Some Classes of Finite Supersoluble Groups
Keywords:
Mutually permutable product, Permutability, Y-group, PST-group, SC-groupAbstract
In this survey we study the relation between the class of groups in which Sylow permutability is a transitive relation (the PST-groups) and the class of groups in which every subgroup possesses supergroups of all possible indices, the so-called -groups. The parellelism between these classes in the soluble universe and the interest of the local study of PST-groups motivates a local study of -groups.
A group factorised as a product of two subgroups and is said to be a mutually permutable product whenever permutes with every subgroup of and permutes with every subgroup of . We present some results concerning mutually permutable products of groups in the orbit of the above classes.