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Abstract

The pandemic of the coronavirus (COVID-19) has affected the education system, disrupting all
from traditional classrooms to online classrooms. This complicates tracking involvement in online
classes even further. A student's separation from education is the most serious scenario that can

occur, in addition to damaging the efficiency of the leamers. Teachers should indeed be regularly
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informed about student participation so that they may
customize their instruction to the online learning
environment. This paper presents a model for analyzing
and tracking student participation in online classrooms
using neural networks. The approach utilizes
Convolutional Neural Networks (CNN) to analyze
learners' faces, employing a pre-trained base model
obtained from the Keras website. The model
categorizes student engagement into three levels
disengagement, normal engagement, and high
engagement. The experiments were divided into three
groups: adjusting the image feature extraction layer,
analyzing individual parameters (Learning Rate, Batch
Size, Optimizer, Fully connected), and conducting a
sequential two-parameter matching test. The best-
performing models from each test were applied to
subsequent trials, leading to progressive improvements
in the model's performance for monitoring online class
participation.  The evaluation of the model's
performance yielded promising results. By incorporating
the Optimizer Ranger and employing a Fully Connected
(FO) layer with a configuration of 50-100 units, the
accuracy of the model experienced a significant boost,
reaching an impressive 82.30%. Simultaneously, the
loss was notably reduced to 0.46. These improvements
were substantial compared to the baseline model, with
accuracy seeing a remarkable enhancement of 16.51%
and a reduction in loss by 0.31. These findings

showcased the effectiveness of the proposed approach

in accurately monitoring and categorizing learner
engagement levels based on facial analysis.
Keywords: Engagement detection, Emotion

recognition, Class engagement
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FraulaluuguInTu

3.4 N3TUIUNMSANADUKUUTIABY
Lﬁ'aw"wmﬂw'wyagamgq 3 ﬂaq'uu,aya o wWan du
ImageDataGenerator 1un15%1 One-hot Encoding hag
LLUad%@ﬁJﬂaIﬁLﬂULLUU Numpy a3l flow from_directory
PLumiﬁsmsduazﬂaﬁg& 3 ﬂﬁuﬁm‘%awl’: 1NIIAINUATUINYD
AW (input_size) 1y 224 x 224 F9uANG UYDIT OYA
(class_mode) kUU categorical WagA1MUAUTUIUVD S
szjua;ﬂaium{amau (batch_size) audnuauifvunluunas
FOUVBINITNARDA
niuangnssuaunsiindeunuusiaeatmunsey
miﬁﬂug 15 59U (epoch) Tﬂ?sqmﬁm%’umsﬂﬂaau (Training
set) way qm%a;gaﬁm%’umammaau (Validation set) Tu

n1singeu Weasuns 15 sau lyyaveyadmsunisnaasy

a5

(Test set) Tolunsnaasuuuy Fassfilaainnisieuguay
Tymafiansuusveyauuy K-fold cross validation fie K=5
lun1suUveyans 5 YA eNAGDUAIIUYNA BIYDY

wuUdaee Aakandlugun 7

Training phase

K=5

'

k-Fold (k=5)

Cross-Validation Validation

Re-Training o o oliation
Parameter results

| f

Train model
> CNN — model —

|

Training Average
Test evaluation »evaluation
(10%) results results

Dataset

Training
(75%)

Model

Evaluation E“gﬂgel?ent

Accuracy model

Data preprocessing phase

ASTUIUNISRNEDULUUIIAD

~

sUn
Y

4. NaN133Y

TunsWawwuusiasslunisnsiegeunisilaiusuludu
Sousavlaulntnlasasrsuuusiansainivlen Keras -
Simple MNIST convnet [39] Wulassasnauuy  $1aes
wanulunswaLLUUEIa8e wusnsnaasseenidy 3 ﬂq'u
S'z?"ﬂumwmaaﬂmyﬁm*ma"ﬂm”unqvumsmmamﬁ' 1-3
GHZJET’WT‘ULLa%Lﬁjun’liﬁ’]LLUUﬁf’laad‘\]’lﬂﬂa;‘uﬂ’]ﬁWﬂa@QﬂIEm

nniilanafngaunaasinelunaunIsinaesin by

nauil 1 #e MsvFuunddassasetunsaiaguinuus
\AUYB4NN (Feature extraction) IgﬁﬂﬂUQ‘EULLUUSLuﬂ’]i
naaeseendu 6 JULUUAD 1) naufindures S1uam NN
ashaue 2) MsifiuTuressiuiu NN agaueuazanas
ot1E AT UAS IIRNTY 3) N15aRTIUILYEY NN
Al idue 4) T1UIUVEe NN LAY 5) §1u2uT09 NN
aduiiu (@3a) 6) S1unves NN Winuazanlumniiu AeguU
12 mamﬁmaanﬁﬁﬁqmﬁa Feature extraction Filter :
128-256-512 AIANNLILTOBAE 79.62 UavAIAILGHAD
sovar 0.52 FelanaranuududilnalAsaiu Filter : 128-

256-512-1024 UAAAINFYLFLFINI
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na:mﬁ" 2 fo nMsnaaewAazN1sines taun Learning

Rate (LR), Batch Size (BZ), Optimizer (OTM), Fully

connected (FQ)

* Wiines Learning Rate (LR)
Nan1sMAaBIAN Learning Rate lawn 0.10, 0.15, 0.20,
0.25, 0.30, 0.35, 0.01 la ATAIAUNUL 33.33 LAZAN
ANG LAY 1.10 Lﬁ'aqmﬂﬁﬂlwﬁqaLﬁuiﬂﬁqﬁﬂﬁlﬁ
mmiaﬁm’lmﬁ{aw Zﬁu Learning Rate 0.0001 qui}rxla
m‘smamﬁﬁﬁqm wam'ﬁmaaaﬁammmuﬁu&ﬁ 80.75
wazAELde 0.51 wazidundanuveslassasi

EYRE7)

wuudnaeanitanly fegui 8

CNN - Learning Rate - Accuracy
84

821

80

LR-0.10
LR-0.15
LR-0.20
LR-0.25
LR-0.30
LR-0.35
LR-0.01
LR-0.001
LR-0.0001
LR-0.00002

accuracy
~
®

~
o
L

74 A

72 T T T T T T T T
0 2 4 6 8 10 12 14
epoch

3UN 8 N3 1IUTHUIBUNAN1INAADIAIAIULL UEIYDY

Learning Rate

® w151§ines Batch Size (B2)
f1uunAn Batch Size laun 16, 32, 64, 80, 128, 256
s‘jnmmﬁmamsmmamﬁﬁﬁqﬂﬁa Batch Size 128 wans
VAABIADANAINLIILEN 81.27 L.Lasmmqu‘gl,ﬁa 0.50
nnsmazinlainaanuusudwedunasiiiiy
895953 lurausn Wevwm Batch Size uduain
16 1u 32 andumnuuiugesfistuegvia e
9178 Batch Size Wi N4 w9 n 32 1u 64 uaz 80 Lile
Wisdwdy 128 menuwiudwedinarzanaudnuos
mnﬁzummLL;J'ueTwzaﬂaaaéwimﬁaLﬁ'ammmgmya;ga

wisduidu 256 fagui 9

a6

CNN - Batch Size - Accuracy

84

82

——

T —

804

accuracy
~
@

BZ-16
BZ-32
BZ-64
BZ-80
BZ-128
BZ-256

76

74

72 T T T T T T T T
0 2 4 6 8 10 12 14
epoch

3UN 9 NTIMLUSHULTIEUNANIINAGDIAIAUKI LI

Batch Size

o wnsfines Optimizer (OTM)

Nan1TIAaRAes Optimizer (OTM) laun Adam
e e Adamax , Nadam, DiffGrad , Ranger, Rectified
Adam %aﬁnmmgnﬁ’&ummmmﬂ Adam 91005 199g
Wiulann Adam SuszAvBamagan Tnefleuusuggs
ndadu 9 luraasunuaintdu Adamax 958916
Adam Tuaasnansuay Nadam %gj&mlﬁ Adamax Tuas
wywsuadLLazwamimamﬁ'ﬁﬁ'qmﬁa Ranger WaN13
VAABIADANANLLILEN 81.04 L.Lasmmqu‘gl,ﬁa 0.49
umAALugwesLmazifiswuillnadeeiu figu

7 10

CNN - Optimizer - Accuracy
84

82 -

804

accuracy
~
@

OPT-Adam
OPT-Adamaz
OPT-Nadam
OPT-DiffGrad
OPT-Ranger
OPT-Rectified Adam

~
o
L

74

72

T T
0 12 14

=

T T T T T
0 2 4 6 8
epoch

sUN 10 N5 LUT UL UNANIINARDIATAINULN UGB

Y

Optimizer
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* Wines Fully connected (FC)
wamwmaaqs‘?ﬁn"l,myﬁmumgﬂLLUUIumiwmaaaaamﬁu 6
sULUURagUTl 12 Fadudrudwauves hdadaden
(neural networks) mamimamﬁﬁﬁqmﬁa FC : 50-
100 uay FC : 50-50 lnnanisnaassfimnfuiie nanis
VINABIADANANNLLILEN 82.20 LLasmmmqi‘gLﬁa 0.49
wanilovwanismasedduwnazseunnSeuiieunuin
FC : 50-50 finnsletasiinuinniinisnaass FC : 50-
100 faguit 11 Tawfl FC-1 Ao FC: 32, FC-2 fip FC: 60-
32, FC-3 fio FC: 64-64, FC-4 fio FC: 50-100, FC-5 @g
FC: 50-50, FC-6 @a FC: 50-100-50

CNN - Fully connected - Accuracy
84

82 W
80 1
>
Z
S
3
3
&
76 — FC-1
— FCc2
— FCc3
74 4 — FC-4
— FCcs
FC-6
72 1 . . . . . . .
0 2 4 6 8 10 12 14

epoch

FUN 11 n31UTUTBURANITNAABIAIAIIULLUE VDY

%u Fully connected
nquil 3 Aa n1masaslaenisdug 2 winfives
® Optimizer + Batch Size (No. 1)
® Optimizer + Learning Rate (No. 2)
® Batch Size + Learning Rate (No. 3)
® Optimizer + Fully connected (No. 4)
® Batch Size + Fully connected (No. 5)
® | earning Rate + Fully connected (No. 6)

a =

HANINAARINATIAAR® Optimizer + Fully connected Ha
N13MAGRIABAIAINLILEN 82.30 WazA1ANgyFe 0.46

Aeasunalunisned 5

ar

3UN 12 3UUUUNITNAADUT L/anT1u73u Node Tunns

Nnnasy

4.1 maFeudisunaniseaesngud 1 - 3 flanad
ﬁqﬂﬁ'umimmaaaﬁzaau (Base Moldel)

Fauanslunisieil 6 W5eNMILERIAIAINLLL LY LaTAN
Arugid i ud u/anas n1vaaesd 11fuves
LLUUf\i’Waadc??wTu (Base Moldel) n1snaaasil 2 iduwanis
maanﬁﬁmaﬁﬁqmiuméumwmamﬁ 1 n15NAa8sf 36
Lﬂumﬁmaadﬁﬁwaﬁﬁqﬂiuﬂa;umimaadﬁ 2 MIMAaedi
7-12 Lﬂuwamimaaﬂuﬂfjumiwmaaﬁ 3 WUINTNNERN
7l 10 Optimizer + Fully connected mmmﬁﬂﬁmmm
wiugudulngs 16.51 LAYANNITNANAIAINGRYLAD

lnfle 0.31 Felnafisariunisneaesil 5 eglunqunisvnaes

'
a

#i 2 FC : 50-100 awsavirlamanusiuguindulaun
09 16.41 LLazmmamaWﬁmmq@Lﬁ&ﬂ,ﬁuﬁd 0.28 wawloth
nauUTsuvaziuAuduus veaRan1snaaaile
Wieuiiu funisvaaesii 1 Aentsneassd 2 7luidu
Fully connected mmmLﬁlmﬁmmLLu'u&T'fLﬁuﬁq 14.31
LLazaméflmqugLﬁ&ﬂﬁ?ﬁq 0.22 MIVARLIT 6 (NMMAFBST
1 L'ﬂ'u%u Fully connected) ?I’]M’]imﬁm]l”lﬂ’nuLLliu&Tﬂﬁyﬁﬁ
se8ay 1641 wazanaiaugnydeladesosay 0.28 way
AsMAaead 10 (miwmamﬁ 6 uaziUasu Optimizer vy
Ranger) @nsauinAtnuuiudilafesesay 16.51 uax
anAnnugydelaisosas 031 nanafio iefiniaifiudy

Fully connected @snsavinluon1auulug ALY uLay
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Wefin1siasu Optimizer 1nLANA® Adam U Ranger

asovinlnenanugadvanasla

4.2 #@5UNan1sIY

Tunisnaasdlasndunisuuinisnnassesniiy 3 ﬂaju

audsu laun

° ﬂfjuﬁ 1 fe mﬁ‘u%"uLwﬁiﬂ3&6%@%%1355@15%5%@
f'® Feature extraction Filter 128-256-512 A 1A 14l
wiuthsetay 79.62 wavenugaLdETerAY 0.52 Wa

Wilassarslvlvlungudaly

'
a

° ﬂfjw 2 Ao nsnnapLparIlneslnglelasias
Tunquil 1 Usznaunie wis1fines Batch Size Wy
Batch Size 128 lauafififignfioarnuusugsosay
81.27 LLagﬂ'm’qumLﬁa;aaaz 0.50 Wﬁwﬁma%

7

N

OptimizerWumammmaadﬁﬁﬁqma Ranger A oA
ATLILENToBAY 81.00 LazAmANLgdsTeTay 0.49
W151d1m83 Fully connected NU3HANISNAGDIT 7
ﬁqmﬁa FC : 50-50 Aemanuusugsesay 82.20 waz

mANugidesesaz 0.49 laglariesilnuesni

° ﬂfju‘?i 3 o mwmaaﬂmamﬁuﬁ 2 wisrfiwes lngly
TASA31ILUUT1a0I4AZNANSUSULA NN 515TLABS9N
nsNARee 2 ﬂq'ur{aumﬁwmmaaﬂﬂﬂmﬁud 2
wsdmes wmﬁwamswmamﬁvqmﬁa Optimizer +
Fully connected mamﬁmamﬁaﬂ'wmmLLaJ'u&Tﬁuaaaz
82.30 LLazﬂlwmwzj]zyLﬁmyaaaz 0.46 AANANT
Wisuisuluiive 4.1 Msisuifisunanisnnans
ﬂa;uﬁ' 1 - 3 9zlalAseasauuusIasuarwIs Ao
197046151’71'21@ Wﬁ'}ﬁma'gﬁyiﬁrmaﬁﬁqmﬁa Optimizer =
Range , Batch Size = 80, Learning Rate = 0.0001 &g
Imna;wdLLuuﬁwaaqﬁvLﬁuwaﬁﬁqmﬁdLLamsLug*Uﬁ 13

- Feature Extraction Layers: T91U2U 5 Gug‘u i
fawnes (Filters) wnazduileisil 32, 64, 128, 256,
512 pudifunazauaAnsiua 3x3 14 activation

function A8 Rel.U

a8

- Maxpool Layer: Tuunarduaes Convolutional
Layer 924l Maxpool Layer 4u1n 2x2 LLaﬂu%u
qmwywsum Maxpool Layer vl Dropout Layer
50% wieannistoriesiln

- Fully Connected Layers: 917U 3 Fuiisruau
um 50, 100 aEnduUsly ReLU 1y activation
function

- Output Layer: $7u2u 1 94 $9u9u 3 lnua waz

1% activation function Softmax

Input 224x224

' :
Conv2d, 3x3, 32, relu Conv2d, 3x3, 512, relu
v v
MaxPool , 2x2 MaxPool , 2x2
v v
Conv2d, 3x3, 64, relu Dropout 50%
v v
MaxPool , 2x2 FC50, relu
v v
Conv2d, 3x3, 128, relu FC 100, relu
v v
MaxPool , 2x2 FC 3, softmax
v
Conv2d, 3x3, 256 , relu
v
MaxPool , 2x2
L

35U 13 lassasnauuudnaesiilanafifian

5. {;@LHUQLLUZ

lunisneanindednlarseziinisyin Data Augmentation
derfunafiuiunureyaiilvlumaisusvesuuusiaes
TABN1599UYAT Y AB LYY Fer2013, EmotioNet, DAISEE,
Emotiw, CK+48 §90199zawaluuszdns nwves
LLUU?\Twaadmn?fﬁgﬁyu iﬁuﬁgﬁmiﬁ’] Feature Selection 1ny
Wauuusaess u q it uv Teuualy tvu
InceptionResNetV2, EfficientNet, NASNetLarge Wi oun
Feature 71 1munzd1msunislelunisasauuudiaes
Tywalady 9 wnlelunsiuuuysans wu nsii

USuauedveya (Augmentation) N15%11 Ensemble laun

Bagging ey Boosting
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A51971 4 mﬁwwam‘aﬂ%"uL,Lmiﬂida%uw%gumiaﬁ’mmé’ﬂmwm'usuadm‘w (ﬂfjum'imamﬁ 1)
Feature Learning Accuracy Loss
Fully connected | Optimizer | Batch size
extraction rate Validation | Validation
64-64-64-64 FC: 0 (output 3) adam 80 0.0001 70.70 0.66
32-16-32-16 FC: 0 (output 3) adam 80 0.0001 70.21 0.67
1024-512-256 FC: 0 (output 3) adam 80 0.0001 73.05 0.63
128-256-512-1024 FC: 0 (output 3) adam 80 0.0001 78.98 0.87
128-256-512 FC: 0 (output 3) adam 80 0.0001 79.62 0.52
A15199 5 mﬁqwamimaaﬂmaﬂﬁé’]’uﬁ 2 wisfies (ﬂfj:umiwmaadﬁ' 3)
Accuracy Loss
No. Fully connected Optimizer | Batch size | Learning rate
Validation | Validation
1 FC: 0 (output 3) Ranger 128 0.0001 80.66 0.49
2 FC: 0 (output 3) Ranger 80 0.0001 80.89 0.48
3 | FC: 0 (output 3) adam 128 0.0001 80.91 0.50
4 FC: 50-100 Ranger 80 0.0001 82.30 0.46
5 FC: 50-100 adam 128 0.0001 82.16 0.48
6 | FC: 50-100 adam 80 0.0001 81.72 0.50
A15199 6 mﬁwLU'%&JULﬁEJUNaﬂﬁmaamajuﬁ 1-3 ﬁi@ﬁumaﬁﬁqmﬁ’umsmamé?w?u (Base Moldel)
No. Fully connected Optimizer BZ LR Acc +- Loss +-
1 FC: 0 (output 3) adam 80 0.0001 65.79 - 0.77 -
2 FC: 0 (output 3) adam 80 0.0001 80.10 +14.31 0.55 -0.22
3 | FC: 0 (output 3) adma 80 0.0001 80.75 +14.96 0.51 -0.26
4 FC: 0 (output 3) adma 128 0.0001 81.27 +15.48 0.50 -0.27
5 FC: 0 (output 3) Ranger 80 0.0001 81.04 +15.25 0.49 -0.28
6 FC:50-100 adam 80 0.0001 82.20 +16.41 0.49 -0.28
7 FC: 0 (output 3) Ranger 128 0.0001 80.66 +14.87 0.49 -0.28
8 FC: 0 (output 3) Ranger 80 0.0001 80.89 +15.10 0.48 -0.29
9 FC: 0 (output 3) adam 128 0.0001 80.91 +15.12 0.50 -0.27
10 | FC: 50-100 Ranger 80 0.0001 82.30 +16.51 0.46 -0.31
11 | FC: 50-100 adam 128 0.0001 82.16 +16.37 0.48 -0.29
12 | FC: 50-100 adam 80 0.0001 81.72 +15.93 0.50 -0.27
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