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Abstract: Let X0 be a non-constant random variable with finite variance. Given

an integer k ≥ 2, define a sequence {Xn}∞n=1 of approximately linear recursions

with small perturbations {∆n}∞n=0 by

Xn+1 =
k∑

i=1

an,iXn,i +∆n for all n ≥ 0

where Xn,1, . . . , Xn,k are independent copies of the Xn and an,1, . . . , an,k are

real numbers. In 2004, Goldstein obtained bounds on the Wasserstein distance

between the standard normal distribution and the law of Xn which is in the form

Cγn for some constants C > 0 and 0 < γ < 1.

In this article, we extend the results to the case of two effects by studying a

linear model Zn = Xn+Yn for all n ≥ 0, where {Yn}∞n=1 is a sequence of approx-

imately linear recursions with an initial random variable Y0 and perturbations

{Λn}∞n=0 , i.e., for some ℓ ≥ 2,

Yn+1 =
ℓ∑

j=1

bn,jYn,j + Λn for all n ≥ 0

where Yn and Yn,1, . . . , Yn,ℓ are independent and identically distributed random

variables and bn,1, . . . , bn,ℓ are real numbers. Applying the zero bias transforma-

tion in the Stein’s equation, we also obtain the bound for Zn . Adding further
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conditions that the two models (Xn,∆n) and (Yn,Λn) are independent and that

the difference between variance of Xn and Yn is smaller than the sum of variances

of their perturbation parts, our result is the same as previous work.
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1 Introduction and Main Theorem

Let Z be a standard normally distributed random variable and X0 a non-constant

random variable with finite variance. For a positive integer k ≥ 2, we consider a se-

quence {Xn}∞n=1 of approximately linear recursions with perturbations {∆n}∞n=0 ,

Xn+1 =
k∑

i=1

an,iXn,i +∆n for all n ≥ 0

where the Xn and Xn,1, . . . , Xn,k are independent and identically distributed

random variables and an,1, . . . , an,k are real numbers. For all integers n ≥ 0, we

introduce some notation for the model (Xn, an,∆n),

λ2a,n =
k∑

i=1

a2n,i, φa,n =
k∑

i=1

|an,i|3

λ3a,n
, Var (Xn) = σ2

X,n

and

X̃n =
Xn − EXn

σX,n
.

Arising originally from statistical physics, the approximately linear recursions

are special type of hierarchical strucutres and often applied to the conductivity of

random mediums. A natural way in the classical probability theory is to study

limit theorems for the distributions of these models. A strong law of large numbers

for the hierarchical structure was obtained by [6, 4, 3]. The central limit theorem

for recursions was first introduced by [7] and the bounds to normal approxima-

tion based on the Wasserstein distance were obtained by [2]. The following two

conditions were used in the last work.

Condition 1.1. For each i = 1, . . . , k , the sequence {an,i}∞n=0 converges to some

real number ai satisfying that at least two of the ai ’s are nonzero. Set λ2a =
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∑k
i=1 a

2
i . There exist 0 < δX,2 < δ∆,2 < 1 and positive constants CX,2 , C∆,2

such that for all n ≥ 0,

Var (Xn) ≥ C2
X,2λ

2n
a (1− δX,2)

2n
,

Var (∆n) ≤ C2
∆,2λ

2n
a (1− δ∆,2)

2n
.

Condition 1.2. With δX,2 , δ∆,2 and λa as in the Condition 1.1, there exists

δX,4 ≥ 0 and δ∆,4 ≥ 0 such that

ϕX,∆,2 =
(1− δ∆,2) (1 + δX,4)

3

(1− δX,2)
4 < 1 and ϕX,∆,4 =

(
1− δ∆,4

1− δX,2

)2

< 1

and positive constants CX,4 , C∆,4 such that

E (Xn − EXn)
4 ≤ C4

X,4λ
4n
a (1 + δX,4)

4n
,

E (∆n − E∆n)
4 ≤ C4

∆,4λ
4n
a (1− δ∆,4)

4n
.

Recall that the Wasserstien distance or L1 -distance between two laws F and

G is given by

∥F −G∥1 =

∫ ∞

−∞
|F (t)−G(t)| dt.

For any random variable X , the law or cumulative distribution function of X is

denoted by L(X).

Theorem 1.3. [2] Under Conditions 1.1 and 1.2, there exist constants C > 0

and γ ∈ (0, 1) such that ∥∥∥L(X̃n)− L(Z)
∥∥∥
1
≤ Cγn.

In this article, we extend the bounds to the case of two effects. Let {Zn}∞n=0

be a sequence of linear model with two effects given by

Zn = Xn + Yn for all n ≥ 0

where Y0 is a non-degenerated random and for some integer ℓ ≥ 2,

Yn+1 =

ℓ∑
j=1

bn,jYn,j + Λn for all n ≥ 0
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where bn,1, . . . , bn,ℓ are real numbers, Yn,1, . . . , Yn,ℓ are independent copy of the

Yn and Λn is a small perturbation. Note that the perturbations ∆n and Λn

always depend on Xn and Yn , respectively. From now on, we assume that random

variables from two models of recursions (Xn,∆n) and (Yn,Λn) are independent

for all n ≥ 0, and denote

λ2n =
k∑

i=1

a2n,i +
ℓ∑

j=1

b2n,j , Var (Zn) = σ2
X,n + σ2

Y,n = σ2
n

and

Z̃n =
Zn − EZn

σn
.

The bound for linear recursions with two effects is derived by adding further as-

sumption that the difference between variances of two models (Xn,∆n), (Yn,Λn),

is smaller than variances of perturbations, the following is our main theorem.

Theorem 1.4. With constants δX,2 , δX,4 , δ∆,2 and δY,2 , δY,4 , δΛ,2 as in Con-

dition 1.1 and 1.2 for the models (Xn,∆n) and (Yn,Λn) , suppose that

ψX,Y,Λ =
(1− δΛ,2) (1 + δX,4)

3

(1− δY,2) (1− δX,2)
3 < 1 and ψY,X,∆ =

(1− δ∆,2) (1 + δY,4)
3

(1− δX,2) (1− δY,2)
3 < 1

and that

|Var (Xn)−Var (Yn)| ≤
Var (∆n) + Var (Λn)

max{λ2a,n, λ2b,n}
,

then there exist constants C > 0 and γ ∈ (0, 1) such that∥∥∥L(Z̃n)− L(Z)
∥∥∥
1
≤ Cγn.

2 Auxiliary Results

Before proving the main theorem, we present some results for the models (Xn,∆n)

and (Yn,Λn). For all n ≥ 0, let

rX,n =
λnσX,n

σn+1
, rY,n =

λnσY,n
σn+1

.

We begin with the bounds of rX,n and rY,n .
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Lemma 2.1. With constants δX,2 , δ∆,2 and δY,2 , δΛ,2 as in Condition 1.1 for

the models (Xn,∆n) and (Yn,Λn) , and suppose that

|Var (Xn)−Var (Yn)| ≤
Var (∆n) + Var (Λn)

max{λ2a,n, λ2b,n}
,

then for an integer p ≥ 1 , there exists a positive constant Cr,p such that

∣∣∣rpX,n − 1
∣∣∣ ≤ Cr,p

{(
1− δ∆,2

1− δX,2

)n

+

(
1− δΛ,2

1− δY,2

)n}
and ∣∣∣rpY,n − 1

∣∣∣ ≤ Cr,p

{(
1− δ∆,2

1− δX,2

)n

+

(
1− δΛ,2

1− δY,2

)n}
.

Proof. Following the argument of [7, Lemma 6], we consider the variances of linear

model of recursions

σ2
n+1 = Var (Zn+1)

= λ2a,nVar (Xn) + λ2b,nVar (Yn) + Var (∆n) + Var (Λn)

= λ2nσ
2
X,n + λ2b,n {Var (Yn)−Var (Xn)}+Var (∆n) + Var (Λn) ,

The triangle inequality yields

σn+1 ≤ λnσX,n +
√
λ2b,n |Var (Yn)−Var (Xn)|+

√
Var (∆n) + Var (Λn)

≤ λnσX,n + 2
√

Var (∆n) + Var (Λn).

Also, we note that

λ2a,nσ
2
X,n = σ2

n+1 − λ2b,n {Var (Yn)−Var (Xn)} −Var (∆n)−Var (Λn)

≤ σ2
n+1 + λ2b,n |Var (Yn)−Var (Xn)|+Var (∆n) + Var (Λn) ,

which implies that

λnσX,n ≤ σn+1 +
√
λ2b,n |Var (Yn)−Var (Xn)|+

√
Var (∆n) + Var (Λn)

≤ λnσX,n + 2
√

Var (∆n) + Var (Λn).
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Then there exists a constant Cr,1 such that

|rX,n − 1| =
|λnσX,n − σn+1|

σn+1

≤
2
√

Var (∆n) + Var (Λn)

σn+1

≤ 2

√
Var (∆n)

Var (Xn+1)
+ 2

√
Var (Λn)

Var (Yn+1)

≤ 2C∆,2 (1− δ∆,2)
n

CX,2λa (1− δX,2)
n+1 +

2CΛ,2 (1− δΛ,2)
n

CY,2λb (1− δY,2)
n+1

≤ Cr,1

{(
1− δ∆,2

1− δX,2

)n

+

(
1− δΛ,2

1− δY,2

)n}
.

Now, since

|rp − 1| = |(r − 1 + 1)
p − 1| ≤

p∑
j=1

(
p

j

)
|r − 1|j

and the assumption that 0 < δX,2 < δ∆,2 < 1 and 0 < δY,2 < δΛ,2 < 1, there are

constants Cr,p such that∣∣∣rpX,n − 1
∣∣∣ ≤ Cr,p

{(
1− δ∆,2

1− δX,2

)n

+

(
1− δΛ,2

1− δY,2

)n}
and similarly, we can see that∣∣∣rpY,n − 1

∣∣∣ ≤ Cr,p

{(
1− δ∆,2

1− δX,2

)n

+

(
1− δΛ,2

1− δY,2

)n}
for all p = 1, 2, 3, . . . .

For all n ≥ 0, let

Un = UX,n + UY,n

where

UX,n+1 =
k∑

i=1

an,i
λn

(
Xn,i − EXn,i

σX,n

)
and UY,n+1 =

ℓ∑
j=1

bn,j
λn

(
Yn,j − EYn,j

σY,n

)
.

Next, we follow the proof of [1, Lemma 4.1] to prepare an inequality for the

Wasserstein distance between laws of Un and its zero bias transformation.
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Lemma 2.2. For all integers n ≥ 1 and the zero bias transformation U∗
n , X̃

∗
n ,

Ỹ ∗
n of the Un , X̃n , Ỹn , respectively, we have

∥L(Un)− L(U∗
n)∥1 ≤

∥∥∥L(X̃n)− L(X̃∗
n)
∥∥∥
1
+
∥∥∥L(Ỹn)− L(Ỹ ∗

n )
∥∥∥
1
.

Proof. Set m = k + ℓ . Let

ξi =

(Xn,i − EXn,i) /σX,n for i = 1, . . . , k

(Yn,i−k − EYn,i−k) /σY,n for i = k + 1, . . . ,m

and

αn,i =

an,i for i = 1, . . . , k

bn,i−k for i = k + 1, . . . ,m.

Note that Un+1 is a sum of independent random variables and can be written

as

Un+1 =
m∑
i=1

αn,i

λn
ξi.

Let I be a random index independent of all other variables and satisfying that

P (I = i) =
α2
n,i

λ2n
for i = 1, . . . ,m.

By the result of [1, Lemma 2.8], the random variable

U∗
n+1 = Un+1 −

αn,I

λn
(ξ∗I − ξI)

has the Un+1 -zero biased distribution. By taking the dual form of the L1 -distance

discussed in [5], we can see that∥∥L(Un+1)− L(U∗
n+1)

∥∥
1

= inf E |X − Y | ≤ E
∣∣Un+1 − U∗

n+1

∣∣
where the infimum is taken over all coupling of X and Y having the joint distri-

bution with L(Un+1) and its zero bias distribution.

Let V1, . . . , Vm be independent uniformly distributed random variables on

[0, 1]. For i = 1, . . . ,m , let ξ∗i be the zero bias transformation of ξi . Let Fξ

and Fξ∗ be the distribution functions of ξ and ξ∗ , respectively. Set

(ξi, ξ
∗
i ) =

(
F−1
ξi

(Vi), F
−1
ξ∗i

(Vi)
)

for all i = 1, . . . ,m.
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By the results of [5], we obtain that

E |ξi − ξ∗i | =


∥∥∥L(X̃n)− L(X̃∗

n)
∥∥∥
1

for i = 1, . . . , k∥∥∥L(Ỹn)− L(Ỹ ∗
n )
∥∥∥
1

for i = k + 1, . . . ,m.

Now, we obtain∥∥L(Un+1)− L(U∗
n+1)

∥∥
1

≤ E
∣∣Un+1 − U∗

n+1

∣∣
= E

m∑
i=1

|αn,i|
λn

|ξi − ξ∗i |1 (I = i)

=
m∑
i=1

|αn,i|3

λ3n
E |ξi − ξ∗i |

=
k∑

i=1

|an,i|3

λ3n

∥∥∥L(X̃n)− L(X̃∗
n)
∥∥∥
1
+

ℓ∑
j=1

|bn,j |3

λ3n

∥∥∥L(Ỹn)− L(Ỹ ∗
n )
∥∥∥
1

=
λ3a,n φa,n

λ3n

∥∥∥L(X̃n)− L(X̃∗
n)
∥∥∥
1
+
λ3b,n φb,n

λ3n

∥∥∥L(Ỹn)− L(Ỹ ∗
n )
∥∥∥
1

≤
∥∥∥L(X̃n)− L(X̃∗

n)
∥∥∥
1
+
∥∥∥L(Ỹn)− L(Ỹ ∗

n )
∥∥∥
1
.

3 Proof of Main Theorem

Proof of Theorem 1.4. By the results of [1, Theorem 4.1], we can calculate the

bound on L1 -distance by using the zero bias transformation as follows∥∥∥L(Z̃n)− L(Z)
∥∥∥
1

≤ 2
∥∥∥L(Z̃n)− L(Z̃∗

n)
∥∥∥
1
. (3.1)

Moreover, we can use equivalent forms of the L1 -distance found in [5] and given

by∥∥∥L(Z̃n)− L(Z̃∗
n)
∥∥∥
1

= sup
h∈Lip

∣∣∣Eh(Z̃n)− Eh(Z̃∗
n)
∣∣∣ = sup

f∈Fac

∣∣∣Ef ′(Z̃n)− Ef ′(Z̃∗
n)
∣∣∣

where Lip = {h : R → R : |h(x)− h(y)| ≤ |x− y| for all x, y ∈ R}
and Fac = {f : R → R : f is absolutely continuous, f(0) = f ′(0) = 0, f ′ ∈ Lip} .
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Now, we present some facts about the Stein’s method for normal approxima-

tion. For each f ∈ F , define h : R → R by

h(w) = f ′(w)− wf(w).

By the characterization of normal distribution, Eh(Z) = 0. Also, we observe that

|h′(w)| = |f ′′(w)− wf ′(w)− f(w)| ≤ 1 + w2 +
w2

2

and hence

|h(w)− h(u)| =
∣∣∣∣∫ w

u

h′(t) dt

∣∣∣∣ ≤ |w − u|+ 1

2

∣∣w3 − u3
∣∣ .

From the definition of zero bias transformation and that Var
(
Z̃n+1

)
= 1, we have∣∣∣Ef ′(Z̃n+1)− Ef ′(Z̃∗

n+1)
∣∣∣

=
∣∣∣Ef ′(Z̃n+1)− E Z̃n+1f(Z̃n+1)

∣∣∣
=

∣∣∣Eh(Z̃n+1)
∣∣∣

≤
∣∣∣Eh(Z̃n+1)− Eh(Un+1)

∣∣∣+ |Eh(Un+1)|

≤ E
∣∣∣Z̃n+1 − Un+1

∣∣∣+ 1

2
E
∣∣∣Z̃3

n+1 − U3
n+1

∣∣∣+ |Eh(Un+1)|

= βn +
∣∣Ef ′(Un+1)− Ef ′(U∗

n+1)
∣∣

≤ βn +
∥∥L(Un+1)− L(U∗

n+1)
∥∥
1

≤ βn +
∥∥∥L(X̃n)− L(X̃∗

n)
∥∥∥
1
+
∥∥∥L(Ỹn)− L(Ỹ ∗

n )
∥∥∥
1

(3.2)

where we apply Lemma 2.2 in the last inequality and denote for all n ≥ 0,

βn = E
∣∣∣Z̃n+1 − Un+1

∣∣∣+ 1

2
E
∣∣∣Z̃3

n+1 − U3
n+1

∣∣∣ . (3.3)

By (3.1) and taking the supremum of (3.2) over f ∈ Fac , we obtain∥∥∥L(Z̃n+1)− L(Z)
∥∥∥
1

≤ 2
∥∥∥L(Z̃n+1)− L(Z̃∗

n+1)
∥∥∥
1

≤ 2βn + 2
∥∥∥L(X̃n)− L(X̃∗

n)
∥∥∥
1
+ 2

∥∥∥L(Ỹn)− L(Ỹ ∗
n )
∥∥∥
1
.

Applying the Condition 1.1 and 1.2 for the models (Xn,∆n) and (Yn,Λn) in

Theorem 1.3, there exist positive constants CX,a,∆ , CY,bΛ and γX,a,∆ ∈ (0, 1),

γY,b,Λ ∈ (0, 1) such that for all n ≥ 0,∥∥∥L(X̃n)− L(X̃∗
n)
∥∥∥
1
≤ CX,a,∆ (γX,a,∆)

n
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and ∥∥∥L(Ỹn)− L(Ỹ ∗
n )
∥∥∥
1
≤ CY,b,Λ (γY,b,Λ)

n
.

We remain to show that βn ≤ Cβγ
n
β for some Cβ > 0 and γβ ∈ (0, 1) and the proof

is completed by choosing C = CX,a,∆+CY,b,Λ+Cβ and γ = max {γX,a,∆, γY,b,Λ, γβ} .

Recalling the definition of rX,n , rY,n and UX,n , UY,n in Lemma 2.1 and 2.2,

respectively, the linear model of recursions can be written as

Z̃n+1 =
Zn+1 − EZn+1

σn+1

=
Xn+1 − EXn+1

σn+1
+
Yn+1 − EYn+1

σn+1

=
σX,n

σn+1

{
k∑

i=1

an,i

(
Xn,i − EXn,i

σX,n

)
+

∆n − E∆n

σX,n

}

+
σY,n
σn+1


ℓ∑

j=1

bn,j

(
Yn,j − EYn,j

σY,n

)
+

Λn − EΛn

σY,n


= rX,nUX,n+1 + rY,nUY,n+1 + Γn

where Γn = ΓX,∆,n + ΓY,Λ,n ,

ΓX,∆,n =
σX,n

σn+1

(
∆n − E∆n

σX,n

)
and ΓY,Λ,n =

σY,n
σn+1

(
∆n − E∆n

σY,n

)
.

Using Conditions 1.1 and 1.2 for the models (Xn,∆n) and (Yn,Λn), the result of

[7, Lemma 6] gives that the limits

lim
n→∞

σX,n

λa,0 . . . λa,n−1
and lim

n→∞

σY,n
λb,0 . . . λb,n−1

exist in (0, 1), so we have

lim
n→∞

σX,n+1

σX,n
= λa and lim

n→∞

σY,n+1

σY,n
= λb.

Therefore, there exist positive constants CΓ,X,∆,2 and CΓ,Y,Λ,2 such that

EΓ2
X,∆,n ≤

(
σX,n

σX,n+1

)2
Var (∆n)

Var (Xn)
≤ C2

Γ,X,∆,2

(
1− δ∆,2

1− δX,2

)2n

EΓ2
Y,Λ,n ≤

(
σY,n
σY,n+1

)2
Var (Λn)

Var (Yn)
≤ C2

Γ,Y,Λ,2

(
1− δΛ,2

1− δY,2

)2n

.
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Moreover, there exist positive constants CΓ,X,∆,4 and CΓ,Y,Λ,4 such that

EΓ4
X,∆,n ≤

(
σX,n

σX,n+1

)4

E

(
∆n − E∆n

σX,n

)4

≤ C4
Γ,X,∆,4

(
1− δ∆,4

1− δX,2

)4n

EΓ4
Y,Λ,n ≤

(
σY,n
σY,n+1

)4

E

(
Λn − EΛn

σY,n

)4

≤ C4
Γ,Y,Λ,4

(
1− δΛ,4

1− δY,2

)4n

.

By independence for Xn,i ’s and Yn,j ’s, there exist positive constants CU,X and

CU,Y such that

EU2
X,n+1 =

λ2a,n
λ2n

E

(
Xn − EXn

σX,n

)2

≤ 1

EU2
Y,n+1 =

λ2b,n
λ2n

E

(
Yn − EYn
σY,n

)2

≤ 1

EU4
X,n+1 ≤ 8

k∑
i=1

a4n,i
λ4n

E

(
Xn − EXn

σX,n

)4

≤ C4
U,X

(
1 + δX,4

1− δX,2

)4n

EU4
Y,n+1 ≤ 8

ℓ∑
j=1

b4n,j
λ4n

E

(
Yn − EYn
σY,n

)4

≤ C4
U,Y

(
1 + δY,4
1− δY,2

)4n

.

From Lemma 2.1 and Condition 1.1 and 1.2, the following results will be often

used for all n ≥ 0 and p = 1, 2, 3,∣∣∣rpX,n − 1
∣∣∣ ≤ Cr,p

(
ϕnX,∆,2 + ϕnY,Λ,2

)
(3.4)∣∣∣rpY,n − 1

∣∣∣ ≤ Cr,p

(
ϕnX,∆,2 + ϕnY,Λ,2

)
. (3.5)

Now, considering the first term of βn in (3.3),

E
∣∣∣Z̃n+1 − Un+1

∣∣∣
= E |(rX,n − 1)UX,n+1 + (rY,n − 1)UY,n+1 + ΓX,∆,n + ΓY,Λ,n|

≤ |rX,n − 1|
√

EU2
X,n+1 + |rY,n − 1|

√
EU2

Y,n+1 +
√
EΓ2

X,∆,n +
√
EΓ2

Y,Λ,n

≤ 2Cr,1

(
ϕnX,∆,2 + ϕnY,Λ,2

)
+ CΓ,X,∆,2

(
1− δ∆,2

1− δX,2

)n

+ CΓ,Y,Λ,2

(
1− δΛ,2

1− δY,2

)n

≤ C0

(
ϕnX,∆,2 + ϕnY,Λ,2

)
.
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For the second term of βn ,

E
∣∣∣Z̃3

n+1 − U3
n+1

∣∣∣
= E

∣∣∣(rX,nUX,n+1 + rY,nUY,n+1 + Γn)
3 − U3

n+1

∣∣∣
= E

∣∣∣(rX,nUX,n+1 + rY,nUY,n+1)
3
+ 3 (rX,nUX,n+1 + rY,nUY,n+1)

2
Γn

+ 3 (rX,nUX,n+1 + rY,nUY,n+1) Γ
2
n + Γ3

n − U3
n+1

∣∣∣∣
≤ E

∣∣∣(rX,nUX,n+1 + rY,nUY,n+1)
3 − U3

n+1

∣∣∣+ 3E
∣∣∣(rX,nUX,n+1 + rY,nUY,n+1)

2
Γn

∣∣∣
+3E

∣∣(rX,nUX,n+1 + rY,nUY,n+1) Γ
2
n

∣∣+ E |Γn|3

:= A1 +A2 +A3 +A4.

Notice that

A1 = E
∣∣∣(rX,nUX,n+1 + rY,nUY,n+1)

3 − (UX,n+1 + UY,n+1)
3
∣∣∣

= E
∣∣(r3X,n − 1

)
U3
X,n+1 + 3

(
r2X,nrY,n − 1

)
U2
X,n+1UY,n+1

+3
(
rX,nr

2
Y,n − 1

)
UX,n+1U

2
Y,n+1 +

(
r3Y,n − 1

)
U3
Y,n+1

∣∣
≤ E

∣∣(r3X,n − 1
)
U3
X,n+1

∣∣+ 3E
∣∣(r2X,nrY,n − rY,n + rY,n − 1

)
U2
X,n+1UY,n+1

∣∣
+3E

∣∣(rX,nr
2
Y,n − rX,n + rX,n − 1

)
UX,n+1U

2
Y,n+1

∣∣+ E
∣∣(r3Y,n − 1

)
U3
Y,n+1

∣∣
≤ E

∣∣(r3X,n − 1
)
U3
X,n+1

∣∣+ E
∣∣(r3Y,n − 1

)
U3
Y,n+1

∣∣
+3E

∣∣(r2X,n − 1
)
rY,nU

2
X,n+1UY,n+1

∣∣+ 3E
∣∣(rY,n − 1)U2

X,n+1UY,n+1

∣∣
+3E

∣∣(r2Y,n − 1
)
rX,nUX,n+1U

2
Y,n+1

∣∣+ 3E
∣∣(rX,n − 1)UX,n+1U

2
Y,n+1

∣∣
≤

∣∣r3X,n − 1
∣∣ (EU4

X,n

)3/4
+
∣∣r3Y,n − 1

∣∣ (EU4
Y,n

)3/4
+3
∣∣r2X,n − 1

∣∣ rY,nEU2
X,n

√
EU2

Y,n + 3rX,n

∣∣r2Y,n − 1
∣∣√EU2

X,nEU
2
Y,n

+3 |rY,n − 1|EU2
X,n

√
EU2

Y,n + 3 |rX,n − 1|
√

EU2
X,nEU

2
Y,n

≤ 83/4Cr,3C
3
X,4

{(
(1− δ∆,2) (1 + δX,4)

3

(1− δX,2)
4

)n

+

(
(1− δΛ,2) (1 + δX,4)

3

(1− δY,2) (1− δX,2)
3

)n}

+83/4Cr,3C
3
Y,4

{(
(1− δ∆,2) (1 + δY,4)

3

(1− δX,2) (1− δY,2)
3

)n

+

(
(1− δΛ,2) (1 + δY,4)

3

(1− δY,2)
4

)n}
+6Cr,2 (1 + 2Cr,1)

(
ϕnX,∆,2 + ϕnY,Λ,2

)
+ 6Cr,1

(
ϕnX,∆,2 + ϕnY,Λ,2

)
≤ C1

(
ϕnX,∆,2 + ϕnY,Λ,2 + ψn

X,Y,Λ + ψn
Y,X,∆

)
.
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As a special case of (3.4) and (3.5) when p = 1, we can see that for all n ≥ 0

rX,n ≤ 1 + Cr,1

(
ϕnX,∆,2 + ϕnY,Λ,2

)
≤ 1 + 2Cr,1

rY,n ≤ 1 + Cr,1

(
ϕnX,∆,2 + ϕnY,Λ,2

)
≤ 1 + 2Cr,1.

So, we have that

A2 = 3E
∣∣∣(rX,nUX,n+1 + rY,nUY,n+1)

2
(ΓX,∆,n + ΓY,Λ,n)

∣∣∣
≤ 6E

∣∣(r2X,nU
2
X,n+1 + r2Y,nU

2
Y,n+1

)
(ΓX,∆,n + ΓY,Λ,n)

∣∣
≤ 6r2X,n

√
EU4

X,n+1EΓ2
X,∆,n + 6r2X,nEU

2
X,n+1

√
EΓ2

Y,Λ,n

+6r2Y,nEU
2
Y,n+1

√
EΓ2

X,∆,n + 6r2Y,n

√
EU4

Y,n+1EΓ2
Y,Λ,n

≤ 12
√
2 (1 + Cr,1)

2
C2

U,XCΓ,X,∆,2

(
(1− δ∆,2) (1 + δX,4)

3

(1− δX,2)
4

)n

+6 (1 + Cr,1)
2
CΓ,X,∆,2

(
1− δ∆,2

1− δX,2

)n

+ 6 (1 + Cr,1)
2
CΓ,Y,Λ,2

(
1− δΛ,2

1− δY,2

)n

+12
√
2 (1 + Cr,1)

2
C2

U,Y CΓ,Y,Λ,2

(
(1− δΛ,2) (1 + δY,4)

3

(1− δY,2)
4

)n

≤ C2

(
ϕnX,∆,2 + ϕnY,Λ,2

)
and that

A3 = 3E
∣∣∣(rX,nUX,n+1 + rY,nUY,n+1) (ΓX,∆,n + ΓY,Λ,n)

2
∣∣∣

≤ 6E
∣∣(rX,nUX,n+1 + rY,nUY,n+1)

(
Γ2
X,∆,n + Γ2

Y,Λ,n

)∣∣
≤ 6rX,n

√
EU2

X,n+1EΓ4
X,∆,n + 6rX,n

√
EU2

X,n+1EΓ2
Y,Λ,n

+6rY,n

√
EU2

Y,n+1EΓ2
X,∆,n + 6rY,n

√
EU2

Y,n+1EΓ4
Y,Λ,n

≤ 6 (1 + Cr,1)
(
C2

Γ,X,∆,4 + C2
Γ,X,∆,2

)(1− δ∆,2

1− δX,2

)2n

+6 (1 + Cr,1)
(
C2

Γ,Y,Λ,2 + C2
Γ,Y,Λ,4

)(1− δΛ,2

1− δY,2

)2n

≤ C3

(
ϕ2nX,∆,2 + ϕ2nY,Λ,2

)
.
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Lastly,

A4 ≤
(
EΓ4

n

)3/4
≤ 83/4

(
EΓ4

X,∆,n + EΓ4
Y,Λ,n

)3/4
≤ 83/4

{
C4

Γ,X,∆,4

(
1− δ∆,4

1− δX,2

)4n

+ C4
Γ,Y,Λ,4

(
1− δΛ,4

1− δY,2

)4n
}3/4

≤ C4

(
ϕ
3n/2
X,∆,4 + ϕ

3n/2
Y,Λ,4

)
.

Setting γβ = max
{
ϕX,∆,2, ϕY,Λ,2, ϕ

3/2
X,∆,4, ϕ

3/2
Y,Λ,4, ψX,Y,Λ, ϕY,X,∆

}
∈ (0, 1)

and Cβ = 2C0 + 4C1 + 2C2 + 2C3 + 2C4 , we obtain the claim for βn .
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