A Generalization of Euler's Totient Function

Authors

  • Pitchayatak Ponrod
  • Ajchara Harnchoowong

Keywords:

Euler's Totient Function, Generalized Euler's Totient Function

Abstract

J. Freed-Brown, M. Holder, M. E. Orrison and M. Vrable introduced a new generalization of Euler's totient function, gif.latex?M_{k}(n), defined to be the number of sequences gif.latex?(g_{1},\ldots,g_{k}) of elements in gif.latex?\mathbb{Z}_n such that if gif.latex?G_{i} is the subgroup of gif.latex?\mathbb{Z}_n generated by gif.latex?\{g_{1},\ldots,g_{k}\}, then

gif.latex?\{0\} gif.latex?G_{1} < gif.latex?\cdots < gif.latex?G_{k-1} < gif.latex?G_{k}=\mathbb{Z}_{n}.

They also defined the function gif.latex?M(n) to be gif.latex?M_{k}(n) where gif.latex?k is the largest integer such that gif.latex?M_{k}(n) is nonzero. They gave the formulas for gif.latex?M_{k}(p^{e}) and gif.latex?M(p^{e}q^{f}) where gif.latex?p and gif.latex?q are  distinct primes and gif.latex?kgif.latex?e and gif.latex?f are natural numbers. In this article, some more properties of gif.latex?M_{k}(n) and gif.latex?M(n) are investigated.

Downloads

Published

2019-12-20

Issue

Section

Research Articles