Certain Local Subsemigroups of Semigroups of Linear Transformations

Authors

  • Ruangvarin Intarawong Sararnrakskul
  • Amorn Wasanawichit
  • Yupaporn Kemprasit

Keywords:

Local subsemigroup, semigroup of linear transformations

Abstract

A local subsemigroup of a semigroup gif.latex?S is a subsemigroup of gif.latex?S of the form gif.latex?eAe where gif.latex?A is a subsemigroup of gif.latex?S and gif.latex?e is an idempotent of gif.latex?S. It has been shown that for a finite nonempty set gif.latex?X and an idempotent gif.latex?\alpha of gif.latex?T(X), gif.latex?\alpha&space;G(x)&space;\alpha is a local subsemigroup of gif.latex?T(X) if and only if either gif.latex?\alpha is the identity mapping on gif.latex?X or for every gif.latex?a&space;\in&space;\text{ran&space;}\alpha, gif.latex?|a\alpha^{-1}|&space;\geq&space;|\text{ran&space;}&space;\alpha| where gif.latex?T(X) and gif.latex?G(X) are the full transformation semigroup and the symmetric group on gif.latex?X, respectively. In this paper, a parallel result is provided on the semigroup gif.latex?L(V), under composition, of all linear transformations of a vector space gif.latex?V. We show that for a finite-dimensional vector space gif.latex?V and an idempotent gif.latex?\alpha of gif.latex?L(V), gif.latex?\alpha&space;GL(V)&space;\alpha is a local subsemigroup of gif.latex?L(V) if and only if either gif.latex?\alpha is the identity mapping on gif.latex?V or gif.latex?\text{dim}(\text{ker&space;}&space;\alpha)&space;\geq&space;\text{dim}(\text{ran&space;}&space;\alpha) where gif.latex?GL(V) is the group of isomorphisms of gif.latex?V.

Downloads

Published

2019-12-12

Issue

Section

Research Articles