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Abstract 
In the present study, the effect of filtration methods on 
critical flux assessment was investigated including flux 
stepping method and flux cycling method.  Experiments 
were carried out on a pilot-scale membrane bioreactor 
(MBR) treated wastewater.  The results indicated a decline 
in critical flux values as the step height increased based upon 
the flux cycling method, while there is a positive relationship 
between critical flux values and step height presenting in the 
flux stepping filtration.  On the other hand, the step length 
has no obvious effect on critical flux values evaluated by 
both critical flux determination methods. 
 
1.  Introduction 
Over the last decades, a modification of the conventional 
activated sludge process using submerged membranes 
technology called submerged membrane bioreactor (SMBR) 
has been used to separate of the effluent, replacing 
sedimentation, which reduces the plant size due to the 
absence of settling tanks.  Although their several advantages 
are well recognized, the SMBR process also has as its 
principal limitation on membrane fouling, which causes 
permeate flux decline and necessitates frequent cleaning 
and/or replacement of membranes.  There is a suggested 
border to handle this fouling problem called critical flux.  
Critical flux was initially defined in two ways: one is that the 
flux through the membrane has no increase in trans-
membrane pressure (TMP) with time [1] and another is the 

flux below which there is no deposition of colloids on the 
membrane [2].  In general, these will not give the same flux 
value.  Above the critical flux, irreversible fouling of 
suspended solids forms a stagnant, consolidated and 
aggregated layer on the membrane surface, which can make 
flux decline rapidly.  On the other hand, below the critical 
flux condition, called sub-critical flux, it has been reported 
that fouling is not observed [3].  Consequently, the concept 
of critical flux is a key parameter for characterizing fouling. 

Critical flux can be considered in two forms: the 
strong form and the weak form.  The strong form states that 
the sub-critical flux and TMP relationship shows a linear 
relationship with the same slope as that of pure water 
filtration.  The weak form is also linear, but the slope is 
different from that of pure water [4-5].  Until now, there is 
no standard methodology or precisely agreed-upon protocol 
to define the exact value of the weak form of critical flux. 

Some studies suggested that it is possible to 
identify the weak form critical flux as the point at which 
TMP and flux profile become non-linear by using flux 
stepping method [6].  Espinasse et al. (2002) [7] showed an 
assessment of weak form critical flux based on a concept of 
fouling reversibility by using flux cycling method.  In 
general, the main variables involved in these short-term 
critical flux tests are step height and step length.  Le Clech  
et al. (2003) [8] were the first one focused on the effect of 
these variables on the critical flux evaluation.  They have 
shown that the step length between 5 to 60 minutes did not 
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significantly affect the critical flux value, but the increasing 
of step height from 3 to 9 L/m2.h increased membrane 
fouling.   

In most of the previous critical flux analysis, 
filtration was carried out with lab scale and sometimes fed 
with synthetic wastewater which, in fact, has substantially 
different fouling propensities compared to those of pilot or 
full scale operating with real domestic wastewater.  The aims 
of this study are therefore threefold: (1) to determine critical 
flux using a pilot scale SMBR fed with real wastewater; (2) 
to compare the critical flux values obtained from two 
determination methods (flux stepping and flux cycling); (3) 
to understand the impacts of assessment variables on the 
critical flux including step length and step height of 
filtration.  

 
2.  Experimental Materials and Method 
2.1 Experimental Facility  
A pilot scale SMBR used in this study was consisted of a 
120 liter aerobic unit fitted with a submerged flatsheet 
membranes. The membrane material is chlorinated 
polyethylene with nominal pore size 0.4 μm.  Permeate was 
removed using a pump passing through permeate line.  
Pressure gauge was also located on the permeate line.  The 
aeration process was conducted using a blower and 
controlled using air rota-meter.  The characteristics of 
wastewater (from Chongnonsi canal) used in the experiment 
were shown in table 1.  
 
 
 
 
 
 

Table 1 Characteristics of wastewater used in the 
experiment 
Parameter Inlet SMBR Permeate 
pH 7.14  0.10 7.06  0.11 7.09  0.10 
Temp (oC) 26.2  0.4 27.2  0.4 27.1  0.5 
DO (mg/L) 0.54  0.13 3.02  0.21 2.97  0.16 
Conduct. (μS) 1050  30 1139  22 1006  25 
ORP (mV) -54.3  6.3 244  15 172.2  10.3 

MLSS (g/L) 0.21  0.034 7.8  0.045 0.0  0.0 

NH4-N (mg/L) 37.5  3.1 0.7  0.5 0.0  0.0 

NO3-N (mg/L) 0.0  0.0 25.0  3.0 22.8  2.5 

PO4-P (mg/L) 14.1  1.0 11.0  1.1 7.7  0.6 

COD (mg/L) 337  38 45  13 13  8 

Note:  term is represent standard deviation 
 
2.2 Experimental Design 
The influences of step height (or the size of flux increasing 
in each step), step length (or the duration of filtration in  
each step) and determination methods of critical flux were 
investigated.  Three flux step lengths (5, 10 and 20 minutes) 
and three flux step heights (2, 4 and 6 L/m2.h) were carried 
out using both filtration methods (flux stepping and flux 
cycling methods) in a total of 18 runs.  The TMP and 
permeate data of the experiments were recorded every 5 
minutes.  After finishing each test, membrane surface 
cleaning with soft sponge was adopted to ensure removal of 
sludge particles from membrane surface and a chemical 
cleaning of 0.5% sodium hypochlorite was proceeded in 
place to remove irreversible fouling from membrane pore 
blocking.  Then the next test was continued. 
 
2.3 Flux Stepping and Flux Cycling Methods  
In this study, critical flux was assessed using short-term tests 
based on flux stepping and flux cycling methods.  The flux 
stepping method has been widely used for critical flux 
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hysteresis of flux stepping.  However, flux cycling technique 
can reduce the disadvantage of accumulative TMP in the low 
flux stage because it allows immediate flux recovery.  The 
decline in flux (in Fig. 4) decreased the convection towards 
the membrane, which makes it possible for solute to back-
diffuse away from the membrane surface.   

In this study, experiments operated using the 
hysteresis of flux stepping and flux cycling methods were 
also carried out at various step heights (2, 4 and 6 L/m2h) 
and step lengths (5, 10 and 20 min).  A critical flux 
determination is taken between two experimental points: the 
reversible and irreversible filtration points, respectively, and 
an average flux are taken of these two fluxes.  If irreversible 
flux occurred in the system, it means a balance between 
convective transport and back transport at such a flux 
condition cannot be maintained, thus exceeding a critical 
flux condition.   

In fact, not all membrane experiments display 
reversibility in the fouling hysteresis using this flux stepping 
technique.  Many studies have reported that there were 
significant differences between the first and next cycles of 
filtration and the hysteresis affects the way in which 
subsequent fouling can occur [15-16].  With similar step 
height and step length, changing filtration methods (flux 
stepping/flux cycling) has a significant impact on the 
reversible flux as illustrated in Fig. 5 and Fig. 6 as examples. 

 

 
Fig. 3 Stepping filtration at step height 4 L/m2h and 10 min 
step length 
 

 
Fig. 4 Cyclic filtration at step height 4 L/m2h and 10 min 
step length 
 
It can be seen that the critical fluxes achieved from the flux 
cycling technique were considerably greater than critical 
fluxes obtained from the hysteresis of flux stepping 
technique (Fig. 6 and Fig. 7).  With the same filtration 
method, there is almost no significant effect of step lengths 
(5, 10 and 20 min) on the critical fluxes obtained for all tests 
performed using different step heights.   
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Fig. 5 Flux reversibility of stepping filtration, where a = the 
last reversible flux and b = the first irreversible flux 
 

 
Fig. 6 Flux reversibility of cyclic filtration, where a = the 
last reversible flux and b = the first irreversible flux. 
 
For all tests using the flux cycling method, the inverse 
relationship between the step heights and critical flux values 
is obviously found (Fig. 8).  This is because the additional 
fouling from the previous filtration of the small step height 
can be easily recovered when the next instantly reduced flux 
cycling is performed and results in the greater reversible flux 
and higher critical flux compared to the bigger step height.   

 

 

Fig. 7 Critical flux based on flux stepping method 
 

On the other hand, a relative increase in critical 
flux because of the step height increase was discovered in 
the hysteresis of the stepping filtration (Fig. 7).  This is 
probably because the smaller flux increment in the repeated 
filtration retains more filtration time and more number of 
steps than the bigger step height.  Consequently, it produces 
more liquid filtered and more fouling which is more difficult 
to fully re-disperse those fouling even when the flux was 
descending.  This indicates the formation of residual fouling 
resulting in the low or sometimes no reversible flux from 
this hysteresis of stepping filtration technique, which leads to 
a requirement of the membrane cleaning. 

 
Fig. 8 Critical flux based on flux cycling method 
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4. Conclusions 
This study has examined the effect of assessment parameters 
on critical flux including step heights, step lengths and 
determination methods (flux stepping and flux cycling) in a 
submerged flat sheet membrane bioreactor.  The results 
indicated that the decline of critical flux as the step height 
increased has been noticed in flux cycling method, while 
there is a positive relationship between critical flux and step 
height presenting in the stepping filtration.  In order to 
prevent a large error from flux averaging, smaller step 
heights are recommended for critical flux determinations.  
On the other hand, the step length has almost no effect on 
critical flux, regardless of the determination methods 
employed.   
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