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Abstract

Churn is common problem across various industry, especially in the telecommunication sector.
In order to reduce customer churn rates and complete effectively, many telecom companies
are recognizing the need to improve customer experience and service. Therefore, understanding
the reasons behind customer chum is essential. In this research, we apply machine learmning
multi-class classification technique for predicting customer chumn to the internet service provider
industry. We propose a two-fold approach to address the issue: 1) Handling imbalanced data at
the dataset level by utilizing the SMOTE technique to synthetically generate additional data, and
2) Addressing imbalanced data at the learning process level by adjusting the data weights using
the XGBoost technique. The resulting XGBoost based classifier is able to predict accurately the
majority classes and as well as the minority classes. The combination of SMOTE and XGBoost
techniques demonstrates effectiveness in solving imbalanced problem in the case of multi-class

datasets.

Keywords: churn prediction, imbalanced data, multi-class classification, machine learning,

ensemble learning
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2.2 MaA3EuTaYa

Tudumeuninnienvayaiiuvsnisiaiouveyasanidu 4
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2.2.1 msﬁqmma:mm%’ayja (Data Cleansing)

o msfngUuuuveyalviinnugnaes wmileutu

e n13dAnIsA1Ie nedlveyaiiudiuavazunuiiagg
Aady mnveyaduiidnysasumuiinaedindu 4
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#1177 upper percentile Wa¥ lower percentile 8N
mﬂsqmya;ga

2.2.2 n1ailenvaya (Data Selection)

J Lﬁaﬂé’fméhLLﬂiﬁﬁmmﬁﬁ@Jaaaaﬂmnﬂ;myaga U
ﬂ]’aaﬂaﬁmuﬁmsuﬁ’amummqﬂhuw (Personal Data) \unu

® HanduUsiluan Information Gain g¢ (Wwlna 1) lng

ANUIAAIEIDNIINIAT Entropy

2.2.3 msl,l,ﬂaq‘gaga (Data Transformation)

o usiegluguuuuiui danfuianiioaseiuysi
LLﬁmﬁWu’JuiJum%U%ﬂ’lig?dLLﬁiﬁﬁﬂﬂ%ﬁuﬁ]uﬁﬂﬂ’ﬁ]Qﬁu

o assfaulsaaa g (Label) wuunaisaaia Lite
snquueseyaUUssLnifinnumnelnaideie
dududaientu summeiu amalvanifudus

WnNne 17 Aand Wdedwiu 4 Aand
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e msuUawauadangu (categorical data) agludnuay
994 One-Hot Encoding tneuvasveya Twiduai 0 uaz

1 (binary values)

2.2.4 mssfswﬁ’aga (Data Integration)
ﬁnﬂﬁﬁamymﬂaﬁ'Nﬁumzmumammﬁmauﬁl 2.2.1 4
2.2.3 Tnelaiudsmneavuinsidufondnlunisid ey
voyavatsyn Liloasaduynvonadsnuinouaziily
asslunanely

ﬁ]zlmyﬁgm%ayja%qguﬁwmu 167,603 918M5 finauie
FruUs§1uau 11 7 laun faudsiiivune Uﬁzmwauﬂhyw
Srunuduiianglausdvioun Fnnuiuiinefouaign
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2.3 n15eEN (Mixed sampling)
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1§ 9s91nmeHad U 9 (Other reason) Tagyruiuy slu
§ma1dau 70:30 i eiduroyaifous (Training dataset)
U 117,322 3’18m5LLazszjuazgavmaaU (Testing dataset)
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Comparison of propotions of each class in the dataset
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VRIAAE Active 63,679 518019 Aa1d Churn 30,239
318119 AANE Overdue 14,718 518015 wazAand Other
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Number of Minority class

Lﬁaﬁmumﬁﬂma Active Lﬂuﬂmeﬂmj wazAAEBY 9
LﬂuﬂmmﬁﬂLﬁam%amﬁﬂuﬁ’unﬂﬂma WUAANE Active
vs Churn ﬁﬂvﬂ IR ﬁ 2.10 mand Active vs Overdue ﬁﬂvﬂ IR
7 4.33 uazAana Active vs Other reason fiA1 IR 71 7.33
ansniisuifisunanszaisvoyassunaadlng ey
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Comparison of data distribution between majority class and minority class.

Overall Training dataset Training dataset: Active vs Churn
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ngaveyansnulavituisnisenidnnislauinig
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voyaluunazaaia lneian Accuracy 7 0.87 uag Macro
Fi-score #1 0.74 Faduanadeves Fi-score luunaznana

ausalUTeuLiiguan Fl-score YadunazAad Muguil 4

Comparison of F1-score for each class using Random Forest classifier
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I 0-56

Overdue
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Active Chum

4- Target Classes
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24.1 mssjuam%aga (Under-sampling)

® RandomUnderSampler (RUS) [7-8,12] Lﬁumiqyuaﬂ

veyavinaaralvy i elniuiuveyaluaaialugd
pAveyaITUARIALEN

® NearMiss versionl [8] Lﬁjurmfﬁuamsdua;ﬂamﬂﬂma‘lmg
Tnefifuusmunu k-neighbors wiienves Tynisiden
gufegsanaandlvgiifinnszegmaadeves k fivey
flan aeiFsuifleutuifiounuamadniilnafian

® NearMiss version2 [8] Lﬁaﬂéuﬁaaéwmﬂﬂmﬂmﬁﬁ
AMsEEENILad Bues k Muosiian Tnsiudouifieud
diouuunanainilnadian

® FEditedNearestNeighbors (ENN) [7-8,11] Lﬂjumﬂ%ﬂﬁ
Wisusussmnnsveyadiosslunanaluguaznadns
filannnisviusearaiivaneaiemaie k nearest
neighbors (k-NN) Insauvayadinanad wanedinadns
lunsafusen welnveyafivdosyiinrugneesiniy

® Tomek’s Links (T-Links) [7-8] tfutnainn153ug vos
voyanvaaaiioglnatu uandenavvoyanaialueg
oon iitelniAnvosnasmnaingu waelunsuusngud
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2.4.2 mseimﬁlmjlaga (Over-sampling)

® RandomOversampler (ROS) [8] Lfun1sguifinvoya
Mnaaadn delndnuveyslusmadnivuiavoya
iuaaalviy

® Synthetic Minority Oversampling Technique (SMOTE)
[6,8-9,11-12] LﬁumwﬁﬂﬁﬁiumsﬁuLﬁuﬁayjaﬂawatﬁﬂ
Tndauralnafomsomatuaanalny Tagwiinas
dunsenmoyalnunuoyaiiy vilnvoyalunatadng

o
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® Adaptive Synthetic (ADASYN) [6] tunadiafiufuuss
11910 SMOTE Tngaglufiarsanveyanndilunaadn

LUULAEIAU SMOTE LAz lyn15hangtadakuun9unnun
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voweyalunaaidn shlnnsuiureuwanisiadulaly
ﬂ?iLLﬁﬁﬂ@lwaﬁu
243 msejwﬂagmwuwau (Mixed-Sampling)
® SMOTEENN [8,11-12] WA ANALSZNI9 SMOTE wag
ENN I@EJ‘\]S‘VT’]ﬂ’]iL‘WliJslT@Z;IJaiﬁLLG{azﬂa’lﬂﬁ‘UU’mL‘1/1"1f9fu
neu LLéya?jqf\Jx?juam%@;ﬂaﬁﬁmmgﬂgmmn%u
® SMOTETOMEK [8,11] WA ANANTZNI19 SMOTE way
Tomek’s LinkI(ﬂ8%]3’1/10’1ﬂWSLﬁluﬁj}@yjalﬁLLmyaZQa’]ﬁﬁ
yumiunou uardazduanvoyalniinugnaes
ey
mﬂmﬁwmaamh”ﬂzymﬂjuayjaiﬁauQaLLuwmaﬂma
meAaan q Safunislamaila Random Forest faidunis
E]OWLLuﬂleyE]JqJJaIUquiﬁg Bagging m1uw e 2.5.1 1Juluiaa
Augrulunisiuie nuansauiuveyalaslyinade
SMOTE a¢lanveyaissusiifianuaugafusuau 254,716
519015 Inewusdnaiues1anitunaiaas 63,679 518N13
L‘U%EJULﬁSUﬁ/ﬂéﬁu%@%a%mLLG]IaSﬂa’Iaf{@‘uLLa%WﬁﬁLL;ﬂiyﬂﬂ
voyaluauga faguil 5
dlawseuiisutszdninmluaasymnamaianis
AUUUUANS 9 mamwmaanwuiﬁ%mszﬁ;uLﬁymjuaagaﬁy’w
wada SMOTE vinlugavoyafiarmaunauazluuanis
ﬁwuwﬁﬁﬁqﬂ ?jﬁ%ﬁﬂi'}mﬂﬁaﬂiﬂgﬁﬁmiﬁuam%aﬂaﬁa
miq'uLL‘UUNamﬁmﬁ]%v‘l’ﬂﬁmwﬁwﬁ’z‘gmm%@y)a@fyma

Lﬁ@ﬂ‘\]’lﬂﬂ’]‘iﬁﬂ%@ﬁﬂa Vﬁjﬁgﬂﬁ 6

Comparison of propotion of each class between original dataset and
balanced dataset using over-sampling techniques (SMOTE)
[l Original Training Dataset Balanced Training dataset

80,000
63,679 63,679 63,679 63,679 63,679

60,000

40,000 30,239

20,000 I 14,718 e
Active

Chum Overdue

Number of data

Other reason

4 - Target Classes

3UT 5 nsmlunadIsuiisudaaiuveyaluwnazaaa

neuwagnaunlulymveyaluaunanismadia SMOTE
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Performance comparison of different sampling techniques using

Random Forest classifier

W NA W RUS Ml NearMissl NearMiss2

W ENN TomekLink ROS SMOTE

B ADASYN B SMOTEENN SMOTETomek
SMOTETomek 0.75

sMOTEENN [ 0.74
ADASYN |, 0.7
SMOTE 0.75

ROS 0.75

TomekLink 0.75

ENN I .7

Sampling T¢

NearMiss2 0.26
NearMissl
RUS I 0.7
VA N .7

o 0.2 0.4 0.6 0.8 1

Macro Fl-score
UM 6 nemunadSeuLiisulseansamvedunawuunaiy

Aanasuwaazmaiansunludymveyaluauaa

Working steps of the Bagging method

sample data

E—— Model

dataset

=

sample data

L Model

sample data Average / Vote

E——— Model

v
o

3UN 7 Tunaun15yauresis Bagging

2.5 38n1958ug9amiu (Ensemble Learning)
TnoitalunissuunveyauuuTumaidsrlunanisiuie
Tnesaufineuie waddlufifiomedmiunsyiuisuy
‘Viawﬂmaﬁﬁmm@auqammﬁaLL‘UiL‘Jﬂ‘wma Tnglaniziu
IJJLfﬂaﬁGTENﬂ’]'ﬂﬁlﬂ’,}’mﬁ’]ﬁj@,ﬁvnﬂﬂaﬂaaEJI’NL‘VhLﬁ‘&m le
fnsamansvimngluaanavunadnnuilumaingle
Tuain fenlundesludnanauunsing
Lﬁaﬁﬁ]%ﬁﬁu’]‘iaﬁ?LL“LJﬂ‘lTE]ﬁqJJaLLUUMa’]EJﬂa’]ﬁlﬁTE]EJ.’N
wiuguazanmuluudoeiiiing u ﬂ’]iﬁ’]LLUﬂ%@Hﬁ@T’Jﬂ
ﬁmmﬁwiwu%auﬁuimﬂisgiumawawEJ 5 A2 (Multiple
classifier) [11] 3dludsyansammsviunefinnannissiuun

voyalaglyluaaifen

24

2.5.1 n'liafmun?jyasgjaﬁ"m"j%' Bootstrap Aggregation
(Bagging)

Jumedansouguuunuiulasguanslunansos 4 fu
gﬁﬂagﬂﬂif‘j‘u‘g@%aLLUULquﬁ (sampling with replacement)
Faazstilunisquuayavnasilontamidu wasunazady
p19azqueiule Fiasriguueyauaralinnanats q
flumsviune walsaiadevdenslmafiedadula figu

7 7 Tnawmeadaifledsi lawn Random Forest [9-11]

2.5.2 N33 UUNTBYARIEAT Boosting

dumadansiFeugsmsulaglanindsuguuuidudi
Tnelueaaziaiidanaindlaainlaaneunuuiious
waruuusslinalundsdall asvrsananufanainuay
dinaugnmedlunisasdling Tnsagsiutudiduludes
q aun11aglalunaganiefiduadwsifvian fagud 8
wmadaily 3519 laun ADABoost, Gradient Boost L

Extream Gradient Boost (XGBoost) [9-11]

Working steps of the Boosting method
dataset ﬁ
dataset ﬁ

with weighted data
dataset ﬁ

with weighted data

3UN 8 Tunaun15UrasIs Boosting

Weak

Classifier )

Weak

Classifier

~

Strong Final
—
Model

Classifier

38 NsTuunteyauUuatEeaa lafmualu
wAlla Random Forest Iuﬂq'u"?% Bagging L“ljuimﬂmﬁugwu
Tumsviune TneFeuidisuiulinnaainngss Boosting

wunslaimaiia XGBoost iiusanedfiumaiioug
vouAsesiifienuanunsalunisdanistugaveyadiluauna
Tussystunouniaous Inednmstudymaniluauga
maa{ayjaﬁaaﬂﬁﬁmum&mﬂ’ﬂqﬂﬁﬁ’uﬁaa&hwaaﬂmméﬂ
waztmindrlniudaogswesnanalngy wanmsivaeln

sanesuluanuddynefiogeranadnuinIunasusu
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3. NANISALLUIIUIFY
3.1 nsUseLUNG

3.1.1 A15197AUTEANSAW (Confusion Matrix)
m’131@"’4’%5551/1%11’1%@@%@;@1@EJL"d?amﬁauwaﬁwémﬂm
93¢ (Actual) uazAiilaannnsyinune (Predicted) luumas
AaNaE AUANTIT 1 SasiEeadad

® True Positive: TP Ao ma3au true wazviunele true
® False Positive: FP @ ﬂl’m’%\‘mju false LLGiVTWWEJiG? true
® True Negative: TN e A1a3audu false uazvinungla

false
® False Negative: FN Ao ﬂyﬂﬁﬁdﬁju true LLG]IVI"WuWEJlf;

false

M1519% 1 Confusion matrix

Predict
Confusion Matrix
False True
False TN FP
Actual
True FN TP

3.1.2 Accuracy

AsEansamlagsinvedung dgnsnisAuin fel

(TP +TN) 2)
(TP + TN + FP + FN)

Accuracy =

3.1.3 Precision
ANAMULLUET L avungluAaaRiansulagiguiu
Aviunglanavan Tgasnisaun dadl

Precision = L (3)

(TP + FP)

3.1.4 Recall

AL U Taavi e luranai iansalaeiieuiu

AIATININUA HanIn19ALIN Al
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Recall = L @)
(TP + FN)

3.1.5 Fl-score
alszansnmvesunalunaiafinarsan Lﬁa@,iﬂmmaﬁ
Uszansansoly Tneruinainaiadsves Precision fu
Recall fgmsn1sAin il

Precision * Recall (5)

F1-— =2
score * Precision + Recall

3.1.6 Macro average F1-score (Macro F1-score)
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