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Abstract: In this paper, we construct a numerical procedure which is called
the finite integration method by using the Legendre polynomial. This numerical
procedure is for solving the linear ordinary differential equations. That is, we
define the solution as a linear combination of the Legendre polynomials and we
use the zeros of Legendre polynomial as computational grid points. We implement
this procedure with several numerical examples to demonstrate the accuracy of our
method comparing to the finite difference method, the traditional finite integration
methods and their analytical solutions.
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1 Introduction
Usually, we can explain several phenomina occuring in sciences, engineering and
economy by using differential equations. However, under various boundary condi-
tions and the real problem configuration, it is very difficult that these equations
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can be solved for their analytical solution. The numerical methods ease this diffi-
culty and play an important role for finding approximate solutions. Actually, there
are many numerical methods available for solving differential equations such as fi-
nite difference method (FDM), finite element method (FEM), boundary element
method (BEM), etc (see [2]).

In 2013, Wen et al. [6] and Li et al. [4], used both trapezoidal integral algo-
rithm and radial basis functions to develop a new numerical procedure for finding
approximate solutions to linear boundary value problems for ordinary and partial
differential equations. This is called the finite integration method (FIM). In this
method, the finite integration matrix of the first order is obtained by the direct
numerical integration, for examples, using trapezoidal [6] and Simpson, Newton-
Cotes and Lagrange formula [5]. Based on this finite integration matrix of the first
order, any finite integration matrix of other orders for multi-layer integration can
be obtained directly by using the matrix of the first order integration. Recently,
Duangpan [3] modified the traditional FIM by using the Chebyshev polynomials
to construct the finite integration of the first order instead. In the same situation,
his modified method obtained more accuracy comparing to the traditional FIM.

In this paper, we turn our attention to construct the FIM by using the Legendre
polynomial instead. That is, we define the approximate solution as a linear combi-
nation of the Legendre polynomials. We replace the solution domain with a finite
number of points, known as grid points, and obtain the solution at these points.
The grid points is generated by the zeros of Legendre polynomial of certain degree.
The finite integration matrix of the first and higher orders are constructed. Fi-
nally, we implement this method with several numerical examples to demonstrate
the accuracy of our modified FIM comparing to the FDM, the traditional FIMs
proposed by Wen et al. [6] and Li et al. [5], the FIM using Chebyshev polynomials
and their analytical solutions.

2 FIM by Using Legendre Polynomials

In this section, we construct the FIM by modifiying the idea of Duangpan [3] to
construct the first order finite integration matrix base on the Legendre polynomial
expansion. Then, the mth order finite integration matrix can be obtained easily.
Now, let us introduce the Legendre polynomial and some useful facts about it.

Definition 2.1. ([1]) For x ∈ [−1, 1] , the Legendre polynomial of degree n ≥ 0
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is recursively defined as

(n+ 1)Ln+1(x)− (2n+ 1)xLn(x) + nLn−1(x) = 0, for n ≥ 1, (2.1)

where L0(x) = 1 and L1(x) = x .

The following properties of the Legendre polynomials Ln(x) help us construct
the first and the higher order integration matrices as well as the procedure for our
FIM.

Lemma 2.2. (i) the Legendre polynomial of degree n has n distinct roots in the
interval (−1, 1) .
(ii) For x ∈ [−1, 1] ,

L̄0(x) :=

∫ x

−1

L0(ξ)dξ = x+ 1 and (2.2)

L̄n(x) :=

∫ x

−1

Ln(ξ)dξ =
1

2n+ 1
(Ln+1(x)− Ln−1(x)) for n ≥ 1. (2.3)

(iii) For a nonnegative integer N , the discrete orthogonality relation of Legendre
polynomial is

N∑
k=0

Li(x̄k)Lj(x̄k) =


0 if i ̸= j

N + 1 if i = j = 0

2
2N+1 if i = j ̸= 0

, (2.4)

where x̄k, k ∈ {0, 1, 2, ..., N} , are zeros of Ln+1(x) , and 0 ≤ i, j ≤ N .

Proof. (i) and (iii) See [1].

(ii) Let x ∈ [−1, 1] . We obtain easily that

L̄0(x) =

∫ x

−1

L0(ξ)dξ =

∫ x

−1

1dξ = x+ 1.

Next, let n ≥ 1 and Sn+1(x) =
∫ x

−1
Ln(ξ)dξ . Hence, Sn+1 is a polynomial of

degree n + 1 and Sn(±1) = 0 . Therefore, for any m < n − 1 , we can use
integration by parts to obtain∫ 1

−1

Sn+1Lmdx =

∫ 1

−1

Sn+1S
′
m+1dx = −

∫ 1

−1

S′
n+1Sm+1dx =

∫ 1

−1

LnSm+1dx = 0.

Hence, we can write Sn+1 = an−1Ln−1 + anLn + an+1Ln+1. By parity argument,
an = 0 .
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On the other hand, by writing Ln = knx
n + kn−1x

n−1 + · · · + k0 , we find
from the definition of Sn+1 that kn

n+1 = an+1kn+1 . We then derive from the
formula of kn that an+1 = 1

2n+1 . Finally, we derive from Sn+1(−1) = 0 that
an−1 = −an+1 = − 1

2n+1 .

Next, for a nonnegative integer N , let the Legendre matrix L be defined as

L =


L0(x̄0) L1(x̄0) · · · LN (x̄0)

L0(x̄1) L1(x̄1) · · · LN (x̄1)
...

... . . . ...
L0(x̄N ) L1(x̄N ) · · · LN (x̄N )

 .

That is, L is the matrix whose elements are Legendre polynomials evaluated at
the zeros x̄k of the Legendre polynomial LN+1(x) for k ∈ {0, 1, 2, ..., N} .

Lemma 2.3. L has an inverse which is

L−1 =
1

N + 1


L0(x̄0)
N+1 L0(x̄1) · · · L0(x̄N )

L1(x̄0)
2L1(x̄1)
2N+1 · · · L1(x̄N )

...
... . . . ...

LN (x̄0) LN (x̄1) · · · 2LN (x̄N )
2N+1

 .

Proof. It comes directly from Lemma 2.2 (iii).

Let N be a nonnegative integer and the approximate solution u(x) be a linear
combination of the Legendre polynomials L0(x), L1(x), L2(x), ..., LN (x) . That is,

u(x) =

N∑
n=0

cnLn(x), for x ∈ [−1, 1]. (2.5)

Let −1 ≤ x̄0 < x̄1 < x̄2 < ... < x̄N ≤ 1 be grid points that is generated by the
zeros of Legendre polynomial LN+1(x) distributed on [−1, 1] . Then, by (2.5), we
have

u(x̄k) =

N∑
n=0

cnLn(x̄k)

for k ∈ {0, 1, 2, ..., N} or,
u(x̄0)

u(x̄1)
...

u(x̄N )

 =


L0(x̄0) L1(x̄0) · · · LN (x̄0)

L0(x̄1) L1(x̄1) · · · LN (x̄1)
...

... . . . ...
L0(x̄N ) L1(x̄N ) · · · LN (x̄N )



c0

c1
...
cN

 ,
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which is denoted by u = Lc . Note that, each element of L can be found by
using (2.1). Thus, the coefficients {cn}Nn=0 can be defined by c = L−1u . Next,
for k ∈ {0, 1, 2, ..., N} , let us consider the single integral of u(x) from −1 to x̄k ,
which is denoted by U(x̄k) . Then,

U(x̄k) =

∫ x̄k

−1

u(ξ)dξ =

N∑
n=0

cn

∫ x̄k

−1

Ln(ξ)dξ =

N∑
n=0

cnL̄n(x̄k)

for k ∈ {0, 1, 2, ..., N} or,
U(x̄0)

U(x̄1)
...

U(x̄N )

 =


L̄0(x̄0) L̄1(x̄0) · · · L̄N (x̄0)

L̄0(x̄1) L̄1(x̄1) · · · L̄N (x̄1)
...

... . . . ...
L̄0(x̄N ) L̄1(x̄N ) · · · L̄N (x̄N )



c0

c1
...
cN

 ,

which is denoted by U = L̄c = L̄L−1u . Note that, each element of L̄ can be
found by using (2.2) and (2.3). Next, by letting A = L̄L−1 , we have U = Au .
This A = [aki](N+1)×(N+1) is called the first order integration matrix for FIM by
using Legendre polynomials, i.e.,

U(x̄k) =

∫ x̄k

−1

u(ξ)dξ =

N∑
i=0

akiu(x̄i)

for k ∈ {0, 1, 2, ..., N} or,
U(x̄0)

U(x̄1)
...

U(x̄N )

 =


a00 a01 · · · a0N

a10 a11 · · · a1N
...

... . . . ...
aN0 aN1 · · · aNN



u(x̄0)

u(x̄1)
...

u(x̄N )

 .

Now, for k ∈ {0, 1, 2, ..., N} , let us consider the double integral of u(x) from −1

to x̄k , which is denoted by U (2)(x̄k) . Then,

U (2)(x̄k) =

∫ x̄k

−1

∫ ξ2

−1

u(ξ1)dξ1dξ2

=

N∑
i=0

aki

∫ x̄i

−1

u(ξ1)dξ1 =

N∑
i=0

N∑
j=0

akiaiju(x̄j) =

N∑
i=0

a
(2)
ki u(x̄i)

in which we can write in the matrix form as U(2) = A(2)u. Since the summation∑N
j=0 akiaij represents each element in A2 , we can conclude that U(2) = A(2)u =
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A2u. Similarly, for k ∈ {0, 1, 2, ..., N} , we can construct the multi-layer integral
of u(x) from −1 to x̄k by using the same idea as to construct A(2) . That is,

U (m)(x̄k) =

∫ x̄k

−1

· · ·
∫ ξ2

−1

u(ξ1)dξ1 · · · dξm

=

N∑
im=1

· · ·
N∑
j=1

akim · · · ai1ju(x̄j) =

N∑
i=1

a
(m)
ki u(x̄i)

whose matrix form can be expressed as U(m) = A(m)u = Amu . This A(m) is
called the mth order integration matrix.

For boundary conditions, we may need higher order derivatives which can be
achieved by considering derivatives of the linear combination of Legendre polyno-
mials at the end point x = ±1 using (2.3). Thus, we have

u(±1) =

N∑
n=0

cnLn(±1) and u(p)(±1) =

N∑
n=0

cn
dp

dxp
Ln(x)

∣∣∣
x=±1

for p ∈ N .

3 Procedure for Solving Linear ODEs
In this section, we devise our proposed modified FIM to construct an algorithm
for solving linear ODEs with boundary conditions. Usually, the linear ODE is
given by Pu(x) = f(x) for x ∈ (a, b) , where P = an(x)

dn

dxn + an−1(x)
dn−1

dxn−1 +

an−2(x)
dn−2

dxn−2 + ...+ a0(x) . The procedure is given as follows,

Step 1. We transform x ∈ [a, b] into x̄ ∈ [−1, 1] by the transformation x̄ =
2x−a−b

b−a . Let k = 2
b−a . Then, Pu(x) = f(x) for x ∈ (a, b) becomes

P̂ u(x̄) = f(x̄) for x̄ ∈ (−1, 1), (3.1)

where P̂ = knan(x̄)
dn

dx̄n + kn−1an−1(x̄)
dn−1

dx̄n−1 + kn−2an−2(x̄)
dn−2

dx̄n−2 + ... + a0(x̄) .
Thus, after this step, we will consider the problem in [-1,1].

Step 2. We discretize our domain [−1, 1] into N subintervals with N +1 nodes.
The grid points is generated by the zeros of Legendre polynomial LN+1(x) .
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Step 3. We eliminate derivatives out of (3.1) by taking n layers integral from −1

to x̄k on both sides of (3.1) and using integration by parts. Thus, we obtain

knan(x̄k)u(x̄k)+kn−1an−1(x̄k)

∫ x̄k

−1

u(ξ1)dξ1+kn−2an−2(x̄k)

∫ x̄k

−1

∫ ξ2

−1

u(ξ1)dξ1dξ2

+kn−3an−3(x̄k)

∫ x̄k

−1

∫ ξ3

−1

∫ ξ2

−1

u(ξ1)dξ1dξ2dξ3+...+a0(x̄k)

∫ x̄k

−1

...

∫ ξ2

−1

u(ξ1)dξ1...dξn

=

∫ x̄k

−1

...

∫ ξ2

−1

f(ξ1)dξ1...dξn + d1
x̄n−1
k

(n− 1)!
+ d2

x̄n−2
k

(n− 2)!
+ d3

x̄n−3
k

(n− 3)!
+ ...+ dn,

where d1, d2, d3, ..., dn are the arbitrary integral constants.

Step 4. By the idea described in Section 2, we write u(x) as a linear combination
of the Legendre polynomials and by using the mth order integration matrix de-
veloped in Section 2, we can transform the equation in Step 3 in the matrix form
as follow,

knBnu + kn−1ABn−1u + kn−2A2Bn−2u + ...+ AnB0u
= Anf + d1xn−1 + d2xn−2 + ...+ dni.

Let K = knBn + kn−1ABn−1 + kn−2A2Bn−2 + ...+ AnB0 . Then, we have

Ku = Anf + d1xn−1 + d2xn−2 + ...+ dni, (3.2)

where

u = [u(x̄0), u(x̄1), u(x̄2), ..., u(x̄N )]T ,

f = [f(x̄0), f(x̄1), f(x̄2), ..., f(x̄N )]T ,

i = [1, 1, 1, ..., 1]TN+1,

xi =
1

i!
[x̄i

0, x̄
i
1, x̄

i
2, ..., x̄

i
N ]T for i ∈ {1, 2, 3, ..., n− 1},

Bi = diag[ai(x̄0), ai(x̄1), ai(x̄2), ..., ai(x̄N )] for i ∈ {0, 1, 2, ..., n} and
A = L̄L−1

as defined in Section 2.
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Step 5. We consider the boundary conditions and change it into the vector form.
For p ∈ N , we get

u(±1) =

N∑
n=0

cn(±1)n = t0c = t0L−1u and

u(p)(±1) =

N∑
n=0

cn
dp

dxp
Ln(x)

∣∣∣
x=±1

= tpc = tpL−1u.

where t0 = [(±1)0 (±1)1 (±1)2 ... (±1)N ]T and tp = [L
(p)
0 (±1)0 L

(p)
0 (±1)1

L
(p)
0 (±1)2 ... L

(p)
0 (±1)N ]T .

Step 6. From (3.2) in Step 4, we can rearrange it to obtain the linear system as

Ku − d1xn−1 − d2xn−2 − ...− dni = Anf.

Together with the boundary conditions, for example, u′(±1) = b1 , u′′(±1) = b2 ,
..., u(n)(±1) = bn which can be represented in the vector form as

u′(±1) = t1L−1u = b1

u′′(±1) = t2L−1u = b2

...
u(n)(±1) = tnL−1u = bn.

Step 7. Finally, we obtain the linear system in a matrix form as follows

K −xn−1 −xn−2 · · · −i
t1T−1 0 0 · · · 0

t2T−1 0 0 · · · 0
...

...
... . . . ...

tnT−1 0 0 · · · 0





u
d1

d2
...
dn


=



Anf
b1

b2
...
bn


. (3.3)

By solving the linear system (3.3), we will obtain u(x̄) for x̄ ∈ [−1, 1] . Then,
by using the transformation x = 1

2 [(b − a)x̄ + a + b] , we can finally obtain the
approximate solution u(x) for x ∈ [a, b] .

Remark 3.1. If we discretize our domain [−1, 1] into N subintervals with N +1

nodes, the coefficient matrix in (3.3) is of dimension N + n + 1 , where n is the
order of the ODE.
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4 Numerical Examples

In this section, we apply our modified FIM by using Chebyshev polynomials to
finding approximation solution of linear ordinary differential equations as shown in
Examples 4.1-4.4 to compare with the FDM, the FIM with trapezoidal rule and the
FIM with Chebyshev’s polynomials. We use the average relative error to demon-
strate the accuracy between these methods and their analytical solutions, as shown
in Tables 1-4. The average relative error is computed by 1

N+1

∑N
i=0

|u(xi)−u∗(xi)|
|u∗(xi)| .

Example 4.1. We consider the following boundary value problem for ordinary
differential equation

d2u

dx2
− u = 0 for x ∈ (0, 1)

with boundary conditions u(0) = 0 and u(1) = 1 . The analytical solution is
u∗(x) = ex−e−x

e−e−1 .

Transform x ∈ [a, b] = [0, 1] into x̄ ∈ [−1, 1] by using x̄ = 2x − 1 . Let
k = 2

b−a = 2 , we get k2u′′(x̄) − u(x̄) = 0 . Applying integration operation twice
on both sides of the equation, we have k2u − A2u = d1x + d2i . From boundary
conditions, u(0) = t0lL−1u = 0 and u(1) = t0rL−1u = 1 . Thus, we can construct
the linear system (3.3) in the matrix form as k2I − A2 −x −i

t0lL−1 0 0

t0rL−1 0 0


 u

d1

d2

 =

 0
0

1

 .

Example 4.2. We consider the following initial value problem for ordinary dif-
ferential equation

d2u

dx2
− 2(1 + 2x2)u = 0 for x ∈ (0, 1)

with initial conditions u(0) = 1 and u′(0) = 0 . The analytical solution is u∗(x) =

ex
2 .

Transform x ∈ [a, b] = [0, 1] into x̄ ∈ [−1, 1] by using x̄ = 2x − 1 . Let
k = 2

b−a = 2 , we get k2u′′(x̄)− 2(1 + 2( x̄+1
2 )2)u(x̄) = 0 . Taking twice integration

on both sides of the equation, we have k2u − A2Bu = d1x + d2i where B =

diag[2(1 + 2( x̄0+1
2 )2), 2(1 + 2( x̄1+1

2 )2), 2(1 + 2( x̄2+1
2 )2), ..., 2(1 + 2( x̄N+1

2 )2)] . By
initial conditions, u(0) = t0lL−1u = 1 and u′(0) = t1lL−1u = 0 . Thus, we can
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construct the linear system (3.3) in the matrix form as k2I − A2B −x −i
t0lL−1 0 0

t1lL−1 0 0


 u

d1

d2

 =

 0
1

0

 .

Example 4.3. We consider the following boundary value problem for ordinary
differential equation

d2u

dx2
+ 2

du

dx
+ u = sinx for x ∈ (0, 2)

with u(0) = 0 and u(2) = −1 . The analytical solution is u∗(x) = e−x

4 (xe2 cos 2−
2ex cosx− 2xe2 − x+ 2).

Transform x ∈ [a, b] = [0, 2] into x̄ ∈ [−1, 1] by using x̄ = x − 1 . Let
k = 2

b−a = 1 , we get k2u′′(x̄) + 2ku′(x̄) + u(x̄) = sin x̄ . Applying double integral
on both sides of the equation, we have k2u − 2kAu + A2u = A2f + d1x + d2i
where f = [sin(x̄0 + 1) sin(x̄1 + 1) sin(x̄2 + 1) ... sin(x̄N + 1)]T . From
boundary conditions, u(0) = t0lL−1u = 0 and u(2) = t0rL−1u = −1 . Thus, we
can construct the linear system (3.3) in the matrix form as k2I + 2kA + A2 −x −i

t0lL−1 0 0

t0rL−1 0 0


 u

d1

d2

 =

 A2f
0

−1

 .

Example 4.4. We consider the following boundary value problem for ordinary
differential equation

d4u

dx4
+ u = 1 for x ∈ (0, 1)

with boundary conditions u(0) = u(1) = u′′(0) = u′′(1) = 0 . The analytical
solution is obtained as

u∗(x) =
4

π

∞∑
n=1

sin(2n− 1)πx

(2n− 1)
[
(2n− 1)4π4 + 1

] .
Transform x ∈ [a, b] = [0, 1] into x̄ ∈ [−1, 1] by using x̄ = 2x − 1 . Let

k = 2
b−a = 2 , we get k4u(4)(x̄) + u(x̄) = 1 . Taking four-layer integration on

both sides of the equation, we have k4u + A4u = A4i + d1
x3

6 + d2
x2

2 + d3x + d4i .
From boundary conditions, u(0) = t0lL−1u = 0 , u(1) = t0rL−1u = 0 , u′′(0) =

t2lL−1u = 0 and u′′(1) = t2rL−1u = 0 . Thus, we can construct the linear system
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(3.3) in the matrix form as
k4I + A4 −x3

6 −x2

2 −x −i
t0lL−1 0 0 0 0

t0rL−1 0 0 0 0

t2lL−1 0 0 0 0

t2rL−1 0 0 0 0




u
d1

d2

d3

d4

 =


A4i
0

0

0

0

 .

Table 1 : Average relative error for Example 4.1
N FDM FIM(TPZ) FIM(CBS) FIM(LEG)
4 4.2348× 10−4 8.6307× 10−4 1.2734× 10−6 1.4237× 10−3

6 2.0604× 10−4 4.1554× 10−4 2.8757× 10−8 5.2064× 10−6

8 1.2070× 10−4 2.4254× 10−4 3.5836× 10−11 8.7122× 10−9

10 7.9045× 10−5 1.5857× 10−4 2.0366× 10−14 8.3104× 10−12

12 5.5711× 10−5 1.1165× 10−4 1.3307× 10−15 1.3057× 10−15

Table 2 : Average relative error for Example 4.2
N FDM FIM(TPZ) FIM(CBS) FIM(LEG)
4 9.8768× 10−2 2.6416× 10−2 3.6456× 10−2 1.0414× 10−1

6 6.5513× 10−2 1.0750× 10−2 1.6877× 10−3 1.0016× 10−2

8 4.8888× 10−2 5.8304× 10−3 5.0529× 10−5 4.1923× 10−4

10 3.8964× 10−2 3.6583× 10−3 1.0802× 10−6 1.1394× 10−5

12 3.2379× 10−2 2.5093× 10−3 1.7839× 10−8 2.2826× 10−7

Table 3 : Average relative error for Example 4.3
N FDM FIM(TPZ) FIM(CBS) FIM(LEG)
4 5.6121× 10−2 9.9239× 10−3 2.0626× 10−3 6.3162× 10−2

6 2.5671× 10−2 4.7917× 10−3 1.9124× 10−5 1.2867× 10−3

8 1.4780× 10−2 2.8101× 10−3 8.9593× 10−8 9.7721× 10−6

10 9.6178× 10−3 1.8443× 10−3 2.5238× 10−10 4.4627× 10−8

12 6.7606× 10−3 1.3026× 10−3 4.3821× 10−13 1.2049× 10−10

Table 4 : Average relative error for Example 4.4
N FDM FIM(TPZ) FIM(CBS) FIM(LEG)
4 5.4712× 10−3 6.3349× 10−4 5.4978× 10−6 6.9862× 10−3

6 4.6006× 10−3 3.1233× 10−4 1.6147× 10−7 9.3062× 10−6

8 3.8372× 10−3 1.8436× 10−4 2.8532× 10−11 3.1485× 10−7

10 3.2629× 10−3 1.2133× 10−4 2.0896× 10−13 6.7363× 10−11

12 2.8290× 10−3 8.5804× 10−5 1.5383× 10−14 5.9514× 10−13
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Figure 1: The graphs of solution in Examples 4.1-4.4 for N = 50 .

5 Conclusion and Discussion

In this paper, we modify the FIM by using Legendre polynomial for finding ap-
proximate solutions to linear ODE. Our modified FIM has much higher accuracy
than the FDM and the traditional FIMs such as trapezoidal rule as shown in the
several examples in Section 4. However, it is about the same accuracy as Duang-
pan obtained by using FIM with Chebyshev polynomial. One may worry about
the computational time. Since our modified FIM using a larger computational
matrix compared to the FDM, in the case of using the same number of nodes.
However, for the same accuracy, one can see in Table 5 that the FDM needs a
lot more nodes, and hence, a lot larger matrix dimension to solve the systems of
linear equations involved comparing to our modified FIM.

Table 5 : Dimension of matrix involved when considering the same accuracy
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Example Average Relative Error
Dimension of Matrix Involved

FIM(LEG) FDM
4.1 5.2064× 10−6 9 83

4.2 3.9881× 10−2 8 12

4.3 1.2867× 10−3 9 24

4.4 9.3062× 10−6 11 > 100

Our future work is try to apply our modified FIM for solving boundary value
problems to partial or nonlinear differential equations.
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