The Gray Images of Skew-Constacyclic Codes over F_(p^(m)) + uF_(p^(m)) + ... + u^(e-1)F_(p^(m))

Authors

  • Somphong Jitman
  • Ekkasit Sangwisut
  • Patanee Udomkavanich

Keywords:

finite chain ring, Gray map, permutation invariant code, skew constacyclic code

Abstract

We study the Gray images of three types of skew constacyclic codes over gif.latex?\mathbb{F}_{p^m}&space;+&space;u\mathbb{F}_{p^m}&space;+&space;\cdots&space;+&space;u^{e-1}\mathbb{F}_{p^m}, where gif.latex?u^{e}=0. For a given automorphism gif.latex?\Theta of gif.latex?\mathbb{F}_{p^m}&space;+&space;u\mathbb{F}_{p^m}&space;+&space;\cdots&space;+&space;u^{e-1}\mathbb{F}_{p^m} induced by an automorphism gif.latex?\theta of gif.latex?\mathbb{F}_{p^m}, the Gray images of gif.latex?\Theta-gif.latex?(1-u^{e-1})-constacyclic codes are shown to be gif.latex?\theta-permutation invariant codes whose algebraic structures are generalization of quasi-cyclic codes over finite fields. In addition, if the length of codes is not divisible by gif.latex?p, the Gray images of gif.latex?\Theta-cyclic and gif.latex?\Theta-gif.latex?(1+u^{e-1})-constacyclic codes are permutatively equivalent to gif.latex?\theta-permutation invariant codes. Moreover, our works generalize known results concerning the Gray images of classical cyclic, gif.latex?(1-u^{e-1})-constacyclic and gif.latex?(1+u^{e-1})-constacyclic codes over this ring.

Downloads

Published

2019-12-20

Issue

Section

Research Articles