

On Banach Algebras Induced by a Certain Product

Ali Reza Khoddami

Received 17 July 2014
Revised 12 November 2014
Accepted 19 November 2014

Abstract: We obtain characterization of bounded approximate identities for Banach algebras induced by Lau product of Banach algebras defined by a Banach algebra homomorphism. Also we characterize the unitization and minimal idempotents of these algebras. Finally we study the ideal structure of these algebras. Also we extend a result of Sangani Monfared.

Keywords: bounded approximate identity, T –Lau product, minimal idempotent, unitization

2010 Mathematics Subject Classification: 46H05, 46J05

1 introduction

Let A and B be Banach algebras and let A be commutative. Suppose that $T : B \rightarrow A$ is an algebra homomorphism with $\|T\| \leq 1$. Then the direct product $A \times B$ equipped with the ℓ^1 –norm and the algebra multiplication

$$(a, b) \cdot (c, d) = (ac + T(d)a + T(b)c, bd), \quad (a, c \in A, b, d \in B),$$

is an associative Banach algebra which is called the T –Lau product of A and B and will be denoted by $A \times_T B$. Some properties of this algebra such as, Arens regularity, amenability, weak amenability, character inner amenability are investigated in [1].

n -weak amenability and character amenability of $A \times_T B$ are investigated in [3, 4].

For a Banach algebra B with $\theta \in \Delta(B) = \{\text{spectrum of } B\}$ and for an arbitrary unital Banach algebra A define $T : B \rightarrow A$ as $T(x) = \theta(x)e$ ($x \in B$). Then the above product coincides with the product investigated by Sangani Monfared [5]. It is called the θ -Lau product. Also the θ -Lau product of A and B is denoted by $A \times_\theta B$. Character inner amenability of $A \times_\theta B$ is investigated in [2].

For an arbitrary Banach algebra A , a left (right) bounded approximate identity is a bounded net $(a_\alpha)_\alpha$ in A such that $\|a_\alpha a - a\| \rightarrow 0$ ($\|aa_\alpha - a\| \rightarrow 0$) ($a \in A$). A bounded approximate identity is a bounded net that is left and right approximate identity.

Recall that a non-zero element $\eta \in B$ is called a minimal idempotent if $\eta^2 = \eta$ and $\eta B \eta = \mathbb{C}\eta$.

2 bounded approximate identities

In this section we characterize bounded approximate identities of $A \times_T B$. Also we obtain the unitization of $A \times_T B$.

Theorem 2.1. *Let A be a commutative Banach algebra, let B be a Banach algebra, and let $T : B \rightarrow A$ be an algebra homomorphism with $\|T\| \leq 1$. Then*

- i. $A \times_T B$ is commutative if and only if B is commutative.
- ii. (\tilde{a}, \tilde{b}) is an identity for $A \times_T B$ if and only if \tilde{b} is an identity for B and $\tilde{a} + T(\tilde{b})$ is an identity for A .
- iii. $((a_\alpha, b_\alpha))_\alpha$ is a bounded left (right, or two-sided) approximate identity for $A \times_T B$ if and only if $(a_\alpha + T(b_\alpha))_\alpha$ is a bounded approximate identity for A and $(b_\alpha)_\alpha$ is a bounded left (right, or two-sided) approximate identity for B . A similar statement is true for unbounded approximate identities.

Proof. i) is clear. For ii) let (\tilde{a}, \tilde{b}) be an identity for $A \times_T B$. So for each $(a, b) \in A \times_T B$;

$$(a, b)(\tilde{a}, \tilde{b}) = (\tilde{a}, \tilde{b})(a, b) = (a, b).$$

It follows that

$$b\tilde{b} = \tilde{b}b = b; \quad (1)$$

$$a(\tilde{a} + T(\tilde{b})) + T(b)\tilde{a} = a. \quad (2)$$

Upon substituting $b = 0$ in (2), we obtain $a(\tilde{a} + T(\tilde{b})) = a$. This implies that $\tilde{a} + T(\tilde{b})$ is an identity for A .

Conversely, let \tilde{b} be an identity for B and let $\tilde{a} + T(\tilde{b})$ be an identity for A . Since $\tilde{b}b = b$ so $T(b)T(\tilde{b}) = T(b)$. It follows that $T(b)\tilde{a} = T(b)(\tilde{a} + T(\tilde{b})) - T(b)T(\tilde{b}) = T(b) - T(b) = 0$, ($b \in B$). Hence

$$(a, b)(\tilde{a}, \tilde{b}) = (a(\tilde{a} + T(\tilde{b}))) + T(b)\tilde{a}, b\tilde{b}) = (a, b).$$

Similarly $(\tilde{a}, \tilde{b})(a, b) = (a, b)$. So (\tilde{a}, \tilde{b}) is an identity for $A \times_T B$.

iii) We only prove the left version. Let $((a_\alpha, b_\alpha))_\alpha$ be a bounded left approximate identity for $A \times_T B$. So for each $(a, b) \in A \times_T B$,

$$\|(a_\alpha, b_\alpha)(a, b) - (a, b)\| = \|((a_\alpha + T(b_\alpha))a + T(b)a_\alpha - a, b_\alpha b - b)\| \rightarrow 0.$$

It follows that

$$\|(a_\alpha + T(b_\alpha))a + T(b)a_\alpha - a\| \rightarrow 0; \quad (3)$$

$$\|b_\alpha b - b\| \rightarrow 0. \quad (4)$$

(4) implies that $(b_\alpha)_\alpha$ is a bounded left approximate identity for B . Also upon substituting $b = 0$ in (3) we conclude that $(a_\alpha + T(b_\alpha))_\alpha$ is a bounded approximate identity for A .

Conversely, let $(b_\alpha)_\alpha$ be a bounded left approximate identity for B and let $(a_\alpha + T(b_\alpha))_\alpha$ be a bounded approximate identities for A . So for each $b \in B$, $T(b_\alpha)T(b) \rightarrow T(b)$ and also $(a_\alpha + T(b_\alpha))T(b) \rightarrow T(b)$. It follows that

$$T(b)a_\alpha = (a_\alpha + T(b_\alpha))T(b) - T(b_\alpha)T(b) \rightarrow 0. \quad (5)$$

For each $(a, b) \in A \times_T B$,

$$\begin{aligned} \|(a_\alpha, b_\alpha)(a, b) - (a, b)\| &= \|((a_\alpha + T(b_\alpha))a + T(b)a_\alpha - a, b_\alpha b - b)\| \\ &= \|(a_\alpha + T(b_\alpha))a + T(b)a_\alpha - a\| + \|b_\alpha b - b\| \\ &\leq \|(a_\alpha + T(b_\alpha))a - a\| + \|T(b)a_\alpha\| + \|b_\alpha b - b\| \\ &\rightarrow 0. \end{aligned}$$

Hence $(a_\alpha, b_\alpha)_\alpha$ is a left bounded approximate identity. \square

Proposition 2.2. *Let A be a commutative Banach algebra, let B be a Banach algebra, and let $T : B \rightarrow A$ be an algebra homomorphism with $\|T\| \leq 1$. Then*

$(A \times_T B)^\sharp \cong A \times_{\tilde{T}} B^\sharp$ (isometrically isomorphism), where $\tilde{T} : B^\sharp \rightarrow A^\sharp$ is the algebra homomorphism defined by $\tilde{T}((b, \lambda)) = (T(b), \lambda)$, $(b \in B, \lambda \in \mathbb{C})$.

Proof. Define $\varphi : (A \times_T B)^\sharp \rightarrow A \times_{\tilde{T}} B^\sharp$ by $\varphi(((a, b), \lambda)) = (a, (b, \lambda))$. Clearly φ is a bijective bounded linear map. we shall show that φ is an algebra isomorphism.

$$\begin{aligned} & \varphi(((a, b), \lambda)((c, d), \mu)) \\ &= \varphi(((ac + T(b)c + T(d)a, bd) + (\lambda c, \lambda d) + (\mu a, \mu b), \lambda \mu)) \\ &= \varphi(((ac + T(b)c + T(d)a + \lambda c + \mu a, bd + \lambda d + \mu b), \lambda \mu)) \\ &= (ac + T(b)c + T(d)a + \lambda c + \mu a, (bd + \mu b + \lambda d, \lambda \mu)) \\ &= (a, (b, \lambda))(c, (d, \mu)) = \varphi(((a, b), \lambda))\varphi(((c, d), \mu)). \end{aligned}$$

Also

$$\begin{aligned} \|\varphi(((a, b), \lambda))\| &= \|(a, (b, \lambda))\| \\ &= \|a\| + \|(b, \lambda)\| = \|a\| + \|b\| + |\lambda| = \|(a, b)\| + |\lambda| \\ &= \|\varphi(((a, b), \lambda))\|. \end{aligned}$$

□

3 minimal idempotents

In this section we characterize minimal idempotents of $A \times_T B$.

Theorem 3.1. *An element (\tilde{a}, \tilde{b}) is a minimal idempotent of $A \times_T B$ if and only if one of the following statements are hold:*

- i. $\tilde{b} = 0$ and \tilde{a} is a minimal idempotent of A .
- ii. $\tilde{a}^2 = -\tilde{a}$, \tilde{b} is a minimal idempotent of B , and $(\tilde{a} + T(\tilde{b}))a = 0$, $(a \in A)$.

Proof. Let (\tilde{a}, \tilde{b}) be a minimal idempotent. So the condition of $(\tilde{a}, \tilde{b})^2 = (\tilde{a}, \tilde{b})$ implies that

$$\tilde{b}^2 = \tilde{b}, \tag{6}$$

$$\tilde{a}^2 + 2T(\tilde{b})\tilde{a} = \tilde{a}. \tag{7}$$

For each $(a, b) \in A \times_T B$ there exists $\mu_{a,b} \in \mathbb{C}$ such that

$$(\tilde{a}, \tilde{b})(a, b)(\tilde{a}, \tilde{b}) = \mu_{a,b}(\tilde{a}, \tilde{b}),$$

equivalently, the fact that A is commutative and also the equality $\tilde{b}^2 = \tilde{b}$ imply that

$$\tilde{a}^2 a + 2T(\tilde{b})a\tilde{a} + 2T(\tilde{b})T(b)\tilde{a} + T(b)\tilde{a}^2 + T(\tilde{b})a = \mu_{a,b}\tilde{a}, \quad (8)$$

$$\tilde{b}\tilde{b}\tilde{b} = \mu_{a,b}\tilde{b}. \quad (9)$$

The comparison of (9) and (6) shows that either $\tilde{b} = 0$, or \tilde{b} is a minimal idempotent of B with $\mu_{a,b} = \mu_{0,b}$ for all $a \in A$.

The assumption $\tilde{b} = 0$ accompanied with (7) imply $\tilde{a}^2 = \tilde{a}$ and (8) implies that $\tilde{a}^2 a + T(b)\tilde{a}^2 = \mu_{a,b}\tilde{a}$, $(a, b) \in A \times_T B$.

Upon substituting $b = 0$, we conclude that $\tilde{a}a\tilde{a} = \tilde{a}^2 a = \mu_{a,0}\tilde{a}$, $(a \in A)$. It follows that \tilde{a} is a minimal idempotent that provides statement *i*).

If we assume $\tilde{b} \neq 0$ is a minimal idempotent, and $\mu_{a,b} = \mu_{0,b}$ for all $a \in A$, as $\mu_{a,0} = 0$ for all $a \in A$, upon substituting $b = 0$ in (8) we conclude that $\tilde{a}^2 a + 2T(\tilde{b})a\tilde{a} + T(\tilde{b})a = 0$. It follows that

$$0 = (\tilde{a}^2 + 2T(\tilde{b})a\tilde{a} + T(\tilde{b})a) = \tilde{a}a + T(\tilde{b})a = (\tilde{a} + T(\tilde{b}))a, \quad (a \in A).$$

So $T(\tilde{b})\tilde{a} = -\tilde{a}^2$. Applying (7) we obtain that $\tilde{a}^2 = -\tilde{a}$, providing *ii*). Conversely, Let \tilde{a} be a minimal idempotent of A . So $\tilde{a}^2 = \tilde{a}$ and $\tilde{a}a\tilde{a} = \mu_a\tilde{a}$ for all $a \in A$. We shall show that $(\tilde{a}, 0)$ is a minimal idempotent of $A \times_T B$. Clearly $(\tilde{a}, 0)^2 = (\tilde{a}, 0)$. For each $(a, b) \in A \times_T B$,

$$\begin{aligned} (\tilde{a}, 0)(a, b)(\tilde{a}, 0) &= (\tilde{a}a + T(b)\tilde{a}, 0)(\tilde{a}, 0) \\ &= (\tilde{a}a\tilde{a} + T(b)\tilde{a}^2, 0) = (\tilde{a}a\tilde{a}, 0) + (\tilde{a}T(b)\tilde{a}, 0) \\ &= (\mu_a\tilde{a}, 0) + (\mu_{T(b)}\tilde{a}, 0) = (\mu_a + \mu_{T(b)})(\tilde{a}, 0). \end{aligned}$$

It follows that $(\tilde{a}, 0)$ is a minimal idempotent of $A \times_T B$.

Similarly let $\tilde{a} \in A$, $\tilde{b} \in B$ and let the conditions of *ii*) hold. we shall show that (\tilde{a}, \tilde{b}) is a minimal idempotent of $A \times_T B$. As \tilde{b} is a minimal idempotent so $\tilde{b}^2 = \tilde{b}$ and for each $b \in B$ there exists $\mu_b \in \mathbb{C}$ such that $\tilde{b}\tilde{b}\tilde{b} = \mu_b\tilde{b}$.

Since by hypothesis for each $a \in A$, $(\tilde{a} + T(\tilde{b}))a = 0$, we have $T(\tilde{b})\tilde{a} = -\tilde{a}^2 = \tilde{a}$. So

$$(\tilde{a}, \tilde{b})^2 = (\tilde{a}^2 + 2T(\tilde{b})\tilde{a}, \tilde{b}^2) = (\tilde{a}^2 - 2\tilde{a}^2, \tilde{b}^2) = (\tilde{a}, \tilde{b}).$$

Since $(\tilde{a} + T(\tilde{b}))T(b)\tilde{a} = 0$, it follows that

$$\begin{aligned} -T(b)\tilde{a} &= -T(\tilde{b})T(b)\tilde{a} \\ &= -T(\tilde{b}\tilde{b}\tilde{b})\tilde{a} \\ &= -\mu_b T(\tilde{b})\tilde{a} = -\mu_b(-\tilde{a}^2) \\ &= -\mu_b\tilde{a}. \end{aligned}$$

So $T(b)\tilde{a} = \mu_b\tilde{a}$. For each $(a, b) \in A \times_T B$,

$$\begin{aligned} (\tilde{a}, \tilde{b})(a, b)(\tilde{a}, \tilde{b}) &= (\tilde{a}a + T(\tilde{b})a + T(b)\tilde{a}, \tilde{b}b)(\tilde{a}, \tilde{b}) \\ &= ((\tilde{a} + T(\tilde{b}))a + T(b)\tilde{a}, \tilde{b}b)(\tilde{a}, \tilde{b}) \\ &= (T(b)\tilde{a}, \tilde{b}b)(\tilde{a}, \tilde{b}) = (T(b)\tilde{a}^2 + 2T(b)T(\tilde{b})\tilde{a}, \tilde{b}b\tilde{b}) \\ &= (-T(b)\tilde{a} + 2T(b)(-\tilde{a}^2), \mu_b\tilde{b}) = (-T(b)\tilde{a} + 2T(b)\tilde{a}, \mu_b\tilde{b}) \\ &= (T(b)\tilde{a}, \mu_b\tilde{b}) = (\mu_b\tilde{a}, \mu_b\tilde{b}) \\ &= \mu_b(\tilde{a}, \tilde{b}). \end{aligned}$$

This shows that (\tilde{a}, \tilde{b}) is a minimal idempotent. \square

4 ideal structures of $A \times_T B$

In this section we characterize the ideal structures of $A \times_T B$.

Theorem 4.1. *Let A be a commutative Banach algebra, let B be a Banach algebra, and let $T : B \rightarrow A$ be an algebra homomorphism with $\|T\| \leq 1$. Suppose that I is an ideal of A , J is a left (right or two-sided) ideal of B , and $M = I \times J$. Then*

M is a left (right or two-sided) ideal of $A \times_T B$ if and only if $T(J)A \subseteq I$.

Proof. We only prove the left-version. Let I be an ideal of A and let J be a left ideal of B , then M is a left ideal of $A \times_T B$ if and only if $(a, b)(x, y) \in M$ for all $(a, b) \in A \times_T B$, $(x, y) \in M$. It follows that $(ax + T(b)x + T(y)a, by) \in M$, which is equivalent to $T(y)a \in I, y \in J, a \in A$. Equivalently, $T(J)A \subseteq I$. \square

As an immediate consequence of Theorem 4.1 we present a result of Sangani-Monfared [5, Proposition 2.6].

Corollary 4.2. *Let A be a unital Banach algebra and let B be a Banach algebra such that $\theta \in \Delta(B)$. Suppose that I is a left (right or two-sided) ideal of A , J is a left (right or two-sided) ideal of B , and $M = I \times J$. Then M is a left (right or two-sided) ideal of $A \times_\theta B$ if and only if $J \subseteq \ker\theta$ or $I = A$.*

For the converse of Theorem 4.1 suppose that M is a left (right or two-sided) ideal of $A \times_T B$ and let,

- i. $I = \{a \in A : (a, b) \in M \text{ for some } b \in B\}$;
- ii. $J = \{b \in B : (a, b) \in M \text{ for some } a \in A\}$.

In general neither I is a left (right or two-sided) ideal, nor the equality $M = I \times J$ holds [5, Examples 2.8]. In this situation we can present the following result.

Proposition 4.3. *Let M, I , and J be as above. Then*

- i. J is a left (right or two-sided) ideal of B ;
- ii. If $T(J)A \subseteq I$ then I is an ideal of A .

Proof. We only prove part *ii*) for the left version. Let M be a left ideal of $A \times_T B$ and let $\tilde{a} \in I$. There exists $\tilde{b} \in B$ such that $(\tilde{a}, \tilde{b}) \in M$. It follows that $\tilde{b} \in J$ and for each $a \in A$, $(a, 0)(\tilde{a}, \tilde{b}) \in M$. This implies that $a\tilde{a} + T(\tilde{b})a \in I$. As $T(\tilde{b})a \in I$ it follows that $a\tilde{a} \in I$. Since A is commutative so I is an ideal of A . \square

Acknowledgements: The author would like to thank the referee for careful reading of the paper and giving some useful suggestions.

References

- [1] S.J. Bhatt and P.A. Dabhi, Arens regularity and amenability of Lau product of Banach algebras defined by a Banach algebra morphism, *Bull. Aust. Math. Soc.*, (2012), 1–12.
- [2] H.R. Ebrahimi Vishki and A.R. Khoddami, Character inner amenability of certain Banach algebras, *Colloq. Math.*, **122** (2011), 225–232.
- [3] A.R. Khoddami, n –weak amenability of T –Lau product of Banach algebras, *Chamchuri J. Math.*, **5** (2013), 57–65.

- [4] A.R. Khoddami, On character amenability of T –Lau product of Banach algebras, to appear.
- [5] M. Sangani-Monfared, On certain products of Banach algebras with applications to harmonic analysis, *Studia Math.*, **178** (2007), 277–294.

Ali Reza Khoddami
Department of Pure Mathematics
University of Shahrood
P.O. BOX 3619995161-316, Shahrood, Iran.
Email: khoddami.alireza@shahroodut.ac.ir