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1 Introduction

Linear regression is a statistical technique to determine the linear relationship

between variable of interest and other observed variables, known as covariates, by

examining sample observations. The linear relationship can often be modelled in

many different ways attempting to use all covariates or only a subset of covariates

when many covariates are measured. There are a variety of variable selection crite-

ria available in literatures such as RMSE (root mean square error), Adjusted R2 ,

AIC, BIC. In general, these variable selection criteria are used without concerning

sampling errors.

In 2015, Lahiri and Suntornchost [7] showed that sampling errors could cause

bias in the variable selection criteria statistics in univariate linear regression mod-

els. In their study, they suggested ways to adjust those variable selection statistics

to reduce the biasedness for the Fay-Herriot model when regression error terms are

assumed to be independent and identically distributed. Later in 2017, Lenghoe

and Suntornchost [8] extended the methods to derive variable selection criteria

statistics for a general case when the regression error terms are not assumed to be

independent and identically distributed allowing for the possibility of correlated

regression errors.

In real world applications, multivariate linear regression models have brought

interests from researchers worldwide due to availabilities of data and technologies

and the flexibility in allowing correlations between different variables of interest.

There are several applications of multivariate linear regression models, for example,

Aleixandre-Tud and Alvarez [1] applied the model to predict wine quality based on

the definition of chemical and phenolic parameters of grapes and wines harvested

at different ripening levels; Cserhti and Szgyi [5] applied the model to extract of

maximal information of large data sets of evaluation of chromatographic retention

data measured under different conditions; and Seidou, Asselin and Ouarda [11]

applied the model to explain key variables in hydrology and climate sciences.

In multivariate linear regression models, many variables of interest will be in-

cluded in the model. Therefore, the effect from sampling errors to the regression

analysis could be more severe than those of univariate models. Therefore, in this

study, we extend the techniques proposed in Lahiri and Suntornchost [7] to adjust

variable selection criteria statistics for multivariate linear regression models subject

to sampling errors. The organization of this paper is as follows. In section 2, we

introduce the multivariate linear regression models and variable selection criteria.
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In section 3, we establish some adjustments for variable selection criteria statistics

for multivariate linear regression models. Simulation results and discussions are

provided in Sections 4 and 5, respectively.

2 The Multivariate Linear Regression Models

The multivariate linear regression considered in this paper is in the form

Y = Xβ + ε, (1)

where Y is an m × q matrix of response variables, X is an m × p matrix of

covariates (m > p), rank(X) = p , β is a p × q matrix of unknown regression

coefficients and ε = [ ε1 ε2 . . . εq ] is an m× q matrix of error terms with mean

zero and covariance matrix Cov (εi)=σ2I for i = 1, 2, . . . , q , {εi, i = 1, . . . , q}
are not assumed to be uncorrelated.

Therefore, following [6] and [9], the least squares estimator β̂ is then given by

β̂ =
[
β̂1 | β̂2 | . . . | β̂q

]
= (X′X)−1X′ [ y1 | y2 | . . . | yq ] ,

or equivalently

β̂ = (X′X)−1X′Y. (2)

From model in (1) and the least squares estimator (2), we can express the sum

of squared errors and cross product matrix SSE and the total sum of squares and

cross product matrix SST as quadratic forms in Y as follows

SSE = Y′(I−X(X′X)−1X′)Y,

SST = Y′(I−m−1J)Y,

where J is an m×m matrix of ones.

Following [3] and [12] to define variable selection criteria for multivariate linear

regression models, we can minimize some quadratic forms of SSE and SST , for

example, the trace, the determinant, or the largest eigenvalue. In this study, we

consider the trace function. In particular, the variable selection criterion consid-

ered in this study is the Adjusted R2 defined as

Adj R2 = 1− tr(MSE)

tr(MST)
= 1− tr(SSE)/(q(m− p))

tr(SST)/(q(m− 1))
,

where m is the sample size, q is the number of response variables and p is the

number of covariates.
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3 Methodology

In this work, we consider the multivariate linear regression model defined as

θ = Xβ +V,

where θ is an m× q matrix of q unobserved response variables of m individuals

and V = [v1 v2 . . . vq] is the matrix of error terms, where vk ∼ Nm(0, σ2I)

(k = 1, . . . , q) are random vectors.

We are interested in the situation where the response variable θ is not observed

but it is approximated by the observed value Y , where the relation between θ

and Y is described by the sampling model

Y = θ +E,

where E = (eij) is an m × q matrix of sampling errors assuming that the eij ∼
N(0, Dij) (i = 1, . . . ,m, j = 1, . . . , q) are independent over i, j . Moreover, we

assume that θ and E are independent.

In many situations, the response variable θi(i = 1, . . . , q) is replaced by yi

that ignores sampling errors and use variable selection criteria. This causes un-

biased in estimating variable selection criteria statistics which is shown in Lahiri

and Suntornchost [7] and Lenghoe and Suntornchost [8] for the univariate linear

regression models. In this study, we extend the two studies to examine errors in

approximating the true variable selection criterion, Adj R2 , by the naive variable

selection criterion in presence of sampling errors for multivariate linear regres-

sion models. Moreover, we adapt their methods to derive some variable selection

criteria for multivariate linear regression models. Following their techniques, we

first examine the effect of sampling errors on the naive estimates tr(MSE) and

tr(MST) conditional on θ .

Theorem 3.1. The conditional expectations of tr(MSE) and tr(MST) given θ

are respectively defined as:

E [tr(MSE)|θ] = tr(MSEθ) + tr(Dw1),

E [tr(MST)|θ] = tr(MSTθ) + tr(Dw2),

where tr(Dw1) =
1

q(m− p)

q∑
j=1

m∑
i=1

(1−x′
i(X

′X)−1xi)Dij and tr(Dw2) =
1

qm

q∑
j=1

m∑
i=1

Dij .
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Proof. The conditional expectation of MSE given θ can be computed as

E[MSE|θ] = E

[
SSE

q(m− p)

∣∣∣θ]
=

1

q(m− p)
E[Y′(I−X(X′X)−1X′)Y|θ]

=
1

q(m− p)
E[(θ +E)′(I−X(X′X)−1X′)(θ +E)|θ]

=
1

q(m− p)
E[θ′(I−X(X′X)−1X′)θ + θ′(I−X(X′X)−1X′)E

+E′(I−X(X′X)−1X′)θ +E′(I−X(X′X)−1X′)E|θ]

=
1

q(m− p)

[
SSEθ + E[E′(I−X(X′X)−1X′)E]

]
= MSEθ +

1

q(m− p)
E

( m∑
i=1

eijeik −
m∑
i=1

m∑
l=1

eijelkx
′
i(X

′X)−1xl

)
1≤j,k≤q

 ,

where we use the facts that θ and E are independent, E[eij ] = 0 for i = 1, . . . ,m,

j = 1, . . . , q and E′(I−X(X′X)−1X′)E =

(
m∑
i=1

eijeik −
m∑
i=1

m∑
l=1

eijelkx
′
i(X

′X)−1xl

)
1≤j,k≤q

to obtain the last two equations.

Consequently, the conditional expectation of tr(MSE) given θ can be computed

as

E[tr(MSE)|θ] = tr(MSEθ)

+
1

q(m− p)
E

tr
( m∑

i=1

eijeik −
m∑
i=1

m∑
l=1

eijelkx
′
i(X

′X)−1xl

)
1≤j,k≤q


= tr(MSEθ)

+
1

q(m− p)

q∑
j=1

(
m∑
i=1

E
[
e2ij
]
−

m∑
i=1

m∑
l=1

E [eijelj ]x
′
i(X

′X)−1xl

)

= tr(MSEθ) +
1

q(m− p)

q∑
j=1

m∑
i=1

(1− x′
i(X

′X)−1xi) E
[
e2ij
]

= tr(MSEθ) +
1

q(m− p)

q∑
j=1

m∑
i=1

(1− x′
i(X

′X)−1xi)Dij

= tr(MSEθ) + tr(Dw1),

where we use the fact that E
[
e2ij
]
= Dij for i = 1, . . . ,m and j = 1, . . . , q to
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obtain the second to last equation.

Similarly, the conditional expectation of MST given θ can be computed as

E[MST|θ] = E

[
SST

q(m− 1)

∣∣∣θ]
=

1

q(m− 1)
E[Y′(I−m−1J)Y|θ]

=
1

q(m− 1)
E[(θ +E)′(I−m−1J)(θ +E)|θ]

=
1

q(m− 1)
E[θ′(I−m−1J)θ + θ′(I−m−1J)E+E′(I−m−1J)θ

+E′(I−m−1J)E|θ]

=
1

q(m− 1)

[
SSTθ + E[E′(I−m−1J)E]

]
= MSTθ +

1

q(m− 1)
E

( m∑
i=1

eijeik − 1

m

(
m∑
i=1

eij

)(
m∑
i=1

eik

))
1≤j,k≤q

 ,

where we use the facts that θ and E are independent, E[eij ] = 0 for i = 1, . . . ,m,

j = 1, . . . , q and E′(I−m−1J)E =

(
m∑
i=1

eijeik − 1

m

(
m∑
i=1

eij

)(
m∑
i=1

eik

))
1≤j,k≤q

to obtain the last two equations.

Therefore, the conditional expectation of tr(MST) given θ can be computed as

E[tr(MST)|θ] = tr(MSTθ)

+
1

q(m− 1)
E

tr
( m∑

i=1

eijeik − 1

m

(
m∑
i=1

eij

)(
m∑
i=1

eik

))
1≤j,k≤q


= tr(MSTθ) +

1

q(m− 1)

q∑
j=1

 m∑
i=1

E
[
e2ij
]
− 1

m
E

( m∑
i=1

eij

)2


= tr(MSTθ) +
1

q(m− 1)

q∑
j=1

(
m∑
i=1

Dij −
1

m

m∑
i=1

Dij

)
(3)

= tr(MSTθ) +
1

q(m− 1)

q∑
j=1

(
m− 1

m

) qm∑
i=1

Dij

= tr(MSTθ) +
1

qm

q∑
j=1

m∑
i=1

Dij

= tr(MSTθ) + tr(Dw2),
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where we use the facts that E
[
e2ij
]
= Dij for i = 1, . . . ,m, j = 1, . . . , q and

E

( m∑
i=1

eij

)2
 =

m∑
i=1

Dij to obtain (3).

Therefore, the theorem is proved.

3.1 Variable Selection Criteria based on Unbiased Estimators

Note from Theorem 3.1 that the naive estimators tr(MSE) and tr(MST)

are biased estimators of tr(MSEθ) and tr(MSTθ), respectively. Therefore, in

this paper, following Lahiri and Suntornchost [7], we propose an adjustment of the

adjusted R2 by replacing the naive estimators of tr(MSEθ) and tr(MSTθ) by

their unbiased and consistent estimators defined in the following theorem.

Theorem 3.2. Define tr(M̂SEθ) and tr(M̂STθ) as

tr(M̂SEθ) = tr(MSE)− tr(Dw1)

and tr(M̂STθ) = tr(MST)− tr(Dw2),

respectively, where tr(Dw1) =
1

q(m− p)

q∑
j=1

m∑
i=1

(1− x′
i(X

′X)−1xi)Dij and

tr(Dw2) =
1

qm

q∑
j=1

m∑
i=1

Dij . Then

1) tr(M̂SEθ) is an unbiased and consistent estimator of tr(MSEθ) , and

2) tr(M̂STθ) is an unbiased and consistent estimator of tr(MSTθ) .

Proof. The bias of tr(M̂SEθ) given θ can be computed as

E[tr(M̂SEθ)− tr(MSEθ)|θ] = E[tr(MSE)− tr(Dw1)|θ]− tr(MSEθ)

= E[tr(MSE)|θ]− tr(Dw1)− tr(MSEθ)

= tr(MSEθ) + tr(Dw1)− tr(Dw1)− tr(MSEθ)

= 0.

To show that tr(M̂SEθ) is consistent, we define, for k = 1, 2, . . . , q,

SSEk = y′
k(I−X(X′X)−1X′)yk,

and MSEk =
1

q(m− p)
y′
k(I−X(X′X)−1X′)yk.
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Note that SSEk/σ
2 is distributed as a chi-square distribution with the degree of

freedom of m − p . Therefore, the conditional variance of MSEk given θ can be

computed as

Var[MSEk|θ] = Var

[
SSEk

q(m− p)

∣∣∣θ]
=

σ4

(q(m− p))2
Var[SSEk/σ

2|θ]

=
σ4

(q(m− p))2
2(m− p)

=
2σ4

q2(m− p)

= O(m−1).

Consequently, the conditional variance of tr(M̂SEθ) given θ can be computed as

Var[tr(M̂SEθ)|θ] = Var[tr(MSE)− tr(Dw1)|θ]

= Var

[
q∑

k=1

MSEk

∣∣∣θ]

=

q∑
k=1

Var[MSEk|θ] +
q∑

i,j=1

i ̸=j

Cov[MSEi,MSEj |θ]

≤
q∑

k=1

Var[MSEk|θ] +
q∑

i,j=1

i ̸=j

√
Var[MSEi|θ] Var[MSEj |θ]

= O(m−1).

Therefore, we can show that tr(M̂SEθ) is an unbiased and consistent estimator

of tr(MSEθ).

By the same technique, we can show that tr(M̂STθ) is an unbiased and con-

sistent estimator of tr(MSTθ).

From the above theorem, we propose the Adj R2
hat = 1 − tr(M̂SEθ)

tr(M̂STθ)
as a

variable selection criterion.
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3.2 Positive Adjustments to the Unbiased Estimator

From the definitions of tr(M̂SEθ) and tr(M̂STθ) defined in Theorem 3.2, we

can see that in some situations, tr(M̂SEθ) and/or tr(M̂STθ) could be negative.

In this case, the Adj R2
hat may go out of the admissible range if either tr(M̂SEθ)

or tr(M̂STθ) is negative. Then the proposed adjusted R2 may be greater than

one.

Therefore, in this section, we propose a positive adjustment to the unbiased

estimators obtained in Theorem 3.2 by constructing a positive approximation of

x− y defined as follows.

Theorem 3.3. The g -function defined as

g(x, y) = x+
2x3

(
1− exp

((
y
x

)3))
y2
(
1 + exp

((
y
x

)3))
is a positive approximation of x− y when x, y > 0 such that y < 3

√
πx .

Proof. We will first show that the g -function is an approximation of x− y .

g(x, y) = x+
2x3

(
1− exp

((
y
x

)3))
y2
(
1 + exp

((
y
x

)3))
= x− 2x3

y2
tanh

(
1

2

(y
x

)3)
. (4)

Note that the first order Taylor Polynomial approximation of tanh

(
1

2

(y
x

)3)
is

1

2

(y
x

)3
. Applying the approximation to (4), we can show that g(x, y) ap-

proximates x −
(
2x3

y2

(
1

2

(y
x

)3))
= x − y , where the error term is bounded by

C

∞∑
k=1

y6k+1

x6k
for a constant C . Moreover, we can also show that the error term

approaches to 0 as
y

x
and y approach to 0.

To prove that the g -function is positive, we consider the function f defined as

f(z) = 1
2z

2 − tanh
(
1
2z

3
)
. Since f is nonnegative for all z ≥ 0, we can show that

the g -function is positive by substituting z =
y

x
.
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Note from Theorem 3.3 that the error in the approximation is small when
y

x
approaches to 0 which is the case when x − y is already positive. However,

our main goal in this section is to find an approximation of x − y such that

(1) it is the closet positive approximation when the original function is negative,

and (2) it is also a good approximation when the original function is positive.

While there are other positive approximations of x − y considered in literature,

for example, the h-function, h(x, y) =
2x

1 + exp( 2yx )
, established in Chatterjee and

Lahiri [4], we propose the g -function as an alternative positive approximation.

Comparing errors in approximations of the two functions, we can show that the

error in approximation of h-function is Rh = −x
(
tanh

(y
x

)
− y

x

)
and the error in

approximation of g -function is Rg = −2x3

y2

(
tanh

(
1

2

(y
x

)3)
− 1

2

(y
x

)3)
. Using

basic algebra techniques, we can mathematically prove that Rh > Rg when
y

x
<

√
2 but the inequality is reversed when

√
2 <

y

x
< 3

√
π . By considering the domain

of approximations, the g -function seems to be a better approximation than the

h-function.

Next, we apply Theorem 3.3 to obtain positive approximations to the tr(M̂SEθ)

and the tr(M̂STθ) defined in Theorem 3.2. The approximations are stated in the

following theorem.

Theorem 3.4. Define tr(M̂SEθ,gfunc) and tr(M̂STθ,gfunc) as

tr(M̂SEθ,gfunc) = g(tr(MSE), tr(Dw1))

and tr(M̂STθ,gfunc) = g(tr(MST), tr(Dw2)),

respectively. Then the following statements hold.

1) If tr(Dw1) < 3
√
π tr(MSE) , then tr(M̂SEθ,gfunc) is a positive approxima-

tion of tr(M̂SEθ) .

2) If tr(Dw2) < 3
√
π tr(MST) , then tr(M̂STθ,gfunc) is a positive approxima-

tion of tr(M̂STθ) .

Proof. It is obvious by its definition that tr(MSE) ≥ 0. To prove that tr(Dw1) ≥
0, we use the fact that I−X(X′X)−1X′ is symmetric and idempotent. Then each

of its main diagonal elements, 1 − x′
i(X

′X)−1xi , is non-negative. Consequently,

tr(Dw1) ≥ 0.
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However, the cases when either tr(MSE) = 0 or tr(Dw1) = 0 are trivial cases

where there is no regression error or no sampling error which are not of interest.

Therefore, we can consider only the case tr(MSE) > 0 and tr(Dw1) > 0. Hence,

under the condition that tr(Dw1) < 3
√
π tr(MSE), tr(M̂SEθ,gfunc) is a positive

approximation of tr(M̂SEθ).

The same concept can be applied to the tr(M̂STθ,gfunc). In particular,

tr(MST) ≥ 0 and tr(Dw2) ≥ 0 by their definitions. The trivial cases where

either tr(MST) = 0 or tr(Dw2) = 0 are not of interest in the context of our pa-

per and we consider only the case where tr(MST) > 0 and tr(Dw2) > 0. Hence,

under the condition that tr(Dw2) < 3
√
π tr(MST), tr(M̂STθ,gfunc) is a positive

approximation of tr(M̂STθ).

Therefore, we can use Adj R2
gfunc = 1 − tr(M̂SEθ,gfunc)

tr(M̂STθ,gfunc)
as an alternative

variable selection criterion.

3.3 Truncated Variable Selection Criteria

Since the Adj R2
hat is constructed from unbiased estimators of tr(MSEθ) and

tr(MSTθ), it approximates the Adj R2
true better than the positive adjustment

Adj R2
gfunc if there is no cases such that either tr(M̂SEθ) or tr(M̂STθ) is nega-

tive. However, if such cases occur, the positive adjustments outperform the unbi-

ased estimators. Therefore, we suggest users to use tr(M̂SEθ) and tr(M̂STθ) for

variable selection criteria but apply the g -transformation only if tr(M̂SEθ) and/or

tr(M̂STθ) are/is negative. In particular, consider new estimators of tr(MSEθ)

and tr(MSTθ) as follows:

tr(M̂SEθ,gtrunc) =

tr(M̂SEθ) if tr(M̂SEθ) ≥ 0

tr(M̂SEθ,gfunc) otherwise,

and tr(M̂STθ,gtrunc) =

tr(M̂STθ) if tr(M̂STθ) ≥ 0

tr(M̂STθ,gfunc) otherwise.

Consequently, we propose Adj R2
gtrunc = 1 − tr(M̂SEθ,gtrunc)

tr(M̂STθ,gtrunc)
as an alternative

variable selection criterion.
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4 Numerical Simulations

In simulation experiment, we compare different approximations for the true

variable selection criterion in multivariate linear regression in many different cases

of the covariance matrix presenting different correlation structures between differ-

ent response variables. In our simulation, we use covariates from the public-use

data for 775 U.S. largest counties from the 2005 Small Area Income and Poverty

Estimates (SAIPE) program of the U.S. Census Bureau to compare different ad-

justed R2 and simulate other variables by the following algorithm, multivariate

linear regression model:

θ = Xβ +V, (5)

where V = [v1 v2 . . . vq] , and [vi1, vi2, . . . , viq] ∼ Nq(0,C) for i = 1, . . . ,m .

1. Generate a positive definite matrix C = [c1 c2 . . . cq] in four cases:

(a) C is a diagonal matrix which elements were σ2 , i.e.

C =


σ2 0 · · · 0

0 σ2 . . .
...

...
. . .

. . . 0

0 · · · 0 σ2

 ,

where σ2 = 0.3511 is variance of covariates.

(b) C is a matrix with Var(ci) = σ2 and Cov(ci, cj) = γ2 for i ̸= j , i.e.

C =


σ2 γ2 · · · γ2

γ2 σ2 . . .
...

...
. . .

. . . γ2

γ2 · · · γ2 σ2

 ,

where σ2 = 0.3511 and γ2 = 0.225.

(c) C is a matrix with Var(ci) = σ2 and Cov(ci, cj) = γ2
ij for i ̸= j , i.e.

C =


σ2 γ2

12 · · · γ2
1q

γ2
21 σ2 . . .

...
...

. . .
. . . γ2

(q−1)q

γ2
q1 · · · γ2

q(q−1) σ2

 ,
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where σ2 = 0.3511 and γ2
ij(i ̸= j) ∼ U(0.01, 0.3511).

(d) C = σ2Γ = σ2PP′ is a positive definite matrix, where P is any lower

triangular matrix. In particular,

C = σ2


p11 0 · · · 0

p21 p22
. . .

...
...

. . .
. . . 0

pq1 · · · pq(q−1) pqq




p11 p21 · · · pq1

0 p22
. . .

...
...

. . .
. . . pq(q−1)

0 · · · 0 pqq

 ,

where σ2 = 0.3511, pii ∼ U(1.2, 2) and pij(i > j) ∼ U(0.9, 1.1)

2. Using real covariates X from the SAIPE 2005 data.

3. Using β =

[
0.1449968 0.949318 0.2822066

0.4029203 0.699723 0.9549865

]
, we generate θ using mul-

tivariate linear regression model in (5).

4. Generate sampling variance Dij ∼ U(σ2, σ2 + r), where r is the range of

variance from SAIPE 2005 data, generate Y from the sampling model

Y = θ +E,

where eij ∼ N(0, Dij) for i = 1, . . . ,m and j = 1, . . . , q .
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The results shown in the following tables and figures are presented using the

following notations:

• Adj R2
true = 1− tr(MSEθ)

tr(MSTθ)
, the true adjusted R2 ,

• Adj R2
naive = 1− tr(MSE)

tr(MST)
, the naive adjusted R2 that ignores the sampling

errors in y ,

• Adj R2
hat = 1− tr(M̂SEθ)

tr(M̂STθ)
, an adjustment to naive adjusted R2 that could

go out of range,

• Adj R2
hfunc = 1− tr(M̂SEθ,hfunc)

tr(M̂STθ,hfunc)
, an adjustment to naive adjusted R2 by

the h-function,

• Adj R2
gfunc = 1− tr(M̂SEθ,gfunc)

tr(M̂STθ,gfunc)
, an adjustment to naive adjusted R2 by

the g -function,

• Adj R2
htrunc = 1− tr(M̂SEθ,htrunc)

tr(M̂STθ,htrunc)
, the truncation version of the h-function

approximation,

• Adj R2
gtrunc = 1− tr(M̂SEθ,gtrunc)

tr(M̂STθ,gtrunc)
, the truncation version of the g -function

approximation.

In our simulation, we generate 1000 samples using the data generation algo-

rithm explained above and different versions of proposed adjusted R2 . For each

sample, we compute true adjusted R2 , naive adjusted R2 and different proposed

adjusted R2 ’s.

Tables and figures show comparisons of different adjusted R2 for four different

versions of the covariance matrix in the multivariate linear regression models. The

numbers presented in the tables are the 1st , 10th , 25th , 50th , 75th , 90th and

100th percentiles, respectively. Figures 1b - 8b show plots of Adj R2
hfunc and

Adj R2
gfunc in different cases.
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Percentiles 1 10 25 50 75 90 100

Case (a.1): C = σ2I, where σ2 = 0.3511

Adj R2
true 0.9497 0.9514 0.9524 0.9534 0.9542 0.9550 0.9573

Adj R2
naive 0.8285 0.8437 0.8438 0.8548 0.8509 0.8453 0.8499

Adj R2
hat 0.9319 0.9512 0.9512 0.9611 0.9567 0.9552 0.9610

Adj R2
hfunc 0.9170 0.9328 0.9329 0.9416 0.9380 0.9356 0.9401

Adj R2
gfunc 0.9312 0.9497 0.9497 0.9591 0.9550 0.9534 0.9588

Adj R2
htrunc 0.9319 0.9512 0.9512 0.9611 0.9567 0.9552 0.9610

Adj R2
gtrunc 0.9319 0.9512 0.9512 0.9611 0.9567 0.9552 0.9610

Case (a.2): C = σ2I, where σ2 = 0.3511× 0.04

Adj R2
true 0.9979 0.9980 0.9980 0.9980 0.9981 0.9981 0.9982

Adj R2
naive 0.9185 0.9201 0.9224 0.9253 0.9195 0.9159 0.9181

Adj R2
hat 0.9950 0.9992 1.0000 1.0012 0.9982 0.9943 0.9943

Adj R2
hfunc 0.9768 0.9790 0.9800 0.9812 0.9784 0.9757 0.9763

Adj R2
gfunc 0.9904 0.9930 0.9936 0.9945 0.9924 0.9898 0.9899

Adj R2
htrunc 0.9950 0.9992 1.0000 0.9812 0.9982 0.9943 0.9943

Adj R2
gtrunc 0.9950 0.9992 1.0000 0.9945 0.9982 0.9943 0.9943

Table 1: Various percentiles of different adjusted R2 ’s from 1000 experiments in

case (a)
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Percentiles 1 10 25 50 75 90 100

Case (b.1):
C = (cij), where cii = σ2 = 0.3511,

cij(i ̸= j) = γ2 = 0.225

Adj R2
true 0.9484 0.9507 0.9521 0.9533 0.9545 0.9555 0.9599

Adj R2
naive 0.8505 0.8488 0.8485 0.8564 0.8470 0.8497 0.8563

Adj R2
hat 0.9549 0.9506 0.9518 0.9619 0.9515 0.9552 0.9596

Adj R2
hfunc 0.9369 0.9339 0.9345 0.9425 0.9339 0.9369 0.9412

Adj R2
gfunc 0.9534 0.9493 0.9504 0.9599 0.9501 0.9536 0.9579

Adj R2
htrunc 0.9549 0.9506 0.9518 0.9619 0.9515 0.9552 0.9596

Adj R2
gtrunc 0.9549 0.9506 0.9518 0.9619 0.9515 0.9552 0.9596

Case (b.2):
C = (cij), where cii = σ2 = 0.3511× 0.04,

cij(i ̸= j) = γ2 = 0.225× 0.04

Adj R2
true 0.9978 0.9979 0.9980 0.9980 0.9981 0.9981 0.9983

Adj R2
naive 0.9227 0.9204 0.9241 0.9239 0.9259 0.9221 0.9252

Adj R2
hat 0.9985 0.9962 0.9982 1.0012 0.9994 0.9980 1.0002

Adj R2
hfunc 0.9794 0.9778 0.9797 0.9809 0.9807 0.9791 0.9808

Adj R2
gfunc 0.9929 0.9914 0.9928 0.9944 0.9936 0.9925 0.9940

Adj R2
htrunc 0.9985 0.9962 0.9982 0.9809 0.9994 0.9980 0.9808

Adj R2
gtrunc 0.9985 0.9962 0.9982 0.9944 0.9994 0.9980 0.9940

Table 2: Various percentiles of different adjusted R2 ’s from 1000 experiments in

case (b)
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Percentiles 1 10 25 50 75 90 100

Case (c.1):
C = (cij), where cii = σ2 = 0.3511,

cij(i ̸= j) = γ2
ij ∼ U(0.01, 0.3511)

Adj R2
true 0.9487 0.9509 0.9520 0.9532 0.9544 0.9555 0.9584

Adj R2
naive 0.8408 0.8477 0.8547 0.8512 0.8465 0.8501 0.8498

Adj R2
hat 0.9461 0.9518 0.9592 0.9596 0.9463 0.9581 0.9523

Adj R2
hfunc 0.9291 0.9343 0.9405 0.9397 0.9307 0.9386 0.9352

Adj R2
gfunc 0.9449 0.9504 0.9574 0.9576 0.9452 0.9562 0.9509

Adj R2
htrunc 0.9461 0.9518 0.9592 0.9596 0.9463 0.9581 0.9523

Adj R2
gtrunc 0.9461 0.9518 0.9592 0.9596 0.9463 0.9581 0.9523

Case (c.2):
C = (cij), where cii = σ2 = 0.3511× 0.04,

cij(i ̸= j) = γ2
ij = 0.04× g, where g ∼ U(0.01, 0.3511)

Adj R2
true 0.9979 0.9979 0.9980 0.9980 0.9981 0.9981 0.9983

Adj R2
naive 0.9228 0.9231 0.9229 0.9251 0.9291 0.9288 0.9256

Adj R2
hat 0.9967 0.9979 0.9962 0.9979 1.0038 1.0022 1.0024

Adj R2
hfunc 0.9787 0.9793 0.9785 0.9799 0.9833 0.9826 0.9818

Adj R2
gfunc 0.9918 0.9926 0.9915 0.9928 0.9959 0.9952 0.9950

Adj R2
htrunc 0.9967 0.9979 0.9962 0.9979 0.9833 0.9826 0.9818

Adj R2
gtrunc 0.9967 0.9979 0.9962 0.9979 0.9959 0.9952 0.9950

Table 3: Various percentiles of different adjusted R2 ’s from 1000 experiments in

case (c)
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Percentiles 1 10 25 50 75 90 100

case (d.1):
C = σ2Γ = σ2PP′, where σ2 = 0.3511,

pii ∼ U(1.2, 2), pij(i > j) ∼ U(0.9, 1.1)

Adj R2
true 0.8215 0.8280 0.8320 0.8362 0.8400 0.8439 0.8552

Adj R2
naive 0.7444 0.7413 0.7533 0.7492 0.7464 0.7653 0.7732

Adj R2
hat 0.8237 0.8196 0.8326 0.8328 0.8290 0.8465 0.8525

Adj R2
hfunc 0.8190 0.8151 0.8277 0.8273 0.8237 0.8410 0.8471

Adj R2
gfunc 0.8237 0.8196 0.8325 0.8328 0.8290 0.8465 0.8524

Adj R2
htrunc 0.8237 0.8196 0.8326 0.8328 0.8290 0.8465 0.8525

Adj R2
gtrunc 0.8237 0.8196 0.8326 0.8328 0.8290 0.8465 0.8525

case (d.2):
C = σ2Γ = σ2PP′, where σ2 = 0.3511× 0.04,

pii ∼ U(1.2, 2), pij(i > j) ∼ U(0.9, 1.1)

Adj R2
true 0.9915 0.9918 0.9920 0.9922 0.9924 0.9926 0.9930

Adj R2
naive 0.9210 0.9203 0.9171 0.9193 0.9175 0.9157 0.9198

Adj R2
hat 0.9913 0.9945 0.9907 0.9959 0.9918 0.9918 0.9956

Adj R2
hfunc 0.9758 0.9771 0.9744 0.9774 0.9750 0.9746 0.9774

Adj R2
gfunc 0.9881 0.9903 0.9874 0.9911 0.9882 0.9881 0.9909

Adj R2
htrunc 0.9913 0.9945 0.9907 0.9959 0.9918 0.9918 0.9956

Adj R2
gtrunc 0.9913 0.9945 0.9907 0.9959 0.9918 0.9918 0.9956

Table 4: Various percentiles of different adjusted R2 ’s from 1000 experiments in

case (d)
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(a) Plot of different adjusted R2 ’s. (b) Plot of comparison of Adj R2
hfunc

and Adj R2
gfunc .

Figure 1: Plot of different adjusted R2 ’s in case (a.1).

(a) Plot of different adjusted R2 ’s. (b) Plot of comparison of Adj R2
hfunc

and Adj R2
gfunc .

Figure 2: Plot of different adjusted R2 ’s in case (a.2).
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(a) Plot of different adjusted R2 ’s. (b) Plot of comparison of Adj R2
hfunc

and Adj R2
gfunc .

Figure 3: Plot of different adjusted R2 ’s in case (b.1).

(a) Plot of different adjusted R2 ’s. (b) Plot of comparison of Adj R2
hfunc

and Adj R2
gfunc .

Figure 4: Plot of different adjusted R2 ’s in case (b.2).
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(a) Plot of different adjusted R2 ’s. (b) Plot of comparison of Adj R2
hfunc

and Adj R2
gfunc .

Figure 5: Plot of different adjusted R2 ’s in case (c.1).

(a) Plot of different adjusted R2 ’s. (b) Plot of comparison of Adj R2
hfunc

and Adj R2
gfunc .

Figure 6: Plot of different adjusted R2 ’s in case (c.2).
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(a) Plot of different adjusted R2 ’s. (b) Plot of comparison of Adj R2
hfunc

and Adj R2
gfunc .

Figure 7: Plot of different adjusted R2 ’s in case (d.1).

(a) Plot of different adjusted R2 ’s. (b) Plot of comparison of Adj R2
hfunc

and Adj R2
gfunc .

Figure 8: Plot of different adjusted R2 ’s in case (d.2).
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From Tables 1 – 4, the naive adjusted R2 ’s are smaller than the true adjusted

R2 but our proposed adjusted R2 ’s can cut down those biases. Comparing perfor-

mances between the two positive approximations, Adj R2
hfunc and Adj R2

gfunc , we

can see that the Adj R2
gfunc is closer to the Adj R2

hat than the Adj R2
hfunc . Con-

sidering the situations when either tr(M̂SEθ) or tr(M̂STθ) could be negative, we

can see that there is no cases such that at least one of the two values is negative

in cases (a.1) – (d.1). However, when we reduce the variances of regression error

terms by a factor of 0.04, we can see some negative values as follows. In case (a.2),

there are 276 cases such that either tr(M̂SEθ) or tr(M̂STθ) is negative. In case

(b.2), there are 247 cases such that either tr(M̂SEθ) or tr(M̂STθ) is negative.

In case (c.2), there are 235 cases such that either tr(M̂SEθ) or tr(M̂STθ) is neg-

ative. In case (d.2), there are 4 cases such that either tr(M̂SEθ) or tr(M̂STθ)

is negative. Therefore, the Adj R2
gtrunc is recommended for these cases.

5 Conclusion

In this study, we have examined the possibility of extending the bias reduction

of variable selection criteria proposed in Lahiri and Suntornchost [7] to multivariate

linear regression models subject to sampling errors. Moreover, we have proposed

a new positive approximation function, g -function, which is shown to be a better

approximation than the h-function used in their paper. From our study, we found

that the naive adjusted R2 always underestimate the true adjusted R2 , but our

proposed adjusted R2 , Adj R2
hat reduce this underestimation. This simple adjust-

ment works well except in some cases when it exceeds the suitable range. In these

cases, adjustments by the g -function, Adj R2
gfunc is helpful. To accommodate all

situations, the Adj R2
gtrunc is recommended.
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