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Abstract: Self-orthogonal codes have been of interest due to there rich algebraic

structures and wide applications. Euclidean self-orthogonal codes have been quite

well studied in literature. Here, Hermitian self-orthogonal codes have been inves-

tigated. Constructions of such codes have been given based on the well-known

matrix-product construction for linear codes. Criterion for the underlying matrix

and the input codes required in such constructions have been determined. In many

cases, the Hermitian self-orthogonality of the input codes and the assumption that

the underlying matrix is unitary can be relaxed. Some special matrices used in

the constructions and illustrative examples of good Hermitian self-orthogonal codes

have been provided as well.
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1 Introduction

Self-orthogonal codes constitute an important class of linear codes due to their rich

algebraic structures and wide applications (see [8], [9], [15], [16], and references
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therein). In [2], a nice construction that can produce linear codes with explicit and

good parameters has been introduced, namely, a matrix-product construction. The

said construction can be viewed as a generalization of the well-known (u|u + v)-

construction and (u+ v + w|2u+ v|u)-construction (see [2]). In [2], properties of

matrix-product codes have been studied as well as a lower bound for the minimum

distance of the output codes. In some cases, the lower bound given in [2] has been

shown to be sharped in [6].

In [5], the matrix-product construction has been applied in constructing Eu-

clidean self-orthogonal codes in the case where the underlying matrix is a square

orthogonal matrix. In the same fashion, this idea has been extended to construct

Hermitian self-orthogonal codes in [13] and [16]. However, in both cases, the input

codes are required to be self-orthogonal and the underlying matrix must be either

orthogonal or unitary. For the Euclidean case, the Euclidean self-orthogonality

of the input codes and the assumption that the matrix is orthogonal have been

relaxed in [14].

In this paper, we extend the concept in [14] to cover the Hermitian case. The

Hermitian self-orthogonality of the input codes and the assumption that the un-

derlying is unitary can be relaxed in many cases. Matrices used in the construc-

tions are studied together with examples of some good Hermitian self-orthogonal

matrix-product codes.

The paper is organized as follows. Some basic properties of matrices, linear

codes, self-orthogonal codes, and matrix-product codes are recalled in Section 2.

Two matrix-product constructions for Hermitian self-orthogonal codes are dis-

cussed in Section 3. In Section 4, the study of special matrices over finite fields

is given. Illustrative examples of good matrix-product Hermitian self-orthogonal

codes are provided in Section 5.

2 Preliminaries

Let q be a prime power and let Fq denote the finite field of order q . Some

properties of matrices and codes over Fq used in this paper are recalled in the

following subsections.
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2.1 Matrices

For positive integers s ≤ l , denote by Ms,l(Fq) the set of s× l matrices whose en-

tries are from Fq . A matrix A ∈ Ms,l(Fq) is said to be full-row-rank if the rows of

A are linearly independent. Denote by diag(λ1, λ2, . . . , λs) the s×s diagonal ma-

trix whose diagonal entries are λ1, λ2, . . . , λs . Similarly, let adiag(λ1, λ2, . . . , λs)

denote the s×s anti-diagonal matrix whose anti-diagonal entries are λ1, λ2, . . . , λs .

Denote by Is and Js the matrices diag(1, 1, . . . , 1) and adiag(1, 1, . . . , 1), respec-

tively.

Assume that q = r2 is square. For a matrix A = [aij ] ∈ Ms,l(Fq), let

A† := [aji] ∈ Ms,l(Fq), where a := ar for all a ∈ Fq . In this paper, a ma-

trix A ∈ Ms,l(Fq) with the property that AA† is diagonal or anti-diagonal is

required in the constructions of Hermitian self-orthogonal codes. To the best of

our knowledge, there are no proper names for such matrices. For convenience, the

following definitions are given. A matrix A ∈ Ms,l(Fq) is said to be weakly semi-

unitary if AA† is diagonal and it is said to be weakly anti-semi-unitary if AA†

is anti-diagonal. In the case where A is square, such matrices are called weakly

quasi-unitary and weakly anti-quasi-unitary, respectively. A matrix A ∈ Ms,s(Fq)

is called a unitary matrix if AA† = Is and it is called a quasi-unitary matrix if

AA† = λIs for some non-zero λ ∈ Fq .

2.2 Linear Codes

For each positive integer n , denote by Fn
q the Fq -vector space of all vectors of

length n over Fq . A set C ⊆ Fn
q is called a linear code of length n over Fq if

it is a subspace of the vector space Fn
q . A linear code C of length n over Fq is

said to have parameters [n, k, d]q if the Fq -dimension of C is k and the minimum

Hamming weight d(C) of C is

d := min{wt(u) | u ∈ C \ {0}},

where wt(u) is the number of nonzero entries in u . A k×n matrix G over Fq is

called a generator matrix for an [n, k, d]q code C if the rows of G form a basis of

C .

In addition, assume that q = r2 is a square. For v = (v1, v2, . . . , vn) ∈ Fn
q , let

v := (v1, v2, . . . , vn), where a := ar for all a ∈ Fq . For u = (u1, u2, . . . , un) and
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v = (v1, v2, . . . , vn) in Fn
q , the Hermitian inner product of u and v is defined by

⟨u,v⟩H =

n∑
i=1

uivi.

The Hermitian dual of a linear code C ⊆ Fn
q is defined to be the set

C⊥H = {v ∈ Fn
q | ⟨u,v⟩H = 0 for all v ∈ C}.

A linear code C is said to be Hermitian self-orthogonal (resp., self-dual) if C ⊆
C⊥H (resp., C = C⊥H ).

For linear codes C1 and C2 of the same length over Fq , it is well known that

if Ci is generated by Gi for i ∈ {1, 2} , then G1G
†
2 = [0] if and only if C1 ⊆ C⊥H

2 .

Especially, G1G
†
1 = [0] if and only if C1 is Hermitian self-orthogonal.

2.3 Matrix-Product Codes

A matrix-product construction for linear codes has been introduced in [2] and

extensively studied in [3] and [6]. The major results are summarized as follows.

For each integers 1 ≤ s ≤ l , let Ci be a linear [m, ki, di]q code over Fq with

generator matrix Gi and let A = [aij ] ∈ Ms,l(Fq). The matrix-product code

[C1, C2, · · · , Cs] · A is defined to be the linear code of length ml over Fq with

generator matrix

G =


a11G1 a12G1 · · · a1lG1

a21G2 a22G2 · · · a2lG2

...
...

. . .
...

as1Gs as2Gs · · · aslGs

 .

The matrix-product code [C1, C2, · · · , Cs]·A is simply denoted by CA if C1, C2, . . . , Cs

are clear in the context.

For each A ∈ Ms,l(Fq) and for each 1 ≤ i ≤ s , denote by δi(A) the minimum

weight of the linear code of length l over Fq generated by the first i rows of A .

Some properties of matrix-product codes are given in the following theorem.

Theorem 2.1. Assume the notations above. Then the following statements hold.

1. CA is a linear code of length ml over Fq .

2. dim(CA) ≤
s∑

i=1

ki .
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3. If A is full-row-rank, then dim(CA) =
s∑

i=1

ki .

4. dH(CA) ≥ min
1≤i≤s

{diδi(A)} .

5. If C1 ⊇ C2 ⊇ · · · ⊇ Cs , then d(CA) = min
1≤i≤s

{diδi(A)}.

From now on, we assume that q = r2 is a square and focus on the dual of

a matrix product code with respect to the Hermitian inner product. If A is an

invertible square matrix, the Hermitian dual of a matrix-product codes is again

matrix-product and determined as follows.

Theorem 2.2. Assume the notation above and s = ℓ . If A is a nonsingular s×s

matrix, then

([C1, C2, · · · , Cs] ·A)⊥H = [C⊥H
1 , C⊥H

2 , · · · , C⊥H
s ] · (A−1)†.

From Theorem 2.2, a matrix-product construction has been applied for Hermi-

tian self-orthogonal codes in [13] and [16], where A is a s× s unitary matrix and

the input codes Ci ’ are Hermitian self-orthogonal.

In general the Hermitian dual of a matrix-product code does not need to

be matrix-product. In this paper, we focus on this general set up for Hermi-

tian self-orthogonal matrix-product codes. The restriction on the Hermitian self-

orthogonality of the input codes and the condition that A is unitary can be relaxed

in many cases. The detailed constructions are given in the next section.

3 Constructions

In this section, we focus on two types of matrix-product constructions for Hermi-

tian self-orthogonal linear codes. Sufficient conditions on the matrix and the input

codes for matrix-product codes to be Hermitian self-orthogonal are given.

In the following theorem, a matrix-product construction for Hermitian self-

orthogonal codes whose input codes are Hermitian self-orthogonal is discussed.

The results are a bit more general than the ones in [5] since the underlying matrix

does not need to be unitary. The construction is given as follows.

Theorem 3.1. Let s ≤ l be positive integers. Let C1, C2, . . . , Cs be linear codes of

the same length over Fq and let A ∈ Ms×l(Fq) . If AA† is diagonal and Ci ⊆ C⊥H
i

for all 1 ≤ i ≤ s , then CA ⊆ C⊥H

A .
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Proof. Assume that AA† = diag(λ1, λ2, . . . , λs) and Ci ⊆ C⊥H
i for all 1 ≤ i ≤ s .

For each 1 ≤ i ≤ s , let Gi be a generator matrix for the code Ci . Assume that

A =


a11 a12 · · · a1l

a21 a22 · · · a2l
...

...
. . .

...

as1 as2 · · · asl

 . Then the matrix-product code CA is generated by

G =


a11G1 a12G1 · · · a1lG1

a21G2 a22G2 · · · a2lG2

...
...

. . .
...

as1Gs as2Gs · · · aslGs

 .

It follows that

GG† =


λ1(G1G

†
1) 0(G1G

†
2) · · · 0(G1G

†
s)

0(G2G
†
1) λ2(G2G

†
2) · · · 0(G2G

†
s)

...
...

. . .
...

0(GsG
†
1) 0(GsG

†
2) · · · λs(GsG

†
s)

 .

Since Ci ⊆ C⊥H
i for all 1 ≤ i ≤ s , we have GiG

†
i = [0] for all 1 ≤ i ≤ s . It

follows that GG† = [0] . Hence, CA ⊆ C⊥H

A as desired.

If A is a square quasi-unitary, then the following corollary can be deduced.

Corollary 3.2. If A ∈ Ms,s(Fq) is such that AA† = λIs for some non-zero λ in

Fq and Ci ⊆ C⊥H
i for all 1 ≤ i ≤ s , then CA ⊆ C⊥H

A .

Example 3.3. Let β be a primitive element of F4 and let A =

1 1 1

1 β β2

1 β2 β

 .

Then A is invertible, AA† = diag(1, 1, 1), δ1(A) = 3, δ2(A) = 2 and δ3(A) = 1 .

Let C1, C2 and C3 be the linear codes of length 6 over F4 generated by

G1 =

1 1 1 1 1 1

1 β β2 β3 β4 β5

1 β2 β4 β6 β8 β10

 , G2 =

[
1 1 1 1 1 1

1 β β2 β3 β4 β5

]
,

and

G3 =
[
1 1 1 1 1 1

]
,
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respectively. Then C1, C2 and C3 are Hermitian self-orthogonal with parameters

[6, 3, 2]4, [6, 2, 4]4 and [6, 1, 6]4 respectively. Since C3 ⊆ C2 ⊆ C1 , by Theorems

2.1 and 3.1, CA is a Hermitian self-orthogonal code with parameters [18, 6, 6]4 .

In the following theorem, a matrix-product construction for Hermitian self-

orthogonal codes is studied in the case where the Hermitian self-orthogonality of

the input codes are relaxed.

Theorem 3.4. Let s ≤ l be positive integers. Let C1, C2, . . . , Cs be linear codes

of the same length over Fq and let A ∈ Ms×l(Fq) . If AA† is anti-diagonal and

Ci ⊆ C⊥H
s−i+1 for all 1 ≤ i ≤ s , then CA ⊆ C⊥H

A .

Proof. Assume that AA† = adiag(λ1, λ2, . . . , λs) and Ci ⊆ C⊥H
s−i+1 for all 1 ≤

i ≤ s . For each 1 ≤ i ≤ s , let Gi be a generator matrix of the code Ci . Write

A =


a11 a12 · · · a1l

a21 a22 · · · a2l
...

...
. . .

...

as1 as2 · · · asl

 . Then the matrix-product code CA is generated by

G =


a11G1 a12G1 · · · a1lG1

a21G2 a22G2 · · · a2lG2

...
...

. . .
...

as1Gs as2Gs · · · aslGs

 .

It follows that

GG† =


0(G1G

†
1) · · · 0(G1G

†
s−1) λ1(G1G

†
s)

0(G2G
†
1) · · · λ2(G2G

†
s−1) 0(G2G

†
s)

... . .
. ...

...

λs(GsG
†
1) · · · 0(GsG

†
s−1) 0(GsG

†
s)

 .

Since Ci ⊆ C⊥H
s−i+1 for all 1 ≤ i ≤ s , we have GiG

†
s−i+1 = [0] for all 1 ≤ i ≤ s .

Hence, GG† = [0] . Therefore, CA ⊆ C⊥H

A as desired.

The following results can be deduced directly from Theorem 3.4. The proofs

are omitted.

Corollary 3.5. If A ∈ Ms,s(Fq) is such that AA† = λJs for some non-zero λ in

Fq and Ci ⊆ C⊥H
s−i+1 for all 1 ≤ i ≤ s , then CA ⊆ C⊥H

A .
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Example 3.6. Let β be a primitive element of F4 . Then A =

[
1 β

β 1

]
is invert-

ible, AA† = adiag(1, 1), δ1(A) = 2, and δ2(A) = 1. Let C1 and C2 be the linear

codes of length 4 over F4 generated by

G1 =

[
1 1 1 1

0 0 β β

]
and G2 =

[
1 1 1 1

]
,

respectively. Then C1 and C2 have parameters [4, 2, 2]4 and [4, 1, 4]4 , respectively.

Since C2 ⊆ C1 ⊆ C⊥H
2 , by Theorem 2.1 and Corollary 3.5, CA is a Hermitian

self-orthogonal code with parameters [8, 3, 4]4 .

By choosing Ci = C⊥H
s−i+1 in Corollary 3.5, we have the following result.

Corollary 3.7. If A ∈ Ms,s(Fq) is such that AA† = λJs for some non-zero λ in

Fq and Ci = C⊥H
s−i+1 for all 1 ≤ i ≤ s , then CA is Hermitian self-dual.

4 Special Matrices and Applications

As discussed in Section 3, a full-row-rank matrix A ∈ Ms,l(Fq) with the prop-

erty that AA† is diagonal or anti-diagonal is required in the matrix-product con-

struction for Hermitian self-orthogonal codes. From Theorem 2.1, the minimum

Hamming weight of the output code depends on the sequence {δi(A)}i=1,2,...,s . In

most cases, the output code has large minimum Hamming weight if the sequence

{δi(A)}i=1,2,...,s is decreasing.

In this section, a certification for the existence of weakly quasi-unitary and

weakly anti-quasi-unitary matrices A over some finite fields with the property that

{δi(A)}i=1,2,...,s is a decreasing sequence. Precise applications of such matrices in

constructing Hermitian self-orthogonal codes are explained.

4.1 Weakly Quasi-Unitary Matrices

In this subsection, some weakly quasi-unitary matrices with the property that the

sequence {δi(A)}i=1,2,...,s is decreasing are given as well as their applications in a

matrix-product construction of Hermitian self-orthogonal codes.

First, we consider 2×2 (weakly) quasi-unitary matrices over an arbitrary finite

field of square order greater than 4.

Lemma 4.1. Let r be a prime power and q = r2 . Let α be a primitive element

of Fq . Then one of the following statements holds.
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1. If q is odd, then A =

[
1 1

1 −1

]
∈ M2,2(Fq) is invertible and (weakly)

quasi-unitary with δ1(A) = 2 and δ2(A) = 1 .

2. If q ≥ 16 is even, then A =

[
1 α

αr 1

]
∈ M2,2(Fq) is invertible and (weakly)

quasi-unitary with δ1(A) = 2 and δ2(A) = 1 .

Proof. To prove (1), assume that q is odd. Let A =

[
1 1

1 −1

]
. Clearly, A is

invertible, δ1(A) = 2 and δ2(A) = 1. Since

AAT =

[
1 1

1 −1

][
1 1

1 −1

]
=

[
2 0

0 2

]
= diag(2, 2),

A is (weakly) quasi-unitary.

To prove (2), assume that q > 2 is even. Let A =

[
1 α

αr 1

]
. Clearly, A is

invertible, δ1(A) = 2 and δ2(A) = 1. Since

AA† =

[
1 α

αr 1

][
1 αr2

αr 1

]
= diag(1 + αr+1, 1 + αr+1),

A is (weakly) quasi-unitary.

Remark 4.2. We note that for every 2 × 2 matrix A =

[
a b

c d

]
over F4 , if

δ1(A) = 2, then a and b are non-zeros. Hence, the top-left conner of AA† is

a3 + b3 = 1 + 1 = 0. Hence, A cannot be weakly quasi-unitary. Therefore, there

are no weakly quasi-unitary matrices in M2,2(F4) with δ1(A) = 2 and δ2(A) = 1.

Quasi-unitary matrices in Lemma 4.1 can be applied to construct Hermitian

self-orthogonal codes as follows.

Corollary 4.3. Let r ≥ 3 be a prime power and let q = r2 . If there exist

Hermitian self-orthogonal [m, k1, d1]q and [m, k2, d2]q codes, then a Hermitian

self-orthogonal [2m, k1 + k2, d]q code can be constructed with d ≥ min{2d1, d2} .

Proof. Assume that there exist Hermitian self-orthogonal codes C1 and C2 with

parameters [m, k1, d1]q and [m, k2, d2]q . By Lemma 4.1, there exist a 2×2 invert-

ible and (weakly) quasi-unitary matrix A over Fq with δ1(A) = 2 and δ2(A) = 1.

By Theorems 2.1 and 3.1, the matrix-product code CA is Hermitian self-orthogonal

with parameters [2m, k1 + k2, d]q with d ≥ min{2d1, d2} .
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Example 4.4. Let β be a primitive element of F16 . By Lemma 4.1, we have that

A =

[
1 β

β2 1

]
is invertible, AA† = diag(1+β5, 1+β5), δ1(A) = 2 and δ2(A) = 1.

Let C1 and C2 be the linear codes of length 4 over F16 generated by

G1 =

[
1 1 1 1

1 0 1 0

]
and G2 =

[
1 1 1 1

]
,

respectively. Then C1 and C2 are Hermitian self-orthogonal with parameters

[4, 2, 2]16 and [4, 2, 1]16 respectively. Since C2 ⊆ C1 , by Theorem 2.1 and Corollary

4.3, CA is a Hermitian self-orthogonal code with parameters [8, 3, 4]16 .

Next, we focus on M × M (weakly) quasi-unitary matrices over Fq , where

M ≥ 2 is an integer.

Lemma 4.5. Let r be a prime power and q = r2 . Let M be a positive integer.

If M |(r + 1) , then there exists an M ×M (weakly) quasi-unitary matrix over Fq

with δi(A) = M − i+ 1 for all 1 ≤ i ≤ M .

Proof. Assume that M |(r + 1). Then Fq contains a primitive M -th root unity.

Let α be a fixed primitive M -th root unity in Fq . Since r ≡ −1modM , we have

α = αr = α−1.

Define

A =


(α0)0 (α1)0 · · · (αM−1)0

(α0)1 (α1)1 · · · (αM−1)1

...
...

. . .
...

(α0)M−1 (α1)M−1 · · · (αM−1)M−1

 .

Let B = AA† . Then, for all 1 ≤ i, j ≤ M , we have

bij =

M−1∑
k=0

(αk)i−1(αk)j−1 =

M−1∑
k=0

(αk)i−1(αk)
j−1

=

M−1∑
k=0

(αk)i−1(α−k)j−1 =

M−1∑
k=0

(αi−j)k

=

{
M ≠ 0 if i = j,

0 if otherwise.
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Hence, AA† = diag(M,M, . . . ,M) = MIM . Therefore, A is (weakly) quasi-

unitary. From [2, Theorem 3.2], it follows that δi(A) = M − i+ 1 for all 1 ≤ i ≤
M .

Corollary 4.6. Let r be a prime power and q = r2 . Let M be a positive in-

teger such that M |(r + 1) . If there exist Hermitian self-orthogonal [m, k1, d1]q ,

[m, k2, d2]q, . . . , [m, kM , dM ]q codes, then a Hermitian self-orthogonal [Mm,k1 +

k2+ · · ·+kM , d]q code can be constructed with d ≥ min{Md1, (M−1)d2, . . . , dM} .

Proof. Assume that there are M Hermitian self-orthogonal codes with parameters

[m, k1, d1]q , [m, k2, d2]q, . . . , [m, kM , dM ]q . By Lemma 4.5, there exist an M ×M

invertible and quasi-unitary matrix A over Fq with δ1(A) = M, δ2(A) = (M −
1), . . . , δM (A) = 1. By Theorems 2.1 and 3.1, the matrix-product code CA is

Hermitian self-orthogonal with parameters [Mm,k1 + k2 + · · ·+ kM , d]q with d ≥
min{Md1, (M − 1)d2, . . . , dM} .

Example 4.7. Let α be a primitive element of F4 . Then α is primitive 3th

root unity in F4 . By Lemma 4.5, it follows that A =

1 1 1

1 α α2

1 α2 α4

 is invertible,

AA† = diag(1, 1, 1), δ1(A) = 3, δ2(A) = 2 and δ1(A) = 1. Let C1 ,C2 and C3 be

the linear codes of length 6 over F4 generated by

G1 =

1 1 1 1 1 1

0 0 1 1 α α

0 0 0 0 1 1

 , G2 =

[
1 1 1 1 1 1

0 0 1 1 α α

]

and

G3 =
[
1 1 1 1 1 1

]
,

respectively. Then C3 ⊆ C2 ⊆ C1 are Hermitian self-orthogonal with parameters

[6, 3, 2]4, [6, 2, 4]4 and [6, 1, 6]4 , respectively. By Theorems 2.1 and 4.6 CA is a

Hermitian self-orthogonal code with parameters [18, 6, 6]4 .

4.2 Weakly Anti-Quasi-Unitary Matrices

In this subsection, we focus on the existence of weakly anti-quasi-unitary matrices

with the property that the sequence {δi(A)}i=1,2,...,s is decreasing. Their applica-

tions in constructing Hermitian self-orthogonal codes are discussed as well.
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In a finite field Fq with q = r2 , the norm function N : Fq → Fr is defined

by N(α) = αr+1 for all α in Fq . In [11, p. 57], it has been shown that N is

surjective. Hence, the following lemma and corollaries can be deduced.

Lemma 4.8. Let r be a prime power and q = r2 . Let α be a primitive element

of Fq . Then the following statements hold.

1. If q is odd, then there exists b ∈ Fq such that br+1 = −1 and A =

[
1 b

b 1

]
is invertible and (weakly) anti-quasi-unitary with δ1(A) = 2 and δ2(A) = 1 .

2. If q ≥ 4 is even, then A =

[
α αr

1 1

]
is invertible and (weakly) anti-quasi-

unitary with δ1(A) = 2 and δ2(A) = 1 .

Proof. To prove (1), assume that q is odd. Since the norm is surjective, there

exists b ∈ Fq such that N(b) = br+1 = −1. Let A =

[
1 b

b 1

]
. Clearly, A is

invertible, δ1(A) = 2 and δ2(A) = 1. Since

AA† =

[
1 b

b 1

][
b br

br 1

]
= adiag(b+ br, b+ br),

A is (weakly) anti-quasi-unitary.

To prove (2), assume that q ≥ 4 is even. Let A =

[
α αr

1 1

]
. Clearly, A is

invertible, δ1(A) = 2 and δ2(A) = 1. Since

AA† =

[
α αr

1 1

][
αr 1

αr2 1

]
= adiag(αr + α, αr + α),

A is (weakly) anti-quasi-unitary.

Corollary 4.9. Let r be a prime power and q = r2 . If there exist codes C1

and C2 with parameters [m, k1, d1]q and [m, k2, d2]q such that C1 ⊆ C⊥H
2 , then

a Hermitian self-orthogonal [2m, k1 + k2, d]q code can be constructed with d ≥
min{2d1, d2} .

Proof. Assume that there exist linear codes C1 and C2 with parameters [m, k1, d1]q

and [m, k2, d2]q such that C1 ⊆ C⊥H
2 . By Lemma 4.8, there exist a 2×2 invertible

and anti-quasi-orthogonal matrix A over Fq with δ1(A) = 2 and δ2(A) = 1. By

Theorems 2.1 and 3.4, the matrix-product code CA is Hermitian self-orthogonal

with parameters [2m, k1 + k2, d]q with d ≥ min{2d1, d2} .
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Example 4.10. Let β be a primitive element of F4 . By Lemma 4.8, we have

that A =

[
β β2

1 1

]
∈ M2,2(F4) is invertible, AA† = adiag(1, 1), δ1(A) = 2, and

δ2(A) = 1. Let C1 and C2 be the linear codes of length 6 over F4 generated by

G1 =

[
1 1 1 1 1 1

β β2 β3 β3 β4 β5

]
and G2 =

[
1 1 1 1 1 1

]
,

respectively. Then C1 and C2 have parameters [6, 2, 4]4 and [6, 1, 6]4 , respec-

tively. Since C2 ⊆ C1 ⊆ C⊥H
2 , by Theorems 2.1 and 3.4, CA is a Hermitian

self-orthogonal code with parameters [12, 3, 6]4 .

5 Examples

In this section, examples of Hermitian self-orthogonal matrix-product codes with

good parameters are given.

Using Corollary 4.3 and Hermitian self-orthogonal codes form various sources,

Hermitian self-orthogonal matrix product codes can be constructed. Here, Hermi-

tian self-orthogonal codes given in [8] are applied in Corollary 4.3, and hence, Her-

mitian self-orthogonal matrix-product codes with good parameters are obtained.

In [8, Theorem 2.6], it has been shown that there exists a Hermitian self-

orthogonal [q+1, k, q−k+2]q code for all 2 ≤ k ≤ r
2 , where q = r2 . By setting C1

and C2 be Hermitian self-orthogonal codes with parameter [q+1,
⌊
r
2

⌋
, q−

⌊
r
2

⌋
+2]q

and [q + 1,
⌊
r
2

⌋
− 1, q −

⌊
r
2

⌋
+ 3]q in Corollary 4.3, we have the following result.

Corollary 5.1. Let r be a prime power and q = r2 . Then a Hermitian self-

orthogonal [2(q + 1), 2
⌊
r
2

⌋
− 1, d]q code can be constructed with d ≥ q −

⌊
r
2

⌋
+ 3 .

From Corollary 5.1, some examples of Hermitian self-orthogonal matrix-product

codes over Fq are given in Table 5.

Next, we focus on examples of Hermitian self-orthogonal matrix-product codes

derived from Corollary 4.9. For this case, good input codes can be chosen from

the family of Generalized Reed-Solomon (GRS) codes recalled as follows.

For each positive integer n ≤ q , let γ = (γ1, γ2, . . . , γn) and w = (w1, w2, . . . , wn)

where γi is a non-zero element and w1, w2, . . . wn are distinct elements in Fq . For

each 0 ≤ k ≤ n , denote by Fq[X]k the set of all polynomials of degree less than k

over Fq . For convenience, the degree of the zero polynomial is defined to be −1.
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q
Parameters

C1 C2 CA

49 [50, 3, 48]49 [50, 2, 49]49 [100, 5, d]49 with d ≥ 49

64 [65, 4, 62]64 [65, 3, 63]64 [130, 7, d]64 with d ≥ 63

81 [82, 4, 79]81 [82, 3, 80]81 [164, 7, d]81 with d ≥ 80

121 [122, 5, 118]121 [122, 4, 119]121 [244, 9, d]121 with d ≥ 119

Table 1: Hermitian Self-Orthogonal Matrix-Product Codes over Fq

A GRS code of length n ≤ q and dimension k ≤ n is defined to be

GRSn,k(γ,w) := {(γ1f(w1), γ2f(w2), . . . , γnf(vn)) | f(X) ∈ Fq[X]k} . (1)

It is well known (see [8]) that the GRSn,k(w, γ) is a linear code with parameters

[n, k, n − k + 1]q and the Hermitian dual (GRSn,k(w, γ))
⊥H of GRSn,k(w, γ) is

also a GRS code with parameters are [n, n−k, k+1]q . Moreover, GRSn,k(w, γ) (
GRSn,k+1(w, γ). By letting C1 = GRSn,k(w, γ) and C2 = (GRSn,k+i(w, γ))

⊥H

(with 0 ≤ i ≤ n− k ) in Corollary 4.9, we have the following corollary.

Corollary 5.2. Let r be a prime power and let q = r2 . Let 0 ≤ k ≤ n ≤ q be

integers. Then there exists a Hermitian self-orthogonal matrix-product code with

parameters [2n, n−i, d]q for all 0 ≤ i ≤ n−k , where d ≥ min{2(n−k+1), k+i+1} .

Some examples of good Hermitian self-orthogonal codes over small finite fields

derived from Corollary 5.2 of length 2q are given in Table 5.

For the special case where i = 0, or equivalently, C1 = GRSn,k(w, γ) and

C2 = C⊥H
1 = (GRSn,k(w, γ))

⊥H , a Hermitian self-dual matrix-product code can

be constructed via Corollaries 3.7 and 5.2.

Corollary 5.3. Let r be a prime power and let q = r2 . Let 0 ≤ l ≤ n ≤ q be

integers. Then there exists a Hermitian self-orthogonal matrix-product code with

parameters [2n, n, d]q with d ≥ min{2(n− k + 1), k + 1} .

6 Conclusion and Remarks

The well-known matrix-product construction for linear codes has been applied to

construct Hermitian self-orthogonal codes. Criterion for the underlying matrices
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q n k i Parameters

9 9 5 4 [18, 5, d]9 with d ≥ 10

6 1 [18, 8, d]9 with d ≥ 8

16 16 9 6 [32, 10, d]16 with d ≥ 16

10 3 [32, 13, d]16 with d ≥ 14

11 0 [32, 16, d]16 with d ≥ 12

25 25 13 12 [50, 13, d]25 with d ≥ 26

14 9 [50, 16, d]25 with d ≥ 24

15 6 [50, 19, d]25 with d ≥ 22

16 3 [50, 22, d]25 with d ≥ 20

17 0 [50, 25, d]25 with d ≥ 18

49 49 25 24 [98, 25, d]49 with d ≥ 50

26 21 [98, 28, d]49 with d ≥ 48

27 18 [98, 31, d]49 with d ≥ 46

28 15 [98, 34, d]49 with d ≥ 44

29 12 [98, 37, d]49 with d ≥ 42

30 9 [98, 40, d]49 with d ≥ 40

31 6 [98, 43, d]49 with d ≥ 38

32 3 [98, 46, d]49 with d ≥ 36

33 0 [98, 49, d]49 with d ≥ 34

Table 2: Hermitian Self-Orthogonal Matrix-Product Codes over Fq

and the input codes required in the constructions have been determined. In many

cases, the Hermitian self-orthogonality of the input codes and the assumption that

the underlying matrix is unitary can be relaxed. Illustrative examples of good

Hermitian self-orthogonal codes have been given as well.

Some special matrices used in the constructions such as weakly quasi-unitary

and weakly anti-quasi-unitary matrices have been given in some cases. In general,

the study of a matrix A ∈ Ms,l(Fq) such that AA† is diagonal or anti-diagonal is

also an interesting problem.

For applications, it is well know that Hermitian self-orthogonal codes can be

applied in constructing symmetric quantum codes (see, for example, [8], [9], [16],

and [13]). Hence, the codes obtained in this paper can be applied in the such

constructions as well.
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