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Abstract: This paper considers a new kind of error which will be termed as

‘solid burst of length b of anti-weight t ’. Lower and upper bounds on the number

of parity checks required for the existence of anti-codes that detect solid burst

of length b or less of anti-weight t or more are obtained. This is followed by

an example of such anti-codes. The paper also deals with anti-codes capable of

detecting and simultaneously correcting such errors. Then the maximum anti-

weight of such errors in the space of n -tuples is discussed. Further, the paper

obtains an upper bound on the number of parity checks required for the existence

of anti-codes that detect solid burst of length b or less of anti-weight t or more,

together with e or less random errors of anti-weight t or more (e < b).
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1 Introduction

The concept of anti-weight and anti-metric has been recently introduced by Jain

[8] and is found suitable for channels causing errors near the end of the code

words. Jain observed that some systems use to get stuck up at some position

and start causing errors after that position. In view of this, in such systems care

should be taken only those components that comes after that position, not all
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the components of the codewords are required to check. The anti-weight of error

vectors determines the beginning position of the faulty area and anti-codes are

developed to encounter those errors.

Jain [8] has defined anti-weight, anti-metric, anti-code and standard anti-array

as follows: Let GF (q) be a finite field with q elements where q is prime or power

of prime. Let F be the set of all n -tuples over GF (q). Then F is a vector space

over GF (q).

Definition 1.1. The anti-weight Tw(v) of a vector v = (v1, v2, ..., vn) ∈ F is

defined as Tw(v) = min{i|vi ̸= 0, 1 ≤ i ≤ n} − 1.

Definition 1.2. The anti-distance Td : F × F → {0, 1, 2, ..., n} is defined as

Td(x, y) = Tw(x− y).

Note. The functions Tw and Td are called T -anti-weight and T -anti-metric

respectively and will be defined by the same notation T .

Definition 1.3. A T -anti-code or simply an anti-code V is a k -dimensional sub-

space of F equipped with the T -anti-metric.

Definition 1.4. The standard anti-array for an (n, k) anti-code V is the same

as the standard array used in normal coding with coset leaders being replaced by

anti-coset leaders where the anti-coset leaders are vectors of maximum anti-weights

in their respective cosets and farthest neighbour decoding principle will be used

for decoding purpose.

There are several kinds of errors for which error detecting and error correcting

codes have been constructed. The kind of errors differs from channel to channel

depending upon the behaviour of channels. Solid burst errors are common in

many memory systems [1, 2, 3, 10]. The definition of a solid burst may be given

as follows:

Definition 1.5. A solid burst of length b is a vector with non zero entries in some

b consecutive positions and zero elsewhere.

In papers [8, 9], the authors have considered the error of the types - either

random errors of anti weight t or cyclic errors of order t or anti burst of length

b . This paper considers another type of errors. The type of errors is such that the

errors that start occurring after a certain position is of solid burst type. The sys-

tems that are equipped with anti-weight and anti-metric concept may be affected
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by such type of errors and so codes are needed to be constructed to counter such

errors. The new type of errors is termed as solid burst of length b of anti-weight

t and is defined as follows:

Definition 1.6. A solid burst of length b of anti-weight t is a vector such that

the components from (t+ 1)th to (t+ b)th positions are nonzero and the rest are

zero.

For example,

(i) (000111) is a solid burst of length 3 of anti-weight 3.

(ii) (011000) is a solid burst of length 2 of anti-weight 1.

(iii) (111111) is a solid burst of length 6 of anti-weight 0.

It is quite possible that the system which is interfered by the error in the form

of solid burst of length b of anti-weight t , may also be encountered with some small

number of random errors of anti-weight t . Therefore, while it is all important to

consider the detection/correction of solid burst of anti-weight t , but care should

also be taken to handle the detection/correction of some random errors of anti-

weight t . In view of this, this paper presents a study not only on bounds on the

number of parity-check digits for anti-codes that detect solid burst error of length

b or less of anti-weight t or more, but also on bound on the number of parity-check

digits for anti-codes detecting solid burst error of length b or less of anti-weight t

or more, and e or less random errors of anti-weight t or more (e < b).

The rate of transmission is efficient if the number of parity-check digits is as

less as possible. To give the exact number of redundant/parity check digits for

a given (anti) code is usually not possible. However, bounds on the number of

redundant/parity check digits can be obtained. In fact, they are important in

determining error correction and error detection capabilities of the (anti) codes.

Hamming [7] was the first who gave the lower bound on the necessary number of

parity-check digits for the codes correcting single errors. Gilbert [6] gave a more

general lower bound on the number of code words in a code with fixed length

and distance. After that, many researchers have obtained various lower and upper

bounds.

In coding theory, it is always important to study the asymptotic form of the

different bounds (e.g. Plotkin’s bounds, Hamming bounds, Varshomov-Gilbert

bounds). They have been widely studied in many textbooks, e.g.[11], [12]. The

standard asymptotic form is to fix q , let n → ∞ , and try to make the transmission
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rate and the error-detection/correction rate both large. The well known Gilbert-

Varshamov bound is found to be quite weak for small n , but its asymptotic form

is very hard to beat. In this paper, we also provide the asymptotic form of a bound

obtained.

The paper is organized as follows. Basic definitions, works related to our study

are stated with examples in Section 1 i.e. in Introduction. In Section 2, lower and

upper bounds on the number of the parity checks for an anti-code that detects

solid burst error of length b or less of anti-weight t or more are obtained. This

is followed by an illustration of such anti-codes. In Section 3, we obtain a bound

on anti-code for simultaneous detection and correction of such errors. Then the

maximum anti-weight of such errors over the space of n -tuples over GF (q) is

obtained. Section 4 gives an upper bound on the parity checks for an anti-code

that detects solid burst error of length b or less of anti-weight t or more, and any

e or less random errors of anti-weight t or more. Also the asymptotic form of the

bound is provided.

2 Detection of solid burst of length b or less of

anti weight t or more

We consider linear anti-codes over GF(q ) that detect any solid burst of length b

or less of anti-weight t or more. The patterns that needed to be detected should

not be code words. In other words, we consider anti-codes that have no solid burst

of length b or less of anti-weight t or more as a code word. In the following, we

obtain a lower bound over the number of parity-check digits required for such an

anti-code. The proof is similar to the proof of the Theorem 4.13, Peterson and

Weldon [14].

Theorem 2.1. The number of parity check digits for an (n, k) linear anti-code

over GF(q ) that detects any solid burst of length b or less of anti-weight t or more

(b+ t ≤ n) is at least logq(1 + b).

Proof. The proof is based on the fact that no detectable error vector can be a code

word. Let V be an (n, k) linear anti-code over GF(q ) and X be a set of all those

vectors such that some fixed non-zero component are in the (t+ 1)th to (t+ i)th

positions consecutively, where 1 ≤ i ≤ b .

We claim that any two vectors of the set X can not belong to the same coset
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of the standard anti-array; otherwise a code word shall be expressible as a sum

or difference of two error vectors. If possible, we assume the contrary that there

is a pair; say x1, x2 in X belonging to the same coset of the standard anti-array.

Then their difference x1 − x2 must be a code vector. But x1 − x2 is a vector

all of whose non zero components are within the (t + 1)th to (t + b)th positions

consecutively. This means x1 − x2 is an error vector and is a code vector. This

is not possible. Thus, all the vectors in X must belong to distinct cosets of the

standard anti-array. The number of such vectors over GF(q ), including the vector

of all zero, is clearly 1+b. Since the maximum available number of cosets is qn−k ,

we have

qn−k ≥ 1 + b. (1)

This proves the theorem.

Remark 2.2. This result coincides with Theorem 1, Das [4] when burst of length

b or less are considered over the whole code length.

Remark 2.3. It may be noted that the result of Theorem 2.1 is free from other

parameters of the anti-code. So, the result is applicable for anti-codes of any

feasible length n and anti-weight t .

Example 2.4. By taking t = 4, b = 3, n = 7, q = 2, the inequality (1) gives rise

to a (7, 5) binary anti-code with the parity matrix H ,

H =

[
1 0 1 0 1 0 1

0 1 0 1 0 1 0

]

The null space of this matrix can be used to detect all solid bursts of length 3

or less of anti-weight 4 or more. It may be verified from error pattern-syndromes

Table 2.1 that the syndromes of all solid bursts of length 3 or less of anti-weight

4 or more are non zero.
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Table 2.1

Error pattern - syndromes

Error-patterns Syndromes

Solid bursts of length 1 of anti weight 4 or more

0000100 10

0000010 01

0000001 10

Solid bursts of length 2 of anti weight 4 or more

0000110 11

0000011 11

Solid bursts of length 3 of anti weight 4 or more

0000111 11

Remark 2.5. The lower bound obtained in Theorem 2.1 is only a necessary

condition for the existence of anti-code over GF (q) that detects any solid burst of

length b or less of anti-weight t or more. The bound in Theorem 2.1 only shows

that if such an anti-code exists, it always satisfies the bound. However, it is not

a sufficient (upper) bound. For example, by taking t = 3, b = 4, n = 7, q = 3, the

inequality (1) gives the possibility of (7, 5) ternary anti-code. But there does not

exist any (7, 5) ternary anti-code that detects any solid burst of length 4 or less

of anti-weight 3 or more.

Now the following theorem gives an upper bound on the number of check

digits required for the construction of an anti-code considered in Theorem 2.1.

This bound assures the existence of an anti-code that can detect all solid bursts

of length b or less of anti-weight t or more. The proof is based on the well known

technique used in Varshomov-Gilbert Sacks bound by constructing a parity check

matrix for such a code (refer Sacks [16], also Theorem 4.7 Peterson and Weldon

[14]).

Theorem 2.6. There exists an (n, k) linear anti-code over GF (q) that detects

any solid burst of length b or less of anti-weight t or more (b + t ≤ n) provided

that

n− k ≥ loqq

{
1 +

b−1∑
i=0

(q − 1)i
}
. (2)
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Proof. The theorem is proved by constructing an appropriate (n− k)× n parity-

check matrix H for the existence of the anti-code. The requisite parity-check

matrix H shall be constructed as follows:

Select any non-zero (n−k)-tuples as the first t columns h1, h2, ..., ht . After select-

ing n−t−1 columns ht+1, ht+2, ..., hn−1 appropriately, we lay down the condition

to add nth column hn such that it should not be a linear sum of immediately pre-

ceding consecutive upto b− 1 columns. In other words,

hn ̸=(u1hn−1 + u2hn−2 + · · ·+ us−2hn−s+2 + us−1hn−s+1), (3)

where ui ∈ GF (q) are non zero coefficients and s ≤ b .

This condition ensures the existence of the anti-code detecting any solid burst

of length b or less of anti-weight t or more. The number of ways in which such

coefficients ui on R.H.S. of (3) may be chosen is given by

b−1∑
i=0

(q − 1)i.

At worst, all these linear combinations might yield distinct sums. Thus, a

column hn can be added to H provided that

qn−k >
b−1∑
i=0

(q − 1)i (4)

or,

qn−k ≥ 1 +
b−1∑
i=0

(q − 1)i

or,

n− k ≥ loqq

{
1 +

b−1∑
i=0

(q − 1)i
}
.

Remark 2.7. This result coincides with Theorem 2, Das [4] when solid burst of

length b or less are considered over the whole code length.

Remark 2.8. This result is also free from other parameters of the anti-code. So,

the result is applicable for anti-codes of any feasible length n and anti-weight t .
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Remark 2.9. For q = 2, the bounds obtained in Theorem 2.1 and Theorem 2.6

coincide i.e., the lower and upper bounds on the number of parity check digits for

an (n, k) linear anti-code over GF (2) that detects any solid burst of length b or

less of anti-weight t or more is same and is given by loq2(1 + b).

Example 2.10. Consider a (7, 5) binary anti-code with the 2×7 matrix H which

has been constructed by the synthesis procedure given in the proof of Theorem

2.6 by taking t = 4, b = 3, n = 7.

H =

[
1 0 1 0 1 0 1

0 1 0 1 0 1 0

]

The null space of this matrix detects all solid bursts of length 3 or less of anti-

weight 4 or more. Because the syndromes of all solid bursts of length 3 or less of

anti-weight 4 or more are non zero (refer Table 2.1).

3 Simultaneous detection and correction of solid

burst of length b or less of anti weight t or more

This section determines extended Reiger’s bound (refer [17] ; also Theorem 4.15,

Peterson and Weldon [14]) for simultaneous detection and correction of solid burst

of length b or less of anti-weight t or more. The following theorem gives a bound

on the number of parity-check digits for a linear anti-code that simultaneously

detects and corrects such errors.

Theorem 3.1. The number of parity check symbols in an (n, k) linear anti-code

over GF(q ) that corrects any solid burst of length b or less of anti-weight t or

more must have at least logq(1 + 2b) .

Further, if the anti-code corrects all solid bursts of length b or less of anti-

weight t or more, and simultaneously detects any solid burst of length d or less

of anti-weight t or more (b < d) , then the number of parity-check digits of the

anti-code is at least logq(1 + b+ d) .

Proof. For the first part, consider a vector that has the form of a solid burst of

length 2b or less of anti-weight t or more. The vector can be expressible as a

sum or difference of two vectors, each of which is a solid burst of length b or
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less of anti-weight t or more. These component vectors must belong to different

cosets of the standard anti-array, because both such errors are correctable errors.

Accordingly, such a vector viz. a solid burst of length b or less of anti-weight t

or more can not be a code vector. In view of Theorem 2.1, the number of parity

check digits, such an anti-code must have, is at least logq(1 + 2b).

Further, for the second part, consider a vector which has the form of a solid

burst of length (b+d) or less of anti-weight t or more. Such a vector is expressible

as a sum or difference of two vectors, one of which has the form of a solid burst of

length b or less of anti-weight t or more and the other is a solid burst of length

d or less of anti-weight t or more. Both such component vectors, one being a

detectable error and the other being a correctable error, can not belong to the

same coset of the standard anti-array. Therefore, such a vector can not be a code

vector, i.e., a vector which is a solid burst of length (b+ d) or less of anti-weight

t or more can not be a code vector. Hence, by Theorem 2.1, the number of parity

check digits that anti-code must have is at least logq(1 + b+ d).

In coding theory, an important criterion is to look for minimum weight and

structure of weight in a group of vectors. For anti-code, we need to look for

maximum anti-weight structure of error vectors. The following theorem gives the

maximum anti-weight of solid burst of length b or less of anti-weight t or more.

The theorem is equivalent to Plotkin bound [15], also Theorem 4.1, Peterson and

Weldon [14]).

Theorem 3.2. The maximum anti-weight of a solid burst of length b or less of

anti-weight t or more in the space of n-tuples over GF (q) is at least

∑b
l=1

(n− l)2 − t2

2
× (q − 1)l∑b

i=1(n− t− i+ 1)(q − 1)i
.

Proof. We first count the total anti-weight of all solid bursts of length l (1 ≤ l ≤ b)

of anti-weight t or more. This is given by

(q − 1)l
{
t+ (t+ 1) + (t+ 2) + · · ·+ (n− l)

}
= (q − 1)l × (n− l)2 − t2

2
.

Therefore, the total anti-weight of all solid bursts of length b or less of anti-weight
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t or more is given by

b∑
l=1

(n− l)2 − t2

2
× (q − 1)l.

Also, the number of solid burst of length b or less of anti-weight t or more in

the space of n -tuples over GF (q) is

b∑
i=1

(n− t− i+ 1)(q − 1)i.

Since the maximum anti-weight element can have at least the average anti-

weight, a lower bound on the maximum anti-weight of solid burst of length b or

less of anti-weight t or more is given by

∑b
l=1

(n− l)2 − t2

2
× (q − 1)l∑b

i=1(n− t− i+ 1)(q − 1)i
.

Hence the theorem is proved.

4 Detection of solid burst of length b or less of

anti weight t or more and random errors

In this section we study the sufficient condition (upper bound) for the detection of

solid burst of length b or less of anti-weight t or more, and e or less random errors

of anti-weight t or more (e < b). The proof of the following theorem is analogous

to that of Theorem 2.6. Further, the asymptotic form of the bound obtained is

provided. The study is parallel to the works done by Dass and Muttoo [5], Muttoo

and Tyagi [13] where they have considered the codes detecting closed loop burst

errors and random errors.

Theorem 4.1. There exists an (n, k) linear anti-code over GF (q) that detects

any solid burst of length b or less of anti-weight t or more, and e or less random

errors of anti-weight t or more (e < b) provided that

qn−k >
e−1∑
i=0

(
n− t− 1

i

)
(q − 1)i +

b−1∑
i=e

(q − 1)i. (5)



Anti-codes on solid burst of length b of anti-weight t 11

Proof. The theorem is also proved by constructing an appropriate (n − k) × n

parity-check matrix H for the existence of the anti-code. This requisite parity-

check matrix H is constructed as follows:

Select any non-zero (n − k)-tuples as the first t columns h1, h2, ..., ht . After

selecting n − t − 1 columns ht+1, ht+2, ..., hn−1 appropriately, we lay down the

conditions to add nth column hn as follows:

Case (I). Since the anti-code detects any e or less random errors of anti-weight

t or more, hn should not be a linear combination of previous any e − 1 or less

columns among the immediately preceding n− t− 1 columns, i.e.,

hn ̸=(u1hn−1 + u2hn−2 + · · ·+ un−t−2ht+2 + un−t−1ht+1), (6)

where ui ∈ GF (q) are any e− 1 or less non zero coefficients.

This condition ensures that the anti-code detects any e or less random errors

of anti-weight t or more. The number of ways in which such coefficients ui out of

n− t− 1 coefficients on R.H.S. of (6) may be chosen is given by

e−1∑
i=0

(
n− t− 1

i

)
(q − 1)i.

Case (II). Since the anti-code detects any solid burst b or less of anti-weight t or

more, hn should not be a linear combination of immediately previous any e or

more (but less than equal to b− 1) consecutive columns, i.e.,

hn ̸=(u1hn−1 + u2hn−2 + · · ·+ us−1hn−s+1 + ushn−s), (7)

where e ≤ s ≤ b− 1 and ui ∈ GF (q) are non zero coefficients.

This condition ensures that the anti-code detects any solid burst of length b or

less (but greater than e) of anti-weight t or more. The number of ways in which

such coefficients ui on R.H.S. of (7) may be chosen is given by

b−1∑
i=e

(q − 1)i.
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Therefore, the number of possible linear combinations of coefficients for the case

(I) and case (II), including the vector of all zeros, is given by

e−1∑
i=0

(
n− t− 1

i

)
(q − 1)i +

b−1∑
i=e

(q − 1)i.

At worst, all these linear combinations might yield distinct sums. Thus, a column

hn can be added to H provided that

qn−k >
e−1∑
i=0

(
n− t− 1

i

)
(q − 1)i +

b−1∑
i=e

(q − 1)i. (8)

Alternative Form

If n is the largest positive integer for which the inequality (8) is true, then replacing

n by n+ 1, the inequality (8) gets reversed and the inequality becomes

qn−k ≤
e−1∑
i=0

(
n− t

i

)
(q − 1)i +

b−1∑
i=e

(q − 1)i. (9)

Asymptotic Form

We deduce the asymptotic form of the above inequality (9) over GF(2). By taking

q = 2, the inequality (9) becomes

2n−k ≤
e−1∑
i=0

(
n− t

i

)
+ (b− e)

or,

2n−k ≤
n−t∑

i=(n−t−e+1
n−t )(n−t)

(
n− t

i

)
+ (b− e). (10)

From the Chernov Bound,

n∑
i=αn

(
n

i

)
≤ α−αnβ−βn, β = 1− α, α >

1

2
,

we can deduce the inequality (10) as follows:

2n−k ≤
(
n− t− e+ 1

n− t

)−(n−t−e+1)(
e− 1

n− t

)−(e−1)

+ (b− e), (11)
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where n > t+ 2(e− 1). We know the binary entropy function is given by

H(p) = −p log2 p− (1− p) log2(1− p).

Therefore, the inequality (11) reduces to

2n−k ≤ 2(n−t)H(n−t−e+1
n−t ) + b− e.

Remark 4.2. We have restricted the asymptotic form to q = 2, because for non

binary case, we can not apply Chernov Bound in (9), also the entropy function is

given by

Hq(p) = −p logq p− (1− p) logq(1− p) + p logq(q − 1).

Example 4.3. For a (10, 6) linear anti-code over GF (2), we construct the fol-

lowing 4× 10 parity check matrix H , according to the synthesis procedure given

in the proof of Theorem 4.1 by taking q = 2 e = 2, b = 4 and t = 2.

H =


1 1 0 0 0 1 0 1 1 1

1 1 0 0 1 0 1 1 0 1

1 1 0 1 0 0 1 0 1 1

1 1 1 1 1 1 1 1 1 1


The null space of this matrix can be used to detect all solid bursts of length 4 or

less of anti-weight 2 or more, and 2 or less random errors of anti-weight 2 or more.

It can easily be verified from error pattern-syndromes table that the syndromes of

all solid bursts of length 4 or less of anti-weight 2 or more, and 2 or less random

errors of anti-weight 2 or more are non zero, showing thereby that the anti-code

that is the null space of this matrix can detect all such errors.
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