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1 Introduction

Linear regression is a statistical technique to determine the linear relationship
between variable of interest and other observed variables, known as covariates, by
examining sample observations. The linear relationship can often be modelled in
many different ways attempting to use all covariates or only a subset of covariates
when many covariates are measured. There are a variety of variable selection crite-
ria available in literatures such as RMSE (root mean square error), Adjusted R?,
AIC, BIC. In general, these variable selection criteria are used without concerning
sampling errors.

In 2015, Lahiri and Suntornchost [7] showed that sampling errors could cause
bias in the variable selection criteria statistics in univariate linear regression mod-
els. In their study, they suggested ways to adjust those variable selection statistics
to reduce the biasedness for the Fay-Herriot model when regression error terms are
assumed to be independent and identically distributed. Later in 2017, Lenghoe
and Suntornchost [8] extended the methods to derive variable selection criteria
statistics for a general case when the regression error terms are not assumed to be
independent and identically distributed allowing for the possibility of correlated
regression errors.

In real world applications, multivariate linear regression models have brought
interests from researchers worldwide due to availabilities of data and technologies
and the flexibility in allowing correlations between different variables of interest.
There are several applications of multivariate linear regression models, for example,
Aleixandre-Tud and Alvarez [1] applied the model to predict wine quality based on
the definition of chemical and phenolic parameters of grapes and wines harvested
at different ripening levels; Cserhti and Szgyi [5] applied the model to extract of
maximal information of large data sets of evaluation of chromatographic retention
data measured under different conditions; and Seidou, Asselin and Ouarda [11]
applied the model to explain key variables in hydrology and climate sciences.

In multivariate linear regression models, many variables of interest will be in-
cluded in the model. Therefore, the effect from sampling errors to the regression
analysis could be more severe than those of univariate models. Therefore, in this
study, we extend the techniques proposed in Lahiri and Suntornchost [7] to adjust
variable selection criteria statistics for multivariate linear regression models subject
to sampling errors. The organization of this paper is as follows. In section 2, we

introduce the multivariate linear regression models and variable selection criteria.
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In section 3, we establish some adjustments for variable selection criteria statistics
for multivariate linear regression models. Simulation results and discussions are

provided in Sections 4 and 5, respectively.

2 The Multivariate Linear Regression Models

The multivariate linear regression considered in this paper is in the form
Y =X +e, (1)

where Y is an m X ¢ matrix of response variables, X is an m X p matrix of
covariates (m > p), rank(X) = p, B is a p X ¢ matrix of unknown regression
coefficients and € = [ &1 €2 ... €, ] is an m x ¢ matrix of error terms with mean
zero and covariance matrix Cov (g;)=0?I for i = 1,2,...,q , {&;,i = 1,...,q}
are not assumed to be uncorrelated.

Therefore, following [6] and [9], the least squares estimator 3 is then given by

B=|B11B2] - By | =XX)X [y1 |ya] - | ¥q],
or equivalently
B=(XX)"'X"Y. (2)

From model in (1) and the least squares estimator (2), we can express the sum
of squared errors and cross product matrix SSE and the total sum of squares and

cross product matrix SST as quadratic forms in Y as follows

SSE = Y/(I - X(X'X)"'X")Y,
SST=Y'(I-m 'J)Y,

where J is an m X m matrix of ones.

Following [3] and [12] to define variable selection criteria for multivariate linear
regression models, we can minimize some quadratic forms of SSE and SST, for
example, the trace, the determinant, or the largest eigenvalue. In this study, we
consider the trace function. In particular, the variable selection criterion consid-
ered in this study is the Adjusted R? defined as

e, tr(MSE)  tr(SSE)/(¢(m —p))
Adj B =1 = £ vram) = 1~ ((88T) /(g(m — 1))

where m is the sample size, ¢ is the number of response variables and p is the
number of covariates.
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3 Methodology

In this work, we consider the multivariate linear regression model defined as
0=XpB+V,

where @ is an m X ¢ matrix of g unobserved response variables of m individuals
and V = [vq vy ... v, is the matrix of error terms, where vi ~ N,,(0,0°I)
(k=1,...,q) are random vectors.

We are interested in the situation where the response variable 0 is not observed
but it is approximated by the observed value Y, where the relation between 6

and Y is described by the sampling model
Y=0+E,

where E = (e;;) is an m x ¢ matrix of sampling errors assuming that the e;; ~
N(0,D;;) (1 =1,...,m, j =1,...,q) are independent over ¢,j. Moreover, we
assume that @ and E are independent.

In many situations, the response variable 0;(¢ = 1,...,q) is replaced by y;
that ignores sampling errors and use variable selection criteria. This causes un-
biased in estimating variable selection criteria statistics which is shown in Lahiri
and Suntornchost [7] and Lenghoe and Suntornchost [8] for the univariate linear
regression models. In this study, we extend the two studies to examine errors in
approximating the true variable selection criterion, Adj R?, by the naive variable
selection criterion in presence of sampling errors for multivariate linear regres-
sion models. Moreover, we adapt their methods to derive some variable selection
criteria for multivariate linear regression models. Following their techniques, we
first examine the effect of sampling errors on the naive estimates tr(MSE) and
tr(MST) conditional on 6.

Theorem 3.1. The conditional expectations of tr(MSE) and tr(MST) given 6

are respectively defined as:

E [tr(MSE)| 6] = tr(MSEg) + tr(Dy1),
E [tr(MST)| 6] = tr(MSTg) + tr(Dys2),

q

m ¢ m
Z Z ]. X X X) Xz)D'LJ and tr w2 qim Z Z Dlj
j=11i=1 j=11i=1

1
where tr(Dy1) = ——
(D) q(m — p)
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Proof. The conditional expectation of MISE given 6 can be computed as

E[MSE|§] = E {q(zs?m‘a}

-1 pya - xxx)IX)Y]

q(m —p)
1
= ——E[(0+E)I-XXX)"'X')(0+E)6
o p— I( )( (X7X) ™ X)( )16]
1
=—E'(I-X(XX)"'X)0+6(1-XXX)"'X)E
A p—— [0 (X'X)™ X ( (X'X)™'X)
+E(I-X(X'X)"'X)0+E(I-X(X'X)'X)E|0]
1
= —[SSEp + E[E'(I - X(X'X)'X"E
) [SSBo + B/ - X(X'X) ' X) ]
= MSEg + —— ( <Zelj €ik — Zzemelkx X'X > s
i=1 =1 1<5,k<q
where we use the facts that 8 and E are independent, E[elj] =0fori=1,...,m,
j=1,...,q and E(I-X(X'X)"'X")E (Z €ijeik — Z Z eijernx;(X'X >
i=1 [=1 1<j,k<q

to obtain the last two equations.
Consequently, the conditional expectation of tr(MSE) given 6 can be computed

as

E[tr(MSE)|0] = tr(MSEy)

1 m m m
+ 7_) E |tr (Z €ijeik — Z Z eijelkx; (X’X)_1X1>
i=1 1<j,k<q

=1 =1

q m m m
Z (Z > Eleijen] % (X'X) ! >
=1 =1

J:1 i=1
q m
= r(MSEp) + = ZZ (1= x{(X'X)"'x;) E [e})]
j:l i=1
qg m
tr(MSEg) + ZZ (1 = x;(X'X)""%;) Dy

=11

<.
I
—

= tr(MSEp) + tr(Dy1),

where we use the fact that E[e?j] =D;; fori=1,...,mand j =1,...,q to
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obtain the second to last equation.

Similarly, the conditional expectation of MST given 6 can be computed as

E[MST|6] = E [q(SST)H

m—1
1
=—E[YI-m'2)Y|0
o) FIY )Y6)
1
=—E[@+EYT-m'J)0+E)|6
prEm— [( )'( ) )|0]
1
=—EOI-m'DN0+0IT-m ' HE+ET-m'3)0
S PO 6 +0/( JE +E/( )
+E(I1-m 'J)E|6]
1
= ——[SSTy + E[E'(I-m™*
S 1) [SSTe + BIE/(L—m )R]
— MSTG + —— ( (Z €ij€ik — — <Z ezg) <Z eik)) )
i=1 1<j,k<q
where we use the facts that 8 and E are independent, Ele;;] =0 for i =1,...,m,
j=1,....,qand E'I—m lJ)E = (Z €ijCik — ooy (Z e,;j> (Z eik>>
i=1 1=1 i=1 1<j,k<q

to obtain the last two equations.

Therefore, the conditional expectation of tr(MST) given 8 can be computed as

E[tr(MST)|0] = tr(MST)

1 m m m
+ 7( ) E |tr (Z €ij€ik — <Z e”> <Z eik) )
am i=1 = 1<j,k<q

(MSTe)+ﬁZ ZE[ - F (Z%)
— tr(MSTg) + —— > 3 Dij— — Em:D” (3)
(m—1) j=1 \i=1 i=1
1 L /m—1) <&
= tr(MSTyg) + Py ; ( —~ ) 2 D
j=114=1

= tr(MSTy) + tr(Dyz2),
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where we use the facts that E [efj] =Dy fori=1,....m, j =1,...,¢ and
m 2 m
<Z eij> = ZDU to obtain (3).
i=1 i=1
Therefore, the theorem is proved. O

3.1 Variable Selection Criteria based on Unbiased Estimators

Note from Theorem 3.1 that the naive estimators tr(MSE) and tr(MST)
are biased estimators of tr(MSEg) and tr(MSTy), respectively. Therefore, in
this paper, following Lahiri and Suntornchost [7], we propose an adjustment of the
adjusted R? by replacing the naive estimators of tr(MSEg) and tr(MSTg) by

their unbiased and consistent estimators defined in the following theorem.

Theorem 3.2. Define tr(l\//IS\Eg) and tr(l\ﬁg) as

tr(MSEg) = tr(MSE) — tr(D,1)

and tr(MSTg) = tr(MST) — tr(Dys2),
1 m
respectively, where tr(D = — 1 —x/(X'X)"'x;)D;; and
Y ( wl) q(m_p) ;;( z( ) Z) J
1 e
tr( — D;;. T
qm Z Z j- Then
j=11i=1
1) tr(l\//I-STEg) is an unbiased and consistent estimator of tr(MSEg), and
2) tr(l\//IS\Tg) is an unbiased and consistent estimator of tr(IMSTy).
Proof. The bias of tr(l\//,[S\Eg) given 6 can be computed as
E[tr(l\ﬁg) — tr(MSEyp)|0] = E[tr(MSE) — tr(D,1)|0] — tr(MSEyg)
= E[tr(MSE)|0] — tr(Dy1) — tr(MSEyg)

= tr(MSEg) + tr(Dy1) — tr(Dy1) — tr(MSEyp)
=0.

To show that tr(l\//I-STEB) is consistent, we define, for k =1,2,...,¢q,

SSE = yi(I - X(X'X) " 'X')ys,
1
and MSE, = —— v/ (I - X(X’X)" X/
k q(m_p)}’k( ( ) )Yk
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Note that SSEj/o? is distributed as a chi-square distribution with the degree of
freedom of m — p. Therefore, the conditional variance of MSEj given 6 can be

computed as

Var[MSE4|6] = Var {SSE’“) H

g(m —p
4
= 0-7 ar 0'2
= m—py VO BSE/o16]
0.4
= m )
_ 204
q?(m —p)
=0(m™1).

Consequently, the conditional variance of tr(l\TSTBg) given 6 can be computed as
Var[tr(m9)|0] = Var[tr(MSE) — tr(D,,1)|0]

zq:MSEk‘H

k=1

= Var

q
Var[MSE|6] + > Cov[MSE;, MSE,|6]
ij=1
i#]

I
M=

x>
Il
—

q q
<3 Var[MSE,[8] + Y \/Var|MSE;|0] Var[MSE; 6]
k=1 ij=1
i#£]
=0(m™1).

Therefore, we can show that tr(l\TSTEg) is an unbiased and consistent estimator
of tr(MSEg).
By the same technique, we can show that tr(MSTg) is an unbiased and con-

sistent estimator of tr(MSTy). O
tr(MSE
From the above theorem, we propose the Adj R,%at =1- u as a
tI‘(MSTg)

variable selection criterion.
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3.2 Positive Adjustments to the Unbiased Estimator

From the definitions of tr(mg) and tr(hﬁg) defined in Theorem 3.2, we
can see that in some situations, tr(l\mg) and/or tr(l\mg) could be negative.
In this case, the Adj R?_, may go out of the admissible range if either tr(l\//IS\Eg)
or tr(l\//IS\Tg) is negative. Then the proposed adjusted R? may be greater than
one.

Therefore, in this section, we propose a positive adjustment to the unbiased
estimators obtained in Theorem 3.2 by constructing a positive approximation of
x — y defined as follows.

Theorem 3.3. The g-function defined as
223 (1 — exp ((%)3))
()

is a positive approzimation of x —y when x,y > 0 such that y < ¥/7x.

g(x,y) =+

Proof. We will first show that the g-function is an approximation of z —y.

B 223 (1 — exp ((%)3)>
g(z,y) =z + P (1+exp <(%)3))
=z — 2;23 tanh (; (i)3> . (4)

1 3
Note that the first order Taylor Polynomial approximation of tanh (2 (y> >
T

1 3
is 3 (Q) . Applying the approximation to (4), we can show that g(x,y) ap-
x

. 223 (1 ry\3 .
proximates = — ( — 3 (—) = x — y, where the error term is bounded by
Yy x

>, 6k+1
>3

k=1

o~ lor a constant C'. Moreover, we can also show that the error term
x

approaches to 0 as y and y approach to 0.
x
To prove that the g-function is positive, we consider the function f defined as
flz) = %22 — tanh (%z‘a) . Since f is nonnegative for all z > 0, we can show that

the g-function is positive by substituting z = Q' O
x
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Note from Theorem 3.3 that the error in the approximation is small when
L4 approaches to 0 which is the case when z — y is already positive. However,
gur main goal in this section is to find an approximation of x — y such that
(1) it is the closet positive approximation when the original function is negative,
and (2) it is also a good approximation when the original function is positive.

While there are other positive approximations of x — y considered in literature,

for example, the h-function, h(z,y) = —————.—, established in Chatterjee and
1 +exp()

Lahiri [4], we propose the g-function as an alternative positive approximation.

Comparing errors in approximations of the two functions, we can show that the

error in approximation of h-functionis R; = —x (tanh (y) - g) and the error in
x x
223 1 3 1 3
approximation of g-function is R, = 2 (tanh ( = (Q) - = (ﬂ) . Using
y>? 2 \z 2 \zx

basic algebra techniques, we can mathematically prove that R;, > R, when J <
T

/2 but the inequality is reversed when V2 < ¥ < /7. By considering the domain
of approximations, the g-function seems to lg)ce a better approximation than the
h-function.

Next, we apply Theorem 3.3 to obtain positive approximations to the tr(l\//IS\Eg)
and the tr(l\fS\Tg) defined in Theorem 3.2. The approximations are stated in the

following theorem.

Theorem 3.4. Define tr(l\//IS\E]97gfunc) and tr(l\mg,gﬂmc) as

tr(MSEg.g func) = g(tr(MSE), tr(Dy1))
and tr(MSTo.g func) = g(tr(MST), tr(Dy5)),

respectively. Then the following statements hold.

1) If tr(Dy1) < I/mtr(MSE), then tr(l\//IS\Eg,gfmc) is a positive approxima-
tion of tr(MSEg).

2) If tr(Dys2) < Imtr(MST), then tr(l\/ds\Tg,ng) 18 a positive approrima-
tion of tr(MSTy).

Proof. It is obvious by its definition that tr(MSE) > 0. To prove that tr(Dy1) >
0, we use the fact that I —X(X’'X)~"!X’ is symmetric and idempotent. Then each
of its main diagonal elements, 1 — x;(X'X)"1x;, is non-negative. Consequently,
tr(Dy1) > 0.
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However, the cases when either tr(MSE) =0 or tr(D,,1) = 0 are trivial cases
where there is no regression error or no sampling error which are not of interest.
Therefore, we can consider only the case tr(MSE) > 0 and tr(D,) > 0. Hence,
under the condition that tr(Dy,1) < /7 tr(MSE), tr(l\//Iﬁ*]97gfu,Lc) is a positive
approximation of tr(mg).

The same concept can be applied to the tr(l\fﬁ‘g,gfunc). In particular,
tr(MST) > 0 and tr(Dy,2) > 0 by their definitions. The trivial cases where
either tr(MST) = 0 or tr(Dy2) = 0 are not of interest in the context of our pa-
per and we consider only the case where tr(MST) > 0 and tr(D,2) > 0. Hence,
under the condition that tr(D,s2) < &/m tr(MST), tr(l\fs\'l‘g,gfum) is a positive

approximation of tr(l\fSTI‘g). O
tr(MSE
Therefore, we can use Adj R?]fum =1- w as an alternative

tr(MSTg,gfunC)
variable selection criterion.

3.3 Truncated Variable Selection Criteria

Since the Adj R, is constructed from unbiased estimators of tr(MSEg) and
tr(MSTy), it approximates the Adj R?.,. better than the positive adjustment
Adj Rgfunc if there is no cases such that either tr(l\TST*Jg) or tr(l\//Iﬁg) is nega-
tive. However, if such cases occur, the positive adjustments outperform the unbi-
ased estimators. Therefore, we suggest users to use tr(mg) and tr(l\TS\Tg) for
variable selection criteria but apply the g-transformation only if tr(mg) and/or
tr(l\TS’\I‘g) are/is negative. In particular, consider new estimators of tr(MSEg)

and tr(MSTy) as follows:

— tr I\WS\E if tr 1\//IS\E >0
tr(MSEG,gtrunc) = (/\9) ( 0) n
tr(MSEg g func) otherwise,
__ tr(MST if tr(MSTg) > 0
and tr(MSTo_gtrunc) = (MSTs) (MST5) 2
tr(MSTg gfunc) oOtherwise.
tr(MSEg. gtrunc
Consequently, we propose Adj Rgtmnc =1- r(/\g’gt ) as an alternative
tr(MSTG,gtrunc)

variable selection criterion.
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4 Numerical Simulations

In simulation experiment, we compare different approximations for the true
variable selection criterion in multivariate linear regression in many different cases
of the covariance matrix presenting different correlation structures between differ-
ent response variables. In our simulation, we use covariates from the public-use
data for 775 U.S. largest counties from the 2005 Small Area Income and Poverty
Estimates (SAIPE) program of the U.S. Census Bureau to compare different ad-
justed R? and simulate other variables by the following algorithm, multivariate

linear regression model:

0=XB+V, (5)
where V = [vi va ... vy], and [vi1,v:2,...,0ig] ~ Ng(0,C) for i =1,...,m.
1. Generate a positive definite matrix C = [c; ¢z ... ¢4] in four cases:

(a) C is a diagonal matrix which elements were o2, i.e.

a2 0 0

c_ 0 o2 7
0
0 0 o2

where 02 = 0.3511 is variance of covariates.

b) C is a matrix with Var(c;) = 02 and Cov(c;,c;) =2 for i # j, i.e.
j

0.2 ,72 ,72
2 0,2
c=|" ,
.
,.YQ 72 0.2

where 02 = 0.3511 and 2 = 0.225.
(c) C is a matrix with Var(c;) = ¢® and Cov(c;,c;) = ~;; for i # j, ie.

2 2 2

o Y12 T Viq
) .

C =

’Y221 g
. 2 ?
Ta—1)q

L
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where 02 = 0.3511 and ~;(i # j) ~ U(0.01,0.3511).

(d) C =0’ = o?PP’ is a positive definite matrix, where P is any lower

triangular matrix. In particular,

pin 0 e 01 |p11 par - Dq1
C = o2 P21 P22 0 pe -
. t. S, O : t. . S, . pq(qil)
DPq1 =t Pq(g—1) Paq o - 0 Pqq

where 02 = 0.3511, p;; ~ U(1.2,2) and p;;(i > j) ~ U(0.9,1.1)
2. Using real covariates X from the SAIPE 2005 data.

0.1449968 0.949318 0.2822066
0.4029203 0.699723 0.9549865 |’
tivariate linear regression model in (5).

3. Using B = we generate 6 using mul-

4. Generate sampling variance D;; ~ U(c? 02 + ), where r is the range of
variance from SAIPE 2005 data, generate Y from the sampling model

Y =0+E,

where e;; ~ N(0,D;;) for i=1,...,mand j=1,...,q.
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The results shown in the following tables and figures are presented using the
following notations:

tr(MSE
e Adj R?.,. =1— ‘;EI\/ISTZ;’ the true adjusted R? |
tr(MSE
o Adj R2,,..= 1_t11iE1\/[ST;’ the naive adjusted R? that ignores the sampling
errors in y,
tr(MSE
o Adj R%at =1- u, an adjustment to naive adjusted R? that could
tI‘(MSTQ)

go out of range,

tf(l\fs\Egyhfunc)

o AdjRZ ;. =1— ———
hf tI‘(MSTgvhfunc)

, an adjustment to naive adjusted R? by

the h-function,

tr(MSE
o Adj RY;,,..=1- w, an adjustment to naive adjusted R? by
tI‘(MSngfunc)
the g-function,
tr I\TS\E
o Adj RZ, \ne=1— (/\e’htm"c) , the truncation version of the h-function
tr(MSTG,htrunc)

approximation,

1— tr(me,gtrunc)

o Adj Rgmmc = — , the truncation version of the g-function
tr(MSTO,gtrunc)
approximation.

In our simulation, we generate 1000 samples using the data generation algo-
rithm explained above and different versions of proposed adjusted R2. For each
sample, we compute true adjusted R?, naive adjusted R? and different proposed
adjusted R?’s.

Tables and figures show comparisons of different adjusted R? for four different
versions of the covariance matrix in the multivariate linear regression models. The
numbers presented in the tables are the 1%, 10*, 25 50" 75t 90" and
100" percentiles, respectively. Figures 1b - 8b show plots of Adj Rifunc and
Adj R? in different cases.

gfunc
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Percentiles 1 10 25 50 75 90 100
Case (a.1):  C = 0?1, where 02 = 0.3511

Adj R2,. 09497 09514 09524 09534 09542 0.9550 0.9573
Adj R?,,.. 0.8285 0.8437 0.8438 0.8548 0.8509 0.8453  0.8499

Adj R, 0.9319 0.9512 09512 0.9611 0.9567 0.9552 0.9610
Adj R,%fmc 0.9170 0.9328 0.9329 0.9416 0.9380 0.9356 0.9401

Adj R, 0.9312 0.9497 0.9497 09591 0.9550 0.9534 0.9588
Adj R?,. ~ 09319 09512 09512 09611 0.9567 0.9552  0.9610
Adj R,,.\ne 09319 0.9512  0.9512  0.9611  0.9567 0.9552  0.9610
Case (a.2): C = 01, where 02 = 0.3511 x 0.04

Adj RZ.,. 0.9979  0.9980 0.9980 0.9980 0.9981 0.9981  0.9982
Adj R?,,,. 0.9185 0.9201 0.9224 0.9253 0.9195 0.9159 0.9181
Adj R%Lat 0.9950 0.9992 1.0000 1.0012 0.9982 0.9943 0.9943
Adj R} ;.. 0.9768 0.9790 0.9800 0.9812 0.9784 0.9757 0.9763
Adj R2;,,.  0.9904 0.9930 09936 0.9945 0.9924 0.9898  0.9899
Adj R3, e 0.9950  0.9992  1.0000 0.9812 0.9982  0.9943  0.9943
Adj R2e 09950 09992 1.0000 0.9945 0.9982 0.9943  0.9943

Table 1: Various percentiles of different adjusted R?’s from 1000 experiments in

case (a)



Variable Selection in Multivariate Linear Regression Models Subject to Sampling Errors 43

Percentiles 1 10 25 50 75 90 100
C = (¢;j), where ¢;; = 02 = 0.3511,

cij(i # j) =~+* = 0.225

Adj R?.... 0.9484 0.9507 0.9521 0.9533 0.9545 0.9555 0.9599
Adj R? ;.. 0.8505 0.8488 0.8485 0.8564 0.8470 0.8497 0.8563

Adj R3,, 0.9549 0.9506 0.9518 0.9619 0.9515 0.9552  0.9596
Adj R%qunc 0.9369 0.9339 0.9345 0.9425 0.9339 0.9369 0.9412

Case (b.1):

Adj R?]func 0.9534 0.9493 0.9504 0.9599 0.9501 0.9536 0.9579
Adj R?,.. . 09549 09506 09518 09619 09515 0.9552  0.9596
Adj B2, e 09549 0.9506 09518  0.9619 0.9515  0.9552  0.9596
Case (b.2): C : (ci]:), where ¢;; = 02 = 0.3511 x 0.04,

cii(i # §) =72 = 0.225 x 0.04
Adj Rfme 0.9978 0.9979 0.9980 0.9980 0.9981 0.9981 0.9983
Adj R2,,. 09227 0.9204 09241 09239 09259 0.9221 0.9252

Adj RZ, 0.9985 0.9962 0.9982 1.0012 0.9994 0.9980 1.0002
Adj R,Qlfum 0.9794 09778 0.9797 0.9809 0.9807 0.9791 0.9808

Adj R%;,,. 09920 0.9914 0.9928 0.9944 0.9936 0.9925 0.9940
Adj RZ,.. .~ 0.9985 09962 0.9982 0.9809 0.9994 0.9980  0.9808
Adj R%,ne 0.9985  0.9962  0.9982  0.9944 0.9994 0.9980  0.9940

Table 2: Various percentiles of different adjusted R?’s from 1000 experiments in
case (b)
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Percentiles 1 10 25 50 75 90 100
C = (¢;j), where ¢;; = 02 = 0.3511,

cij(i#j) = %2]. ~ U(0.01,0.3511)

Adj R?.... 0.9487 0.9509 0.9520 0.9532 0.9544 0.9555 0.9584
Adj R? ;.. 0.8408 0.8477 0.8547 0.8512 0.8465 0.8501  0.8498

Adj R3,, 0.9461 0.9518 0.9592 0.9596 0.9463 0.9581 0.9523
Adj R%qum 0.9291 0.9343 0.9405 0.9397 0.9307 0.9386 0.9352

Case (c.1):

Adj szunc 0.9449 0.9504 0.9574 0.9576 0.9452 0.9562  0.9509
Adj R2,.,. . 09461 09518 09592 09596 0.9463 0.9581 0.9523
Adj B2, 09461 0.9518 09592 09596 0.9463 0.9581  0.9523
C = (c;j), where ¢;; = 02 = 0.3511 x 0.04,
Case (c.2): o 5
cij(i # j) =vi; = 0.04 x g, where g ~ U(0.01,0.3511)
Adj Rfme 0.9979 0.9979 0.9980 0.9980 0.9981 0.9981 0.9983
Adj Rfmive 0.9228 0.9231 0.9229 0.9251 0.9291 0.9288 0.9256

Adj RZ, 0.9967 0.9979 0.9962 0.9979 1.0038 1.0022 1.0024
Adj R,%func 0.9787 0.9793 09785 0.9799 0.9833 0.9826 0.9818

Adj R%;,,. 09918 0.9926 0.9915 0.9928 0.9959 0.9952  0.9950
Adj RZ,.. ~ 0.9967 09979 0.9962 0.9979 0.9833 0.9826 0.9818
Adj R%,ne 0.9967  0.9979  0.9962  0.9979  0.9959  0.9952  0.9950

Table 3: Various percentiles of different adjusted R?’s from 1000 experiments in

case (c)
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Percentiles 1 10 25 50 75 90 100
C = 0T = 0?PP’, where 02 = 0.3511,

pii ~ U(1.2,2), pi; (i > j) ~U(0.9,1.1)

Adj R?.... 0.8215 0.8280 0.8320 0.8362 0.8400 0.8439 0.8552
Adj R? ;.. 0.7444  0.7413 0.7533 0.7492 0.7464 0.7653 0.7732
Adj R3,, 0.8237 0.8196 0.8326 0.8328 0.8290 0.8465 0.8525
Adj R%qum 0.8190 0.8151 0.8277 0.8273 0.8237 0.8410 0.8471
Adj R;func 0.8237 0.8196 0.8325 0.8328 0.8290 0.8465 0.8524
Adj RZ,. ... 0.8237 08196 0.8326 0.8328 0.8290 0.8465 0.8525
Adj Rgmmc 0.8237 0.8196 0.8326 0.8328 0.8290 0.8465 0.8525

C = 0T = ¢?PP’, where 02 = 0.3511 x 0.04,

case (d.1):

case (d.2): ) ]
Adj Rfme 0.9915 0.9918 0.9920 0.9922 0.9924 0.9926 0.9930
Adj Rfmive 0.9210 0.9203 0.9171 0.9193 0.9175 0.9157 0.9198

Adj RZ, 0.9913 0.9945 0.9907 0.9959 0.9918 0.9918  0.9956
Adj R,Qlfum 0.9758 09771 09744 09774 09750 0.9746 0.9774

Adj R%;,,. 09881 0.9903 0.9874 0.9911 0.9882 0.9881  0.9909
Adj RZ,.. 09913 09945 0.9907 0.9959 0.9918 0.9918  0.9956
Adj R%,ne 0.9913  0.9945  0.9907 0.9959 0.9918 0.9918  0.9956

Table 4: Various percentiles of different adjusted R?’s from 1000 experiments in
case (d)
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AdjR2

(a) Plot of different adjusted R*’s.

(a) Plot of different adjusted R*’s.
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Figure 1: Plot of different adjusted R?’s in case (a.1).
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Figure 2: Plot of different adjusted R?’s in case (a.2).
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Figure 3: Plot of different adjusted R?’s in case (b.1).
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Figure 4: Plot of different adjusted R?’s in case (b.2).
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AdiR2

(a) Plot of different adjusted R*’s.

AdjR2

(a) Plot of different adjusted R*’s.
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Figure 6: Plot of different adjusted R?’s in case (c.2).
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Figure 7: Plot of different adjusted R?’s in case (d.1).
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From Tables 1 — 4, the naive adjusted R2’s are smaller than the true adjusted
R? but our proposed adjusted R?’s can cut down those biases. Comparing perfor-
mances between the two positive approximations, Adj Rj . and Adj RZ ..., we
can see that the Adj Rg func 18 closer to the Adj R?,, than the Adj R Func- Con-
sidering the situations when either tr(l\TS\Eg) or tr(l\fﬁg) could be negative, we
can see that there is no cases such that at least one of the two values is negative
in cases (a.1) — (d.1). However, when we reduce the variances of regression error
terms by a factor of 0.04, we can see some negative values as follows. In case (a.2),
there are 276 cases such that either tr(l\//IS\Eg) or tr(l\fS\T.g) is negative. In case
(b.2), there are 247 cases such that either tr(mg) or tr(l\mg) is negative.
In case (c.2), there are 235 cases such that either tr(l\//IS\Eg) or tr(l\//Iﬁg) is neg-

ative. In case (d.2), there are 4 cases such that either tr(l\//I—S\Eg) or tr(l\//IS\Tg)

2

is negative. Therefore, the Adj R, is recommended for these cases.

5 Conclusion

In this study, we have examined the possibility of extending the bias reduction
of variable selection criteria proposed in Lahiri and Suntornchost [7] to multivariate
linear regression models subject to sampling errors. Moreover, we have proposed
a new positive approximation function, g-function, which is shown to be a better
approximation than the h-function used in their paper. From our study, we found
that the naive adjusted R? always underestimate the true adjusted R?, but our
proposed adjusted R?, Adj R,th reduce this underestimation. This simple adjust-

ment works well except in some cases when it exceeds the suitable range. In these

2

o func is helpful. To accommodate all

cases, adjustments by the g-function, Adj R

situations, the Adj R, is recommended.
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