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Abstract: Self-orthogonal codes have been of interest due to there rich algebraic
structures and wide applications. Euclidean self-orthogonal codes have been quite
well studied in literature. Here, Hermitian self-orthogonal codes have been inves-
tigated. Constructions of such codes have been given based on the well-known
matrix-product construction for linear codes. Criterion for the underlying matrix
and the input codes required in such constructions have been determined. In many
cases, the Hermitian self-orthogonality of the input codes and the assumption that
the underlying matrix is unitary can be relaxed. Some special matrices used in
the constructions and illustrative examples of good Hermitian self-orthogonal codes

have been provided as well.
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1 Introduction

Self-orthogonal codes constitute an important class of linear codes due to their rich
algebraic structures and wide applications (see [8], [9], [15], [16], and references
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therein). In [2], a nice construction that can produce linear codes with explicit and
good parameters has been introduced, namely, a matrix-product construction. The
said construction can be viewed as a generalization of the well-known (u|u + v)-
construction and (u + v + w|2u + v|u)-construction (see [2]). In [2], properties of
matrix-product codes have been studied as well as a lower bound for the minimum
distance of the output codes. In some cases, the lower bound given in [2] has been

shown to be sharped in [6].

In [5], the matrix-product construction has been applied in constructing Eu-
clidean self-orthogonal codes in the case where the underlying matrix is a square
orthogonal matrix. In the same fashion, this idea has been extended to construct
Hermitian self-orthogonal codes in [13] and [16]. However, in both cases, the input
codes are required to be self-orthogonal and the underlying matrix must be either
orthogonal or unitary. For the Euclidean case, the Euclidean self-orthogonality
of the input codes and the assumption that the matrix is orthogonal have been
relaxed in [14].

In this paper, we extend the concept in [14] to cover the Hermitian case. The
Hermitian self-orthogonality of the input codes and the assumption that the un-
derlying is unitary can be relaxed in many cases. Matrices used in the construc-
tions are studied together with examples of some good Hermitian self-orthogonal

matrix-product codes.

The paper is organized as follows. Some basic properties of matrices, linear
codes, self-orthogonal codes, and matrix-product codes are recalled in Section 2.
Two matrix-product constructions for Hermitian self-orthogonal codes are dis-
cussed in Section 3. In Section 4, the study of special matrices over finite fields
is given. Illustrative examples of good matrix-product Hermitian self-orthogonal

codes are provided in Section 5.

2 Preliminaries

Let g be a prime power and let F, denote the finite field of order ¢. Some
properties of matrices and codes over [F, used in this paper are recalled in the

following subsections.
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2.1 Matrices

For positive integers s <[, denote by M ;(F,) the set of s x ! matrices whose en-
tries are from F,. A matrix A € M ;(F,) is said to be full-row-rank if the rows of
A are linearly independent. Denote by diag(A1, A2, ..., As) the s x s diagonal ma-
triz whose diagonal entries are A1, Ao, ..., As. Similarly, let adiag(A1, Aa,..., As)
denote the sxs anti-diagonal matriz whose anti-diagonal entries are Ay, Ag, ..., As.
Denote by I; and J; the matrices diag(1,1,...,1) and adiag(1,1,...,1), respec-
tively.

Assume that ¢ = r? is square. For a matrix A = [a;;] € M, (F,), let
AT := [aj;] € Ms;(F,), where @ := a” for all a € F,. In this paper, a ma-
trix A € M,,;(F,) with the property that AAT is diagonal or anti-diagonal is
required in the constructions of Hermitian self-orthogonal codes. To the best of
our knowledge, there are no proper names for such matrices. For convenience, the
following definitions are given. A matrix A € M, ;(F,) is said to be weakly semi-
unitary if AAY is diagonal and it is said to be weakly anti-semi-unitary if AA%
is anti-diagonal. In the case where A is square, such matrices are called weakly
quasi-unitary and weakly anti-quasi-unitary, respectively. A matrix A € M, ((F,)
is called a wunitary matriz if AAT = I, and it is called a quasi-unitary matriz if
AAY = M\, for some non-zero A € F,.

2.2 Linear Codes

For each positive integer n, denote by Fy the F,-vector space of all vectors of
length n over Fy. A set € C Fy is called a linear code of length n over F, if
it is a subspace of the vector space Fy. A linear code C of length n over F, is
said to have parameters [n, k, d], if the F -dimension of C' is k and the minimum
Hamming weight d(C) of C is

d := min{wt(u) | u € C'\ {0}},

where wt(u) is the number of nonzero entries in w. A k x n matrix G over Fy is

called a generator matriz for an [n,k,d]; code C if the rows of G form a basis of

C.

In addition, assume that ¢ = 72 is a square. For v = (v, vs,...,v,) € Fy , let

v = (U1,72,...,0p), where @ :=a” for all a € F,. For w = (u1,us,...,u,) and
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v = (v1,02,...,0,) in Fy , the Hermitian inner product of w and v is defined by

<’U,, 'U>H = Z U V;.
i=1
The Hermitian dual of a linear code C' C Fy is defined to be the set
CcHr = {ve Fy | (u,v)g =0 for all v € C}.

A linear code C' is said to be Hermitian self-orthogonal (resp., self-dual) if C' C
C*u (resp., C = C+H).

For linear codes C; and C> of the same length over Iy, it is well known that
if C; is generated by G; for i € {1,2}, then Gng = [0] if and only if C; C C’j”.
Especially, GlGI = [0] if and only if C; is Hermitian self-orthogonal.

2.3 Matrix-Product Codes

A matrix-product construction for linear codes has been introduced in [2] and
extensively studied in [3] and [6]. The major results are summarized as follows.
For each integers 1 < s < [, let C; be a linear [m,k;,d;], code over F, with
generator matrix G; and let A = [a;;] € M, ;(F,). The matriz-product code
[C1,Cq,---,C4] - A is defined to be the linear code of length mi over F, with

generator matrix

a11G1 a12G1 -+ auGh
a201Ga  a2G2 -+ anGa
asle as2Gs e asle

The matrix-product code [C1, Cy, - - - , Cg]-A is simply denoted by Cy4 if Cy,Co, ..., Cs
are clear in the context.

For each A € M, ;(F,) and for each 1 < ¢ < s, denote by 6;(4) the minimum
weight of the linear code of length [ over F, generated by the first ¢ rows of A.

Some properties of matrix-product codes are given in the following theorem.
Theorem 2.1. Assume the notations above. Then the following statements hold.

1. Cy is a linear code of length ml over Fy.

2. dim(Ca) < 3 ki
i=1
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3. If A is full-row-rank, then dim(Cy) = > k; .
i=1

(2

5. If C1 20, D---DC4, then d(Ca) = 121121 {d;0;(A)}.

2 is a square and focus on the dual of

From now on, we assume that ¢ = r
a matrix product code with respect to the Hermitian inner product. If A is an
invertible square matrix, the Hermitian dual of a matrix-product codes is again

matrix-product and determined as follows.

Theorem 2.2. Assume the notation above and s = £. If A is a nonsingular s X s

matrix, then
([017027' o 508] : A)LH = [ClJ_ch;_Hv' o 7CslH] . (Ail)T'

From Theorem 2.2, a matrix-product construction has been applied for Hermi-
tian self-orthogonal codes in [13] and [16], where A is a s X s unitary matrix and
the input codes C;’ are Hermitian self-orthogonal.

In general the Hermitian dual of a matrix-product code does not need to
be matrix-product. In this paper, we focus on this general set up for Hermi-
tian self-orthogonal matrix-product codes. The restriction on the Hermitian self-
orthogonality of the input codes and the condition that A is unitary can be relaxed

in many cases. The detailed constructions are given in the next section.

3 Constructions

In this section, we focus on two types of matrix-product constructions for Hermi-
tian self-orthogonal linear codes. Sufficient conditions on the matrix and the input
codes for matrix-product codes to be Hermitian self-orthogonal are given.

In the following theorem, a matrix-product construction for Hermitian self-
orthogonal codes whose input codes are Hermitian self-orthogonal is discussed.
The results are a bit more general than the ones in [5] since the underlying matrix

does not need to be unitary. The construction is given as follows.

Theorem 3.1. Let s <1 be positive integers. Let Cy,Cs,...,Cy be linear codes of
the same length over Fy and let A € Moy (Fy). If AA' s diagonal and C; C C’iJ‘H
forall 1 <i<s, then Cy QCjH.
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Proof. Assume that AAT = diag(A1, A2, ..., As) and C; C C’fH forall 1 <i<s.
For each 1 < i < s, let G; be a generator matrix for the code C;. Assume that

a1 aiz2 - an
21 az2 - Q2]
A= . .| - Then the matrix-product code C, is generated by
as1  As2 as|
a11G1 a12G1 -+ auGh
a21Ga  a22G2 -+ anGa
asle as2Gs e asle
It follows that
M(GIG]) 0(GiGY) - 0(GhGY)
gt | V00D Xa(GaGl) e 006G
0(GGY)  0(G,Gh) -+ A(G.GY)

Since C; C Cf‘H for all 1 <7 < s, we have GiGlT =[0] forall 1 <i<s. It
follows that GGT = [0]. Hence, Cy C C’jH as desired. O

If A is a square quasi-unitary, then the following corollary can be deduced.

Corollary 3.2. If A € M, (F,) is such that AAT = \I, for some non-zero \ in
F, and C; C C}" for all 1 <i <s, then C4 C Cy".

1 1 1
Example 3.3. Let 3 be a primitive element of F4 and let A= |1 5 2
1 g B

Then A is invertible, AAT = diag(1,1,1), 6;(A) = 3,62(A) =2 and 63(A4) =1 .
Let C1,C5 and C5 be the linear codes of length 6 over F, generated by

11 1 1 1 1
1 g g g gt B

and
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respectively. Then C7,Cy and C3 are Hermitian self-orthogonal with parameters
[6,3,2]4,[6,2,4]4 and [6,1,6]4 respectively. Since C5 C Cy C C7, by Theorems
2.1 and 3.1, C4 is a Hermitian self-orthogonal code with parameters [18,6,6]4.

In the following theorem, a matrix-product construction for Hermitian self-
orthogonal codes is studied in the case where the Hermitian self-orthogonality of

the input codes are relaxed.

Theorem 3.4. Let s <1 be positive integers. Let Cy,Cs,...,Cy be linear codes
of the same length over F, and let A € My (F,). If AAT is anti-diagonal and

CZ-QC’SLjH forall 1 <i<s, then Cy QCjH.

Proof. Assume that AAT = adiag(A;, Aa,...,\s) and C; C Ctu,  forall 1<

s—i+1
i <s. Foreach 1 < i < s, let G; be a generator matrix of the code C;. Write
@11 a2 - Qi
Q21 Q22 -+ A2 . .
A= o .| - Then the matrix-product code C4 is generated by
as1 Ag2 -+ Qg
a11G1 a12G1 -+ auGh
a01Ga  a2G2 -+ anGa
asle as2Gs e asle

It follows that

0(GiG]) -+ 0(GiGI ) M(GGY)
oot _ | 0G0 - a(GaGl)  0(GaG)
A(GSG) - 0(GGT_y)  0(GLGY)

Since C; C Cj‘_’j;H for all 1 < i < s, we have GZG]L_Z-_|r1 =[0] for all 1 <i <s.

S

Hence, GG' = [0]. Therefore, C4 € Cx" as desired. O

The following results can be deduced directly from Theorem 3.4. The proofs

are omitted.

Corollary 3.5. If A € M, 4(F,) is such that AAT = \J; for some non-zero \ in

F, and C; QCSLjH forall 1 <i<s, then Cy QC’jH.



42 Chamchuri J. Math. 9(2017): S. Jitman and T. Mankean

Example 3.6. Let § be a primitive element of Fy. Then A =

Bl . .
1 1s invert-

ible, AA" = adiag(1,1), 6;(A) =2, and d2(A) = 1. Let C; and Cy be the linear
codes of length 4 over F, generated by

1 1 1 1

G = and ng{l 1 1 1}7
00 B g

respectively. Then Cy and Cy have parameters [4,2,2]4 and [4, 1, 4]4, respectively.

Since Cy C (7 C CQLH, by Theorem 2.1 and Corollary 3.5, C'4 is a Hermitian

self-orthogonal code with parameters [8,3,4]4.

By choosing C; = Cj_’i 41 in Corollary 3.5, we have the following result.

Corollary 3.7. If A € M, 4(F,) is such that AAT = \J; for some non-zero \ in

F, and C; = CsJ_—H;-H for all 1 <1i < s, then C4 is Hermitian self-dual.

4 Special Matrices and Applications

As discussed in Section 3, a full-row-rank matrix A € M, ;(F,) with the prop-
erty that AA" is diagonal or anti-diagonal is required in the matrix-product con-
struction for Hermitian self-orthogonal codes. From Theorem 2.1, the minimum
Hamming weight of the output code depends on the sequence {6;(A)}i=1,2,..s. In
most cases, the output code has large minimum Hamming weight if the sequence
{6:(A)}i=1,2.... s is decreasing.

In this section, a certification for the existence of weakly quasi-unitary and
weakly anti-quasi-unitary matrices A over some finite fields with the property that
{6:;(A)}i=1,2,... s is a decreasing sequence. Precise applications of such matrices in

constructing Hermitian self-orthogonal codes are explained.

4.1 Weakly Quasi-Unitary Matrices

In this subsection, some weakly quasi-unitary matrices with the property that the
sequence {0;(A)}i=1,2,. s is decreasing are given as well as their applications in a
matrix-product construction of Hermitian self-orthogonal codes.

First, we consider 2 x 2 (weakly) quasi-unitary matrices over an arbitrary finite

field of square order greater than 4.

Lemma 4.1. Let r be a prime power and g = r>. Let o be a primitive element

of Fq. Then one of the following statements holds.
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1 1
1. If q is odd, then A = L ] € My 2(F,) is invertible and (weakly)

quasi-unitary with 61(A) =2 and 02(A) =1.
1 o
o 1
quasi-unitary with 61(A) =2 and 02(A) =1.

2. If ¢ > 16 is even, then A = € My »(F,) is invertible and (weakly)

Proof. To prove (1), assume that ¢ is odd. Let A = . Clearly, A is

invertible, d1(A) =2 and d2(A) = 1. Since

1 1]t 1 2 0]
1 —1] [1 —1][0 2]dlag(2’2)’

A is (weakly) quasi-unitary.

AAT =

To prove (2), assume that ¢ > 2 is even. Let A =

1
a]. Clearly, A is
a” 1

invertible, d;(A) =2 and d2(A) = 1. Since

1 1 o
AAT = “ “ | =diag(1 + a1 4+ "),
a” 1| |a” 1
A is (weakly) quasi-unitary. O
. a b .
Remark 4.2. We note that for every 2 x 2 matrix A = d] over Fy, if
c

§1(A) = 2, then a and b are non-zeros. Hence, the top-left conner of AAT is
a®+b>=1+1=0. Hence, A cannot be weakly quasi-unitary. Therefore, there
are no weakly quasi-unitary matrices in My 2(F4) with §;(A) =2 and d2(A) = 1.

Quasi-unitary matrices in Lemma 4.1 can be applied to construct Hermitian

self-orthogonal codes as follows.

Corollary 4.3. Let r > 3 be a prime power and let ¢ = r2. If there exist
Hermitian self-orthogonal [m,ki1,d1]y and [m,ks,ds]y codes, then a Hermitian
self-orthogonal [2m, k1 + ko, d]q code can be constructed with d > min{2d,,d>}.

Proof. Assume that there exist Hermitian self-orthogonal codes C7 and Cy with
parameters [m, k1,d1], and [m, k2, ds2],. By Lemma 4.1, there exist a 2 x 2 invert-
ible and (weakly) quasi-unitary matrix A over F, with §;(A) =2 and §2(A) = 1.
By Theorems 2.1 and 3.1, the matrix-product code C4 is Hermitian self-orthogonal
with parameters [2m, k1 + ko, d]y with d > min{2d;,d>}. O
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Example 4.4. Let S be a primitive element of F15. By Lemma 4.1, we have that

1
A= 52 f is invertible, AAT = diag(1+55)1+55>’ 51(A) =2 and §y(A) = 1.
Let C7 and C5 be the linear codes of length 4 over Fi4 generated by

1 1 11

Gy =
10 10

1 and GQ::[1 11 1],

respectively. Then Cp; and Cs are Hermitian self-orthogonal with parameters
[4,2,2]16 and [4,2,1];6 respectively. Since Co C C1, by Theorem 2.1 and Corollary
4.3, C4 is a Hermitian self-orthogonal code with parameters [8,3,4]1¢.

Next, we focus on M x M (weakly) quasi-unitary matrices over F,, where
M > 2 is an integer.

Lemma 4.5. Let r be a prime power and q = r2.

Let M be a positive integer.
If M|(r+1), then there exists an M x M (weakly) quasi-unitary matriz over Fy

with §;(A) =M —i+1 forall 1 <i< M.

Proof. Assume that M|(r + 1). Then F, contains a primitive M -th root unity.
Let o be a fixed primitive M -th root unity in ;. Since r = —1mod M, we have

a=a =a '

Define
(a0)° (al)° (aM—l)O
%)l al)! aM-1y1
PO RCURCD )
(QO)M—I (@)M-1 ... (@M-1)M-1

Let B = AA". Then, for all 1 <i,j < M, we have
M —
k

by = 3 (o) @ = 3 (b))

~ ©
i

<4

_

= Y (@) ety = Y (0t

k
{M;«éo ifi=j,
B 0

if otherwise.

o
b
Il

o
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Hence, AA" = diag(M,M,...,M) = MI,;. Therefore, A is (weakly) quasi-
unitary. From [2, Theorem 3.2], it follows that §;(A) =M —i+1 forall 1 <i <
M. O

2. Let M be a positive in-

Corollary 4.6. Let r be a prime power and q = r
teger such that M|(r + 1). If there exist Hermitian self-orthogonal [m,k1,di]q,
[m, k2, dalg, ..., [m, ka,dalg codes, then o Hermitian self-orthogonal [Mm, ki +

ko+---+kn,d]y code can be constructed with d > min{Mdy, (M —1)dq,...,dn}.

Proof. Assume that there are M Hermitian self-orthogonal codes with parameters
[m, k1,dilq, [m, ke, ds)q, ..., [m, ka,da]g. By Lemma 4.5, there exist an M x M
invertible and quasi-unitary matrix A over Fy with 6;(A4) = M,62(A) = (M —
1),...,0m(A) = 1. By Theorems 2.1 and 3.1, the matrix-product code Cjy4 is
Hermitian self-orthogonal with parameters [Mm, ki + ko + - - + kar, d]q with d >
min{Mdy, (M — 1)ds,...,dm}. O

Example 4.7. Let a be a primitive element of Fy. Then « is primitive 3th

1 1 1
root unity in F;. By Lemma 4.5, it follows that A= |1 «a «?| is invertible,
1 o ot

AAT = diag(1,1,1), 6;(A) = 3,02(A) =2 and §;(A) = 1. Let C; ,Co and C3 be
the linear codes of length 6 over Fy generated by

1 1 11 1 1 11111 1
Gi=10 01 1 a «af, Ga=
0 01 1 a «
00 0 0 1 1
and

ng[l 1111 1},

respectively. Then C5 C Cy C C7 are Hermitian self-orthogonal with parameters
[6,3,2]4,[6,2,4]4 and [6,1,6]4, respectively. By Theorems 2.1 and 4.6 C4 is a
Hermitian self-orthogonal code with parameters [18,6,6],.

4.2 Weakly Anti-Quasi-Unitary Matrices

In this subsection, we focus on the existence of weakly anti-quasi-unitary matrices
with the property that the sequence {d;(A)};=12, s is decreasing. Their applica-

tions in constructing Hermitian self-orthogonal codes are discussed as well.
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In a finite field F, with ¢ = r?, the norm function N : F, — F, is defined
by N(a) = ™ for all @ in F,. In [11, p. 57], it has been shown that N is
surjective. Hence, the following lemma and corollaries can be deduced.

Lemma 4.8. Let r be a prime power and g = r>. Let o be a primitive element
of Fq. Then the following statements hold.

1 b
1. If q is odd, then there exists b € F, such that bl = —1 and A = b1
is tnvertible and (weakly) anti-quasi-unitary with 61(A) =2 and d2(A) = 1.

o T

2. If ¢ > 4 is even, then A = ) 01 is tnvertible and (weakly) anti-quasi-
unitary with 61(A) =2 and §3(A) =1.

Proof. To prove (1), assume that ¢ is odd. Since the norm is surjective, there

1

exists b € F, such that N(b) = b"" = —1. Let A = Clearly, A is

invertible, d;(A) =2 and d2(A) = 1. Since

1 0
b 1

AAT =

b b
[br 1] = adiag(b+b",b+ "),

A is (weakly) anti-quasi-unitary.

To prove (2), assume that ¢ > 4 is even. Let A =

L, Clearly, A is
1 1

invertible, d1(A) =2 and d2(A) = 1. Since

T T 1
Aat = ¢ e, = adiag(a@” + a,a” + «),
1 1 a1
A is (weakly) anti-quasi-unitary. O

Corollary 4.9. Let r be a prime power and ¢ = r>. If there exist codes C,
and Co with parameters [m,kyi,d1]y and [m, ke, ds], such that Cy; C C’;H , then
a Hermitian self-orthogonal [2m, k1 + ko,d], code can be constructed with d >
min{2dy,ds}.

Proof. Assume that there exist linear codes C; and Cy with parameters [m, k1, d1],
and [m, k2, da], such that Cq C C2J‘H . By Lemma 4.8, there exist a 2 x 2 invertible
and anti-quasi-orthogonal matrix A over F, with 6;(A) =2 and d2(4) = 1. By
Theorems 2.1 and 3.4, the matrix-product code C4 is Hermitian self-orthogonal
with parameters [2m, k1 + ko, d]; with d > min{2d;,d>}. O
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Example 4.10. Let 8 be a primitive element of F,. By Lemma 4.8, we have
2
that A = f 61 € My 5(F,) is invertible, AAT = adiag(1,1), 61(A) = 2, and

d2(A) =1. Let Cy and Cy be the linear codes of length 6 over Fy generated by

1 1 1 1 1 1

G = 5 53 23 ad o5 and ng[l 1 1 1 1 1}7
g p= B> B BB

respectively. Then Cy and Cs have parameters [6,2,4]4 and [6,1,6]4, respec-

tively. Since Cy C Cy C C;H, by Theorems 2.1 and 3.4, C'4 is a Hermitian

self-orthogonal code with parameters [12,3,6]4.

5 Examples

In this section, examples of Hermitian self-orthogonal matrix-product codes with
good parameters are given.

Using Corollary 4.3 and Hermitian self-orthogonal codes form various sources,
Hermitian self-orthogonal matrix product codes can be constructed. Here, Hermi-
tian self-orthogonal codes given in [8] are applied in Corollary 4.3, and hence, Her-
mitian self-orthogonal matrix-product codes with good parameters are obtained.

In [8, Theorem 2.6], it has been shown that there exists a Hermitian self-
orthogonal [¢+1,k,q—k+2], code for all 2 < k < £, where ¢ = r2. By setting C}
and Cy be Hermitian self-orthogonal codes with parameter [g+1, L%J ,q— ng +2],
and [q + 1, L%J —-1,q— L%J + 3], in Corollary 4.3, we have the following result.

Corollary 5.1. Let r be a prime power and ¢ = 2. Then a Hermitian self-

orthogonal [2(q+1),2 |5 | —1,d], code can be constructed with d > q— |%| + 3.

From Corollary 5.1, some examples of Hermitian self-orthogonal matrix-product
codes over [F, are given in Table 5.

Next, we focus on examples of Hermitian self-orthogonal matrix-product codes
derived from Corollary 4.9. For this case, good input codes can be chosen from
the family of Generalized Reed-Solomon (GRS) codes recalled as follows.

For each positive integer n < ¢, let v = (71,72, .., ) and w = (wy, wa, ..., wy)
where y; is a non-zero element and wy, ws, ... w, are distinct elements in F,. For
each 0 < k < n, denote by F,[X]; the set of all polynomials of degree less than k

over F,. For convenience, the degree of the zero polynomial is defined to be —1.
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Parameters
! C Cs Ca
49 [50, 3, 48]49 [50, 2, 49]49 [100, 5, d]49 with d > 49
64 (65,4, 62]64 [65, 3, 6364 [130,7, d]gs with d > 63
81 [82,4,79]s1 [82, 3, 80]s1 [164,7,d]s1 with d > 80
121 [122,5,118]19; [122,4,119]191 [244,9,d]121 with d > 119

Table 1: Hermitian Self-Orthogonal Matrix-Product Codes over F,

A GRS code of length n < ¢ and dimension k& < n is defined to be

GRSn,k(’%w) = {(Wlf(wl)»’hf(wQ)» s a’ynf(vn)) | f(X) € FQ[X]]C} . (1)

It is well known (see [8]) that the GRS, k(w,) is a linear code with parameters
[n,k,n — k + 1], and the Hermitian dual (GRS, x(w,7)) " of GRS, x(w,7v) is
also a GRS code with parameters are [n,n—k, k+1],. Moreover, GRS, 1(w,7) €
GRS, k+1(w,7). By letting C1 = GRS, 1 (w,v) and Cy = (GRS, j4i(w, 7))
(with 0 <7 <n—k) in Corollary 4.9, we have the following corollary.

Corollary 5.2. Let r be a prime power and let ¢ = r%. Let 0 < k <n < q be
integers. Then there exists a Hermitian self-orthogonal matriz-product code with
parameters [2n,n—i,d], for all 0 <i < n—Fk, where d > min{2(n—k+1), k+i+1}.

Some examples of good Hermitian self-orthogonal codes over small finite fields
derived from Corollary 5.2 of length 2¢ are given in Table 5.

For the special case where ¢ = 0, or equivalently, C1 = GRS, r(w,vy) and
Oy = C{" = (GRS, 1(w,7))™" , a Hermitian self-dual matrix-product code can
be constructed via Corollaries 3.7 and 5.2.

Corollary 5.3. Let r be a prime power and let ¢ = r?. Let 0 <1 <n < q be
integers. Then there exists a Hermitian self-orthogonal matriz-product code with
parameters [2n,n,d]; with d > min{2(n —k+1),k+1}.

6 Conclusion and Remarks

The well-known matrix-product construction for linear codes has been applied to

construct Hermitian self-orthogonal codes. Criterion for the underlying matrices
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q k i Parameters

9 9 5 4 18,5, d]g with d > 10
6 1 18,8, d]g with d > 8

16 16 9 6 32,10, d)16 with d > 16
10 3 32,13,d]16 with d > 14
11 0 32,16,d]16 with d > 12

25 25 13 12 50,13, d|25 with d > 26
14 9 50, 16, d]25 with d > 24
15 6 50,19, d]25 with d > 22
16 3 50,22, d]o5 with d > 20

49 49 25 24 98,25, d|49 with d > 50

[
[
[
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]2
17 | 0 | [50,25,d]ss with d > 18
[ ]
98, 28, d] 40 with d > 48
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

26 21

27 18 98,31, d|49 with d > 46
28 15 98, 34, d|49 with d > 44
29 12 98,37, d|49 with d > 42
30 9 98,40, d]49 with d > 40
31 6 98,43, d|49 with d > 38
32 3 98,46, d|49 with d > 36
33 0 98,49, d|49 with d > 34

Table 2: Hermitian Self-Orthogonal Matrix-Product Codes over F,

and the input codes required in the constructions have been determined. In many
cases, the Hermitian self-orthogonality of the input codes and the assumption that
the underlying matrix is unitary can be relaxed. Illustrative examples of good

Hermitian self-orthogonal codes have been given as well.

Some special matrices used in the constructions such as weakly quasi-unitary
and weakly anti-quasi-unitary matrices have been given in some cases. In general,
the study of a matrix A € M, ;(F,) such that AAT is diagonal or anti-diagonal is

also an interesting problem.

For applications, it is well know that Hermitian self-orthogonal codes can be
applied in constructing symmetric quantum codes (see, for example, [8], [9], [16],
and [13]). Hence, the codes obtained in this paper can be applied in the such

constructions as well.
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