposition 5.12, these approximations form an increasing sequence,

so the approximations are getting better as n increases. Thus, it is reasonable to

expect that a applied to b should be the limit of these approximations, i.e., their

least upper bound. This is exactly how we define • on D∞ .
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Definition 5.13. For all a, b ∈ D∞ we define

a • b =
⊔{

ϕn,∞
(
an+1(bn)

) ∣∣ n ≥ 0
}
. (8)

Note that by Proposition 5.12, part (e), the set
{
ϕn,∞

(
an+1(bn)

) ∣∣ n ≥ 0
}

is

linearly ordered, and thus a directed set, so the least upper bound in equation (8)

always exists. Also, we see from this definition how Scott was able to cleverly

sidestep the problem of self-application: While an(an) is not defined, there is no

problem with an+1(an).

5.5 D∞ is a λ-Model

We now have an applicative structure ⟨D∞, •⟩ ; it only remains to show that it

is a λ -model, which will be done by applying Proposition 3.8 and Theorem 3.12.

The technical details of the proof are rather lengthy, so we will limit ourselves to

defining the elements k and s needed for Proposition 3.8 and outlining a proof

that ⟨D∞, •⟩ is extensional.

Definition 5.14. (a) Let n ≥ 2. For a ∈ Dn−1 define κa : Dn−2 → Dn−2 to

be the constant function κa(b) = ψn−2(a) for all b ∈ Dn−2 . Then define

kn : Dn−1 → Dn−1 by kn(a) = κa for all a ∈ Dn−1 .

(b) Let n ≥ 3. For a ∈ Dn−1 and b ∈ Dn−2 define τa,b : Dn−3 → Dn−3 by

τa,b(c) = a
(
ϕn−3(c)

)(
b(c)

)
for all c ∈ Dn−3 , then define σa : Dn−2 → Dn−2

by σa(b) = τa,b for all b ∈ Dn−2 . Finally, define sn : Dn−1 → Dn−1 by

sn(a) = σa for all a ∈ Dn−1 .

Note that in order to show everything in the above definition is well-defined

we must prove that κa , τa,b and σa are all continuous. The first two are trivial to

check, while the last one requires a little more work, but is not hard. The functions

kn and sn have the following properties:

Lemma 5.15 ([14], Exercise 16.30 and Note 16.31). (a) For all n ≥ 2 we have

that kn ∈ Dn and ψn(kn+1) = kn . In addition, ψ1(k2) = ID0 ∈ D1 .

(b) For all n ≥ 3 we have that sn ∈ Dn and ψn(sn+1) = sn . In addition,

ψ1

(
ψ2(s3)

)
= ID0 ∈ D1 .

Now we can define k and s in D∞ .
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Definition 5.16. Let k and s be the following sequences:

k = ⟨⊥0, ID0 , k2, k3, . . .⟩ and s =
⟨
⊥0, ID0 , ψ2(s3), s3, s4, . . .

⟩
.

These are exactly what we need:

Lemma 5.17 ([14], Lemmas 16.51 and 16.53). The sequences k and s just defined

are both elements of D∞ . Furthermore, for all a, b, c ∈ D∞ , k • a • b = a and

s • a • b • c = a • c • (b • c) .

Hence, by Proposition 3.8, ⟨D∞, •⟩ is combinatorially complete. It only re-

mains to show that ⟨D∞, •⟩ is extensional. The idea for the proof is as follows:

Let a and b be elements of D∞ such that a ∼ b , i.e., a • c = b • c for all c ∈ D∞ .

Fix m ≥ 0 and let d be an arbitrary element of Dm . Let c = ϕm,∞(d). It

can be shown (see the proof of Theorem 16.54 in [14]) that (a • c)m = am+1(d)

and (b • c)m = bm+1(d). Hence am+1(d) = (a • c)m = (b • c)m = bm+1(d).

Therefore am+1 = bm+1 . In other words, an = bn for all n > 0. But then

a0 = ψ0(a1) = ψ0(b1) = b0 as well. Consequently a = b . Now by Theorem 3.12

⟨D∞, •⟩ is a syntax-free λ -model.

In addition to being a λ -model, D∞ has some interesting properties as a cpo.

For example, a function ϕ : D∞ → D∞ is continuous iff ϕ = fd for some d ∈ D∞

(recall that fd is defined by fd(a) = d•a for all a ∈ D∞ ). This, together with the

fact that ⟨D∞, •⟩ is extensional, implies that the function Φ : D∞ → [D∞ → D∞]

defined by Φ(d) = fd is a bijection. In fact, an even stronger fact can be proved,

namely that Φ is an isomorphism of cpos, so D∞ ∼= [D∞ → D∞] . See [1],

Theorems 18.2.15 and 18.2.16, for the details.

Before leaving D∞ it should be noted that although our construction started

with D0 = N+ , the only property of N+ we used was that it is a cpo. Therefore,

replacing N+ with any other cpo as D0 also produces a λ -model, which may have

additional interesting properties, depending on the choice of D0 .

6 Further Reading

The above exposition has clearly omitted most details, and has only scratched the

surface of the theory of λ -models, let alone the theory of the λ -calculus. So where

should the reader interested in learning more go from here? The first step would be

to obtain a solid grounding in the λ -calculus itself, since the introduction provided
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in Section 2 above is only a sketch of the bare minimum needed to talk about λ -

models. As suggested at the end of that section, Hindley and Seldin’s book, [14] (or

its predecessor, [13]), is an excellent place to start, covering all of the basic theory

with a minimum of prerequisites. The reader who is interested in a serious study

of λ -models may also want to dig into Barendregt’s book, [1], to become familiar

with more advanced aspects of the theory. Where to go from there depends on

the reader’s interests. Hindley and Seldin’s book has an extensive bibliography,

as does Chantal Berline’s article, [3], which also presents a more systematic and

algebraic approach to constructing and classifying λ -models. Finally, at the end

of Dana Scott’s notes derived from the slides of a few of his recent conference

presentations, [24], is a very wide-ranging bibliography of books illustrating some

of the interplay among the λ -calculus, logic, recursive function theory, category

theory, and programming-language semantics. The three of these should provide

the reader with plenty of interesting suggestions for further reading.

Acknowledgments: The author would like to thank the two anonymous review-

ers for numerous helpful suggestions.
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