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Abstract: This paper considers a new kind of error which will be termed as
‘solid burst of length b of anti-weight ¢’. Lower and upper bounds on the number
of parity checks required for the existence of anti-codes that detect solid burst
of length b or less of anti-weight ¢ or more are obtained. This is followed by
an example of such anti-codes. The paper also deals with anti-codes capable of
detecting and simultaneously correcting such errors. Then the maximum anti-
weight of such errors in the space of n-tuples is discussed. Further, the paper
obtains an upper bound on the number of parity checks required for the existence
of anti-codes that detect solid burst of length b or less of anti-weight ¢ or more,

together with e or less random errors of anti-weight ¢ or more (e < b).
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1 Introduction

The concept of anti-weight and anti-metric has been recently introduced by Jain
[8] and is found suitable for channels causing errors near the end of the code
words. Jain observed that some systems use to get stuck up at some position
and start causing errors after that position. In view of this, in such systems care

should be taken only those components that comes after that position, not all
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the components of the codewords are required to check. The anti-weight of error
vectors determines the beginning position of the faulty area and anti-codes are
developed to encounter those errors.

Jain [8] has defined anti-weight, anti-metric, anti-code and standard anti-array
as follows: Let GF(q) be a finite field with ¢ elements where ¢ is prime or power
of prime. Let F be the set of all n-tuples over GF(q). Then F is a vector space
over GF(q).

Definition 1.1. The anti-weight Ty, (v) of a vector v = (v1,v2,...,v,) € F is
defined as T, (v) = min{ilv; #0,1 <i<n}—1.

Definition 1.2. The anti-distance Ty : F x F — {0,1,2,...,n} is defined as
Ty(z,y) = Tw(r —y).

Note. The functions T, and Ty are called T-anti-weight and T -anti-metric
respectively and will be defined by the same notation T .

Definition 1.3. A T-anti-code or simply an anti-code V is a k-dimensional sub-
space of F' equipped with the T -anti-metric.

Definition 1.4. The standard anti-array for an (n,k) anti-code V is the same
as the standard array used in normal coding with coset leaders being replaced by
anti-coset leaders where the anti-coset leaders are vectors of maximum anti-weights
in their respective cosets and farthest neighbour decoding principle will be used

for decoding purpose.

There are several kinds of errors for which error detecting and error correcting
codes have been constructed. The kind of errors differs from channel to channel
depending upon the behaviour of channels. Solid burst errors are common in
many memory systems [1, 2, 3, 10]. The definition of a solid burst may be given
as follows:

Definition 1.5. A solid burst of length b is a vector with non zero entries in some
b consecutive positions and zero elsewhere.

In papers [8, 9], the authors have considered the error of the types - either
random errors of anti weight ¢ or cyclic errors of order ¢ or anti burst of length
b. This paper considers another type of errors. The type of errors is such that the
errors that start occurring after a certain position is of solid burst type. The sys-

tems that are equipped with anti-weight and anti-metric concept may be affected
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by such type of errors and so codes are needed to be constructed to counter such
errors. The new type of errors is termed as solid burst of length b of anti-weight

t and is defined as follows:

Definition 1.6. A solid burst of length b of anti-weight ¢ is a vector such that
the components from (¢ + 1) to (¢t +b)!" positions are nonzero and the rest are

Zero.

For example,
(i) (000111) is a solid burst of length 3 of anti-weight 3.
(ii) (011000) is a solid burst of length 2 of anti-weight 1.
(iii) (111111) is a solid burst of length 6 of anti-weight 0.

It is quite possible that the system which is interfered by the error in the form
of solid burst of length b of anti-weight ¢, may also be encountered with some small
number of random errors of anti-weight ¢. Therefore, while it is all important to
consider the detection/correction of solid burst of anti-weight ¢, but care should
also be taken to handle the detection/correction of some random errors of anti-
weight ¢. In view of this, this paper presents a study not only on bounds on the
number of parity-check digits for anti-codes that detect solid burst error of length
b or less of anti-weight ¢ or more, but also on bound on the number of parity-check
digits for anti-codes detecting solid burst error of length b or less of anti-weight ¢
or more, and e or less random errors of anti-weight ¢ or more (e < b).

The rate of transmission is efficient if the number of parity-check digits is as
less as possible. To give the exact number of redundant/parity check digits for
a given (anti) code is usually not possible. However, bounds on the number of
redundant /parity check digits can be obtained. In fact, they are important in
determining error correction and error detection capabilities of the (anti) codes.
Hamming [7] was the first who gave the lower bound on the necessary number of
parity-check digits for the codes correcting single errors. Gilbert [6] gave a more
general lower bound on the number of code words in a code with fixed length
and distance. After that, many researchers have obtained various lower and upper
bounds.

In coding theory, it is always important to study the asymptotic form of the
different bounds (e.g. Plotkin’s bounds, Hamming bounds, Varshomov-Gilbert
bounds). They have been widely studied in many textbooks, e.g.[11], [12]. The

standard asymptotic form is to fix ¢, let n — oo, and try to make the transmission
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rate and the error-detection/correction rate both large. The well known Gilbert-
Varshamov bound is found to be quite weak for small n, but its asymptotic form
is very hard to beat. In this paper, we also provide the asymptotic form of a bound
obtained.

The paper is organized as follows. Basic definitions, works related to our study
are stated with examples in Section 1 i.e. in Introduction. In Section 2, lower and
upper bounds on the number of the parity checks for an anti-code that detects
solid burst error of length b or less of anti-weight ¢ or more are obtained. This
is followed by an illustration of such anti-codes. In Section 3, we obtain a bound
on anti-code for simultaneous detection and correction of such errors. Then the
maximum anti-weight of such errors over the space of n-tuples over GF(q) is
obtained. Section 4 gives an upper bound on the parity checks for an anti-code
that detects solid burst error of length b or less of anti-weight ¢ or more, and any
e or less random errors of anti-weight ¢ or more. Also the asymptotic form of the

bound is provided.

2 Detection of solid burst of length b or less of

anti weight ¢ or more

We consider linear anti-codes over GF(¢) that detect any solid burst of length b
or less of anti-weight ¢ or more. The patterns that needed to be detected should
not be code words. In other words, we consider anti-codes that have no solid burst
of length b or less of anti-weight ¢ or more as a code word. In the following, we
obtain a lower bound over the number of parity-check digits required for such an
anti-code. The proof is similar to the proof of the Theorem 4.13, Peterson and
Weldon [14].

Theorem 2.1. The number of parity check digits for an (n,k) linear anti-code
over GF(q) that detects any solid burst of length b or less of anti-weight t or more
(b+t <mn) is at least log,(1 +b).

Proof. The proof is based on the fact that no detectable error vector can be a code
word. Let V be an (n, k) linear anti-code over GF(q) and X be a set of all those
vectors such that some fixed non-zero component are in the (¢ + 1) to (¢ +14)*"
positions consecutively, where 1 < ¢ <b.

We claim that any two vectors of the set X' can not belong to the same coset
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of the standard anti-array; otherwise a code word shall be expressible as a sum
or difference of two error vectors. If possible, we assume the contrary that there
is a pair; say z1,22 in X belonging to the same coset of the standard anti-array.
Then their difference x1 — 2o must be a code vector. But x7 — zo is a vector
all of whose non zero components are within the (¢ + 1) to (t + b)** positions
consecutively. This means x; — 22 is an error vector and is a code vector. This
is not possible. Thus, all the vectors in X must belong to distinct cosets of the
standard anti-array. The number of such vectors over GF(¢q), including the vector
of all zero, is clearly 1+b. Since the maximum available number of cosets is ¢" %,

we have
n—k
q >1+b. (1)
This proves the theorem. O

Remark 2.2. This result coincides with Theorem 1, Das [4] when burst of length

b or less are considered over the whole code length.

Remark 2.3. It may be noted that the result of Theorem 2.1 is free from other
parameters of the anti-code. So, the result is applicable for anti-codes of any
feasible length n and anti-weight ¢.

Example 2.4. By taking ¢ = 4,b = 3,n = 7,q = 2, the inequality (1) gives rise
to a (7, 5) binary anti-code with the parity matrix H,

H:1010101
0101010

The null space of this matrix can be used to detect all solid bursts of length 3
or less of anti-weight 4 or more. It may be verified from error pattern-syndromes
Table 2.1 that the syndromes of all solid bursts of length 3 or less of anti-weight

4 or more are non zero.
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Table 2.1

Error pattern - syndromes

Error-patterns Syndromes

Solid bursts of length 1 of anti weight 4 or more

0000100 10

0000010 01

0000001 10
Solid bursts of length 2 of anti weight 4 or more

0000110 11

0000011 11
Solid bursts of length 3 of anti weight 4 or more

0000111 11

Remark 2.5. The lower bound obtained in Theorem 2.1 is only a necessary
condition for the existence of anti-code over GF(q) that detects any solid burst of
length b or less of anti-weight ¢t or more. The bound in Theorem 2.1 only shows
that if such an anti-code exists, it always satisfies the bound. However, it is not
a sufficient (upper) bound. For example, by taking ¢t = 3,b=4,n =7,q = 3, the
inequality (1) gives the possibility of (7,5) ternary anti-code. But there does not
exist any (7,5) ternary anti-code that detects any solid burst of length 4 or less
of anti-weight 3 or more.

Now the following theorem gives an upper bound on the number of check
digits required for the construction of an anti-code considered in Theorem 2.1.
This bound assures the existence of an anti-code that can detect all solid bursts
of length b or less of anti-weight ¢ or more. The proof is based on the well known
technique used in Varshomov-Gilbert Sacks bound by constructing a parity check
matrix for such a code (refer Sacks [16], also Theorem 4.7 Peterson and Weldon
[14)).

Theorem 2.6. There exists an (n,k) linear anti-code over GF(q) that detects
any solid burst of length b or less of anti-weight t or more (b+t < n) provided
that

n—k>l0qq{l+bz:1(q—l)’}. (2)

=0
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Proof. The theorem is proved by constructing an appropriate (n — k) x n parity-
check matrix H for the existence of the anti-code. The requisite parity-check
matrix H shall be constructed as follows:

Select any non-zero (n—k)-tuples as the first ¢ columns hq, ha, ..., hy . After select-
ing n—t—1 columns hyy1, heya, ..., hn—1 appropriately, we lay down the condition
to add n'® column h,, such that it should not be a linear sum of immediately pre-

ceding consecutive upto b — 1 columns. In other words,
hn #(ulhnfl + ’U/th,Q + -+ u572hnfs+2 + usflhnfs+1); (3>

where u; € GF(q) are non zero coefficients and s < b.

This condition ensures the existence of the anti-code detecting any solid burst
of length b or less of anti-weight ¢ or more. The number of ways in which such

coefficients u; on R.H.S. of (3) may be chosen is given by

b

> (g-1).
0

=

=

At worst, all these linear combinations might yield distinct sums. Thus, a
column h, can be added to H provided that

b—

—

¢"F >y (g 1) (4)
=0
or,
b—1
=14 (g-1)
=0
or,

n—k> loqq{l +b§(q— 1)i}.

i=0
O
Remark 2.7. This result coincides with Theorem 2, Das [4] when solid burst of
length b or less are considered over the whole code length.

Remark 2.8. This result is also free from other parameters of the anti-code. So,

the result is applicable for anti-codes of any feasible length n and anti-weight ¢.
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Remark 2.9. For ¢ = 2, the bounds obtained in Theorem 2.1 and Theorem 2.6
coincide i.e., the lower and upper bounds on the number of parity check digits for
an (n, k) linear anti-code over GF'(2) that detects any solid burst of length b or

less of anti-weight ¢ or more is same and is given by loga(1 4 b).

Example 2.10. Consider a (7, 5) binary anti-code with the 2 x 7 matrix H which
has been constructed by the synthesis procedure given in the proof of Theorem
2.6 by taking t =4,0=3,n=7.

H:1010101
0101010

The null space of this matrix detects all solid bursts of length 3 or less of anti-
weight 4 or more. Because the syndromes of all solid bursts of length 3 or less of

anti-weight 4 or more are non zero (refer Table 2.1).

3 Simultaneous detection and correction of solid

burst of length b or less of anti weight ¢ or more

This section determines extended Reiger’s bound (refer [17] ; also Theorem 4.15,
Peterson and Weldon [14]) for simultaneous detection and correction of solid burst
of length b or less of anti-weight ¢ or more. The following theorem gives a bound
on the number of parity-check digits for a linear anti-code that simultaneously
detects and corrects such errors.

Theorem 3.1. The number of parity check symbols in an (n,k) linear anti-code
over GF(q) that corrects any solid burst of length b or less of anti-weight t or
more must have at least log, (1 + 2b).

Further, if the anti-code corrects all solid bursts of length b or less of anti-
weight t or more, and simultaneously detects any solid burst of length d or less
of anti-weight t or more (b < d), then the number of parity-check digits of the
anti-code is at least log,(1+b+d).

Proof. For the first part, consider a vector that has the form of a solid burst of
length 2b or less of anti-weight ¢ or more. The vector can be expressible as a

sum or difference of two vectors, each of which is a solid burst of length b or
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less of anti-weight ¢ or more. These component vectors must belong to different
cosets of the standard anti-array, because both such errors are correctable errors.
Accordingly, such a vector viz. a solid burst of length b or less of anti-weight ¢
or more can not be a code vector. In view of Theorem 2.1, the number of parity

check digits, such an anti-code must have, is at least logq(l + 2b).

Further, for the second part, consider a vector which has the form of a solid
burst of length (b+d) or less of anti-weight ¢ or more. Such a vector is expressible
as a sum or difference of two vectors, one of which has the form of a solid burst of
length b or less of anti-weight ¢ or more and the other is a solid burst of length
d or less of anti-weight ¢ or more. Both such component vectors, one being a
detectable error and the other being a correctable error, can not belong to the
same coset of the standard anti-array. Therefore, such a vector can not be a code
vector, i.e., a vector which is a solid burst of length (b+ d) or less of anti-weight
t or more can not be a code vector. Hence, by Theorem 2.1, the number of parity
check digits that anti-code must have is at least log, (1 + b+ d). O

In coding theory, an important criterion is to look for minimum weight and
structure of weight in a group of vectors. For anti-code, we need to look for
maximum anti-weight structure of error vectors. The following theorem gives the
maximum anti-weight of solid burst of length b or less of anti-weight ¢ or more.
The theorem is equivalent to Plotkin bound [15], also Theorem 4.1, Peterson and
Weldon [14]).

Theorem 3.2. The mazximum anti-weight of a solid burst of length b or less of
anti-weight t or more in the space of n-tuples over GF(q) is at least
12
S e (g 1)
5 - —.
Yicn—t—i+1)(¢—1)

Proof. We first count the total anti-weight of all solid bursts of length [ (1 <1 < b)

of anti-weight ¢ or more. This is given by

(n—10)2 -t

(q—1)l{t+(t+1)+(t+2)+---+(n—Z)}:(q—l)l>< 5

Therefore, the total anti-weight of all solid bursts of length b or less of anti-weight
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t or more is given by

b n—1)2 _¢2
27( l; t X (g — l)l.
=1

Also, the number of solid burst of length b or less of anti-weight ¢ or more in
the space of n-tuples over GF(q) is

b
Y (n—t—i+1)(g—1)"
i=1
Since the maximum anti-weight element can have at least the average anti-
weight, a lower bound on the maximum anti-weight of solid burst of length b or

less of anti-weight ¢ or more is given by

Hence the theorem is proved. O

4 Detection of solid burst of length b or less of

anti weight ¢ or more and random errors

In this section we study the sufficient condition (upper bound) for the detection of
solid burst of length b or less of anti-weight ¢ or more, and e or less random errors
of anti-weight ¢ or more (e < b). The proof of the following theorem is analogous
to that of Theorem 2.6. Further, the asymptotic form of the bound obtained is
provided. The study is parallel to the works done by Dass and Muttoo [5], Muttoo
and Tyagi [13] where they have considered the codes detecting closed loop burst
errors and random errors.

Theorem 4.1. There exists an (n,k) linear anti-code over GF(q) that detects
any solid burst of length b or less of anti-weight t or more, and e or less random

errors of anti-weight t or more (e < b) provided that

b—1

ERED 1 (b IR VD SURIR o)
=0

=€
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Proof. The theorem is also proved by constructing an appropriate (n — k) x n
parity-check matrix H for the existence of the anti-code. This requisite parity-

check matrix H is constructed as follows:

Select any non-zero (n — k)-tuples as the first ¢ columns hq, ho, ..., hy. After
selecting n —t — 1 columns hyyq, hyyo, ..., hn—1 appropriately, we lay down the

conditions to add n'* column h,, as follows:

Case (I). Since the anti-code detects any e or less random errors of anti-weight
t or more, h,, should not be a linear combination of previous any e — 1 or less

columns among the immediately preceding n —t — 1 columns, i.e.,
b #(urhn—1 +ughn 2+ + Un—t—2hira + un—t—1he11), (6)
where u; € GF(q) are any e — 1 or less non zero coefficients.

This condition ensures that the anti-code detects any e or less random errors
of anti-weight ¢ or more. The number of ways in which such coeflicients u; out of
n —t — 1 coefficients on R.H.S. of (6) may be chosen is given by

jz:é(n_f_l>(q—1)i~

Case (II). Since the anti-code detects any solid burst b or less of anti-weight ¢ or
more, h,, should not be a linear combination of immediately previous any e or

more (but less than equal to b — 1) consecutive columns, i.e.,
hn #(ulhnfl + u2hn72 + -+ usflhn75+1 + ushnfs)a (7)

where e < s <b—1 and u; € GF(q) are non zero coefficients.

This condition ensures that the anti-code detects any solid burst of length b or
less (but greater than e) of anti-weight ¢ or more. The number of ways in which

such coefficients u; on R.H.S. of (7) may be chosen is given by

b—1

> (g-1).

i=e
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Therefore, the number of possible linear combinations of coefficients for the case

(I) and case (II), including the vector of all zeros, is given by

e—1 b—1

Z(n_f_l)(q—l)“rZ(q—l)i-

i=0 i=e
At worst, all these linear combinations might yield distinct sums. Thus, a column
h, can be added to H provided that

b—1

(n_:_l)(q—l)i+2(q—1)i~ ®

e—1
i=0 i=e

=

qn—k >

Alternative Form
If n is the largest positive integer for which the inequality (8) is true, then replacing
n by n+ 1, the inequality (8) gets reversed and the inequality becomes

e—1 n—t ) b—1 ‘
Y ( l. )<q S Y (- 1) (9)
=0 i=e

Asymptotic Form
We deduce the asymptotic form of the above inequality (9) over GF(2). By taking
g = 2, the inequality (9) becomes

zn—kgei(n;t)ﬂb—e)

=0

or,
n—t n—t
on—k < Z ( ; ) + (b—e). (10)
i=(2== ) (n-t)
From the Chernov Bound,
. n —an p—FBn 1
Z . S @ 5 ) B =1- @, o> -,
1=an ¢ 2

we can deduce the inequality (10) as follows:

—(n—t—e+1) —(e—1)
X —t—e+1 e—1
gn—k < (BZ2TCT 2 b— 11

_< n—t ) (nt> +(b—e), (11)
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where n >t 4 2(e — 1). We know the binary entropy function is given by

H(p) = —plogyp — (1 — p)logy(1 — p).
Therefore, the inequality (11) reduces to

n—t—e+1

27’7,7]6 S Q(nft)H( —— ) +b —e.

Remark 4.2. We have restricted the asymptotic form to ¢ = 2, because for non
binary case, we can not apply Chernov Bound in (9), also the entropy function is

given by

Hy(p) = —plog,p — (1 — p)log,(1 — p) + plog,(¢ — 1).
Example 4.3. For a (10,6) linear anti-code over GF(2), we construct the fol-

lowing 4 x 10 parity check matrix H , according to the synthesis procedure given
in the proof of Theorem 4.1 by taking ¢ =2 e=2, b=4 and t = 2.

1100 010111
I — 1100101101
1101001011
1111111111

The null space of this matrix can be used to detect all solid bursts of length 4 or
less of anti-weight 2 or more, and 2 or less random errors of anti-weight 2 or more.
It can easily be verified from error pattern-syndromes table that the syndromes of
all solid bursts of length 4 or less of anti-weight 2 or more, and 2 or less random
errors of anti-weight 2 or more are non zero, showing thereby that the anti-code

that is the null space of this matrix can detect all such errors.
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