Invertible Matrices over Idempotent Semirings

Authors

  • W. Mora
  • A. Wasanawichit
  • Y. Kemprasit

Keywords:

Idempotent semiring, invertible matrix

Abstract

By an idempotent semiring we mean a commutative semiring gif.latex?(S,+,\cdot) with zero gif.latex?0 and identity gif.latex?1 such that gif.latex?x+x&space;=&space;x&space;=&space;x^2 for all gif.latex?x&space;\in&space;S. In 1963, D.E. Rutherford showed that a square matrix gif.latex?A over an idempotent semiring gif.latex?S of gif.latex?2 elements is invertible over gif.latex?S if and only if gif.latex?A is a permutation matrix. By making use of C. Reutenauer and H. Straubing's theorems, we extend this result to an idempotent semiring as follows: A square matrix gif.latex?A over an idempotent semiring gif.latex?S is invertible over gif.latex?S if and only if the product of any two elements in the same column [row] is gif.latex?0 and the sum of all elements in each row [column] is gif.latex?1.

Downloads

Published

2019-12-14

Issue

Section

Research Articles