

การปรับปรุงกระบวนการขนส่งเพื่อลดต้นทุนของโรงงานชิ้นส่วนอะไหล่ยนต์

Transportation process improvement for cost reduction in automotive spare part factory

ติพิพร อัครชัยศักดิ์

Titiporn Akarachaisak

ภาควิชาวิศวกรรมอุตสาหการ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ถนนพญาไท เขตปทุมวัน กรุงเทพฯ 10330

โทร. 02-2186814-6 โทรสาร 02-2513969, 02-2186813

หน่วยปฏิบัติการวิจัย การบริหารอุตสาหกรรมและเทคโนโลยี ชั้น 6, ตึก 4 เจริญวิศวกรรม ภาควิชาวิศวกรรมอุตสาหการ

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย กรุงเทพฯ 10330

โทร 02-2186823 โทรสาร 02-2186835

Email: dazz_n@hotmail.com

บทคัดย่อ

เนื่องจากในปัจจุบันโรงงานกรณีศึกษาซึ่งเป็นคลังสินค้าที่กระจายชิ้นส่วนอะไหล่ยนต์ไปยังทั่วโลก ยังมีระบบการจัดวางผังคลังสินค้าที่มีจุดบกพร่องอยู่ในเรื่องของทิศทางการไหลของงานยังไม่เหมาะสม ซึ่งเป็นเหตุทำให้ต้นทุนในระบบคลังสินค้าอย่างมีระบบและแผนภาพความสัมพันธ์ ไม่ใช้ในการวิเคราะห์ โดยมีการนำแบบสอบถามมาเป็นเครื่องมือในการปรับปรุงการจัดวางผังคลังสินค้าใหม่ และเพื่อหาข้อมูล และความสัมพันธ์ของแผนกต่างๆ ภายในคลังสินค้า รวมทั้งปัจจัยที่มีผลต่อการวางผังคลังสินค้าและนำข้อมูลต่างๆ มาประเมินผลเป็นความสัมพันธ์ระหว่างแผนกต่างๆ ในทุกระดับปัจจัย เพื่อนำความสัมพันธ์ที่ได้มาศึกษาทิศทางการไหลของงานว่าการจัดวางภายในคลังสินค้ากรณีศึกษามีความเหมาะสมหรือไม่ และทดลองปรับปรุงผังการจัดวางผังคลังสินค้าใหม่เมื่อมีการโยกย้ายแผนกต่างๆ ว่ามีทิศทางการไหลเดิมหรือไม่ หลังจากนั้นเปรียบเทียบแผนผังการจัดวางเดิมและแผนผังการจัดวางในทางเลือกใหม่ พร้อมทั้งได้ข้อเสนอแนะ ข้อจำกัดต่างๆ ให้กับบริษัทคลังสินค้ากรณีศึกษา เพื่อเป็นแนวทางในการพิจารณาปรับปรุงแก้ไขผังคลังสินค้าในปัจจุบันและคลังสินค้าที่อาจเกิดขึ้นใหม่ในอนาคตด้วย

จากการประเมินพบว่าจากการนำหลักการจัดวางผังอย่างมีเป็นระบบ(Systematic Layout Planning) มาใช้ในการวิเคราะห์ผังคลังสินค้ากรณีศึกษานี้พบว่าความสัมพันธ์ระหว่างแผนกจำเป็นต้องอยู่ใกล้กัน เนื่องจากมีความต่อเนื่องของ

กระบวนการทำงาน ซึ่งการปรับปรุงผังคลังสินค้าครั้งนี้มีทางเลือกในการปรับปรุงคลังสินค้า 2 ทางเลือกด้วยกัน ซึ่งพบว่าทางเลือกที่ 1 และทางเลือกที่ 2 มีระยะทางโดยรวมเท่ากันคือ 790 เมตรซึ่งลดลงจากแบบแรกเริ่มที่ยังไม่มีการปรับปรุงผังคลังสินค้าเป็นระยะทาง 50 เมตรและระยะเวลาในทางเลือกที่ 1 และ 2 ใช้ระยะเวลาเท่ากันคือ 31.6 นาทีซึ่งลดลงจากเดิม 4.9นาทีแต่ด้วยระยะทางความสัมพันธ์ระหว่างแผนกของทางเลือกที่ 2 มีค่าน้อยกว่าระยะทางความสัมพันธ์ของทางเลือกที่ 1 ดังนั้นผู้วิจัยจึงได้ทำการเลือกแบบทางเลือกที่ 2 ใน การปรับปรุงคลังสินค้ากรณีศึกษาเพื่อให้เกิดประสิทธิภาพในการดำเนินงานภายในคลังสินค้าให้มีแนวโน้มที่ดีขึ้นและในส่วนของต้นทุนสามารถทำการลดค่าใช้จ่ายในส่วนของการนำสินค้าเข้าจัดเก็บในคลังสินค้าได้ซึ่งพบว่าก่อนทำการปรับปรุงคลังสินค้าในช่วงตั้งแต่เดือน ก.พ 2552 ถึง ก.ค 2552 มีค่าใช้จ่ายเกิดขึ้น 2,969,460 บาท และเมื่อทำการปรับปรุงคลังสินค้าแล้วมีค่าใช้จ่ายเกิดขึ้น 1,621,776 บาท ซึ่งการปรับปรุงคลังสินค้าในแบบทางเลือกที่ 2 สามารถลดค่าใช้จ่ายได้เป็นจำนวน 1,347,684 บาท

Abstract

The current facilities at case studies, a warehouse distribution parts to the global automotive film. The system also has placed a map inventory bug is in the direction of the flow is not appropriate. This is why making. Costs in excess inventory have to be some principles that organize the orderly

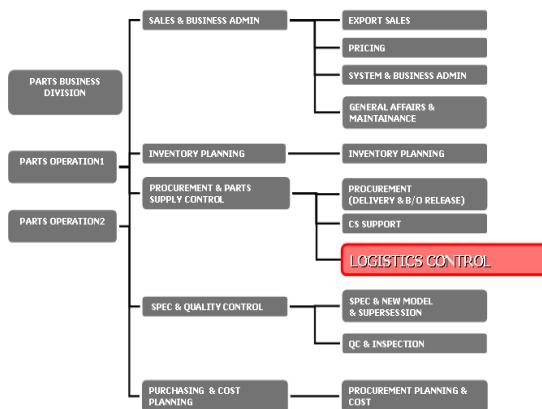
layout and inventory relationship diagram. Used in the analysis. The implementation of questionnaires as tools to improve inventory planning a new map. And to find information and relationships across departments. Within the warehouse. As well as factors affecting the warehouse layout and the information to take effect Emil is the relationship between divisions. Factors at all levels. To bring the relationship to study the direction of the flow chart that placed within the warehouse case study is appropriate or not. Free map updates and the new warehouse layout map when various departments are shifting the flow direction that is better or not. Then compare the original map layout and map placement in alternative. With the proposal to limit company stock to various case studies. To consider ways to update current inventory and map potential new warehouse in the future.

As the result, Show that alternative 1 and alternative 2 has the same overall distance 790 meters. So distance is reduce from original of 50 meters and lead time of alternative 1 and alternative 2 is the same period is 31.6 minutes. So lead time reduce from original 4.9 minutes but with the distance relationships alternative 2 is less than the distance relationships alternative 1. So the research has to select an option 2 in the associated inventory immediately prepared a case study. To ensure the effectiveness of operations within the warehouse to better and reduce the cost to charges of bringing goods into the warehouse. Which found that before improve inventory since February 2552 to July 2552 are costs incurred when 2,969,460 baht and improve inventory and cost 1,621,776 baht, which occurs in an inventory update option 2 can reduce infrastructure costs 1,347,684 baht.

1. บทนำ

เนื่องจากในปัจจุบันอุตสาหกรรมยานยนต์และชิ้นส่วนยานยนต์ในประเทศไทยเป็นอุตสาหกรรมหนึ่ง ที่มีความสำคัญต่อการพัฒนาเศรษฐกิจของประเทศไทย ทั้งในด้านการผลิต การตลาด

การจ้างงาน การพัฒนาเทคโนโลยี และความเชื่อมโยงกับอุตสาหกรรมต่อเนื่องอื่นๆ อิทธิพลประเพณี ซึ่งการบริโภคชิ้นส่วนอะไหล่รถยนต์ของคนทั่วโลกมีแนวโน้มที่สูงขึ้นเรื่อยๆ ทำให้ค่าใช้จ่ายที่เกิดขึ้นในการจัดเก็บและการส่งอะไหล่ต้องกินอกราคาที่สูงมาก โดยคลังสินค้ากรณีศึกษาซึ่งเป็นคลังสินค้าที่เก็บอะไหล่และชิ้นส่วนรถยนต์ ซึ่งมีทั้งอะไหล่รุ่นเดิมและอะไหล่รถยนต์ ซึ่งยอดการนำเข้าสินค้ายานยนต์เพิ่มขึ้นจากเดิมในปี 2551 เป็นร้อยละ 7.1 และยอดการส่งออกสินค้ายานยนต์เพิ่มขึ้นจากเดิมในปี 2551 เป็นร้อยละ 72.1 ซึ่งจะเห็นได้ว่าภาคการส่งออกมีการขยายตัวอย่างต่อเนื่องเป็นสาเหตุที่ทำให้ผู้บริหารต้องมีการลดต้นทุนการผลิต เพิ่มคุณภาพและสร้างผลกำไรให้กับองค์กร ให้ได้มากที่สุดดังนั้นผู้บริหารจึงต้องทำการพัฒนาระบบการขนส่ง การเลือกวัสดุอุปกรณ์ การพัฒนาการดำเนินงานและการจัดระบบคลังสินค้าเพื่อให้มีประสิทธิภาพ และมีการพัฒนาอย่างต่อเนื่อง พร้อมทั้งการปรับปรุงและแก้ไขจุดบกพร่องที่ทำให้เกิดค่าใช้จ่าย เพื่อให้องค์กรสามารถแข่งขันกับคู่แข่งทางการค้าได้เนื่องจากระบบการขนส่งและระบบคลังสินค้าที่เป็นอยู่ในปัจจุบันของโรงงานตัวอย่างพบว่ามีจุดบกพร่องในกระบวนการผลิตประการด้วยกัน ซึ่งทำให้เกิดต้นทุนที่ไม่จำเป็น ต้นทุนที่สูญเสียโดยเปล่าประโยชน์ดังนี้


- เพื่อลดการสูญเสียทางค้านค่าใช้จ่ายด้านการขนส่งที่ไม่มีประสิทธิภาพ
- เพื่อลดการสูญเสียทางค้านเวลาอันเกิดจากการขนส่งหลายสถานี
- เพื่อสร้างระบบคงคลังใหม่ในโรงงานตัวอย่าง จากปัจจุบันที่ได้กล่าวมา ทางองค์กรจึงได้ตระหนักรถึงความจำเป็นในการปรับปรุงระบบการขนส่งและระบบการดำเนินการในคลังสินค้า เพื่อให้เกิดประสิทธิภาพและเกิดการลดต้นทุนที่ไม่จำเป็นที่เกิดขึ้นในกระบวนการอีกด้วย เพื่อนำองค์กรไปสู่ความสำเร็จและเป็นผู้นำในธุรกิจชิ้นส่วนยานยนต์

2. ลักษณะทั่วไปของโรงงานกรณีศึกษา

2.1 ข้อมูลทั่วไป

- โรงงานกรณีศึกษาเป็นศูนย์กระจายสินค้าซึ่งตั้งอยู่ที่นิคมอุตสาหกรรม เวลาโกร์ด บagan – ตราด กม.36 ต.บางวัว

อ.บางปะกง จ.ฉะเชิงเทรา 24180 ซึ่งมีพื้นที่ 66,672 ตารางเมตร พื้นที่ใช้สอยที่เป็นคลังสินค้า 42,415 ตารางเมตร และมีสินค้าคงคลังทั้งหมด 96,422 รายการ

รูปที่ 1 โครงสร้างองค์กรของโรงงานกรณีศึกษา

2.2 ผลิตภัณฑ์ของโรงงาน

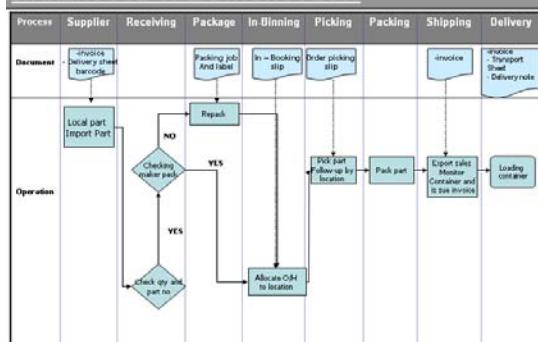
โรงงานกรณีศึกษาเป็นศูนย์กระจายสินค้าโดยแบ่งประเภทของอะไหล่เป็น 4 ประเภทดังนี้

- อะไหล่รถยนต์ (Automobile Part)
- อะไหล่จักรยานยนต์ (Motorcycle Part)
- อะไหล่มาตรฐาน (Standard Part)
- อะไหล่ประดับยนต์ (Accessory Part)

โดยทำการเก็บสต็อกประมาณ 3.3 เดือน มูลค่าสินค้าคงคลัง 1,200 ล้านบาท แหล่งที่มาของอะไหล่มาจากการซื้อ 2 คู่มือด้วยกัน

รูปที่ 2 ผลิตภัณฑ์หลักของโรงงานกรณีศึกษา

- Import part ประมาณ 21.5 % โดยนำเข้ามาจาก HB (ประเทศญี่ปุ่น), AH (ประเทศอเมริกา), HE (ประเทศญี่ปุ่น) และประเทศอื่นๆ

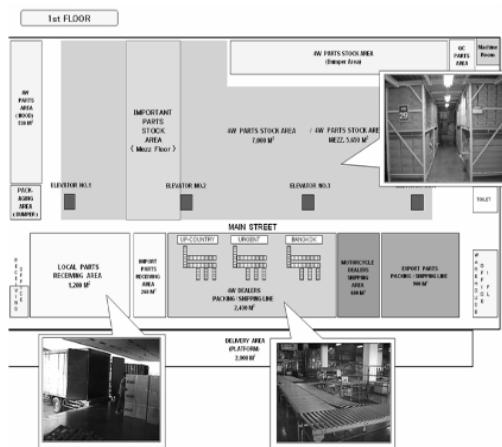

- Local part ประมาณ 78.5 % โดยนำเข้าจากโรงงานประกอบรถยนต์ (HATC) และผู้ผลิตภายนอกในประเทศ (Supplier)

2.3 กระบวนการผลิตของโรงงาน

แผนผังกระบวนการผลิตของโรงงานกรณีศึกษา ประกอบไปด้วยกระบวนการหลัก 7 กระบวนการ ดังต่อไปนี้

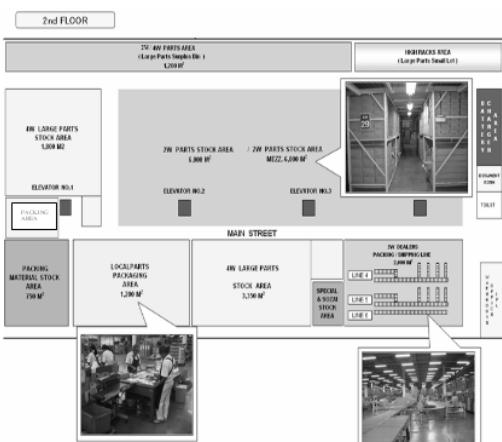
- กระบวนการรับสินค้า (Receiving)
- กระบวนการบรรจุภัณฑ์ (Packaging)
- กระบวนการนำสินค้าเข้าสต็อก (In binning) ประกอบด้วยจัดเก็บสินค้าประเภทกันชน (Binning Bumper), จัดเก็บสินค้าขนาดใหญ่ (Binning Big part), จัดเก็บสินค้าขนาดกลาง (Binning Medium part) และจัดเก็บสินค้าขนาดเล็ก (Small part)
- กระบวนการหยิบสินค้าออกจากสต็อก (Picking)
- กระบวนการนำสินค้ามาบรรจุหีบห่อ (Packing)
- กระบวนการส่งออก (Shipping)
- กระบวนการขนสินค้า (Delivery)

WAREHOUSE OPERATIONS FLOW


รูปที่ 3 กระบวนการผลิตหลักของโรงงานกรณีศึกษา

2.4 ระบบการจัดวางแผนผังคลังสินค้าในปัจจุบัน

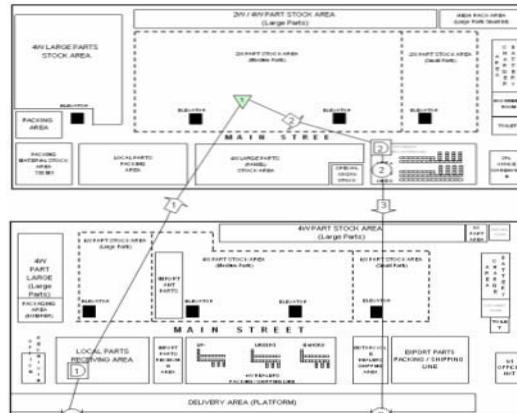
ปัจจุบันมีการจัดวางแผนผังคลังสินค้าโดยแบ่งเป็น 2 ชั้น โดยชั้นที่ 1 จะจัดเป็นชั้นส่วนอะไหล่รถยนต์ เพราะเป็นชั้นส่วนที่มีขนาดใหญ่และมีการสั่งซื้อจากลูกค้ามากกว่า อะไหล่ล้อเตอร์ไซด์ ซึ่งประกอบไปด้วย


- Plat form สำหรับรับสินค้า ซึ่งมีพื้นที่ประมาณ 2,000 ตารางเมตร โดยตั้งอยู่ทางด้านหน้าเพื่อสะดวกต่อการขนถ่าย
- พื้นที่สำหรับตรวจสอบสินค้า

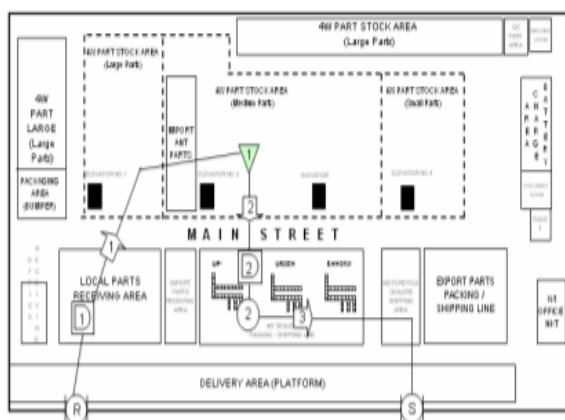
- พื้นที่สำหรับทำการจัดเก็บสินค้า
- พื้นที่สำหรับทำการบรรจุสินค้าเพื่อรอส่ง

รูปที่ 4 แสดงแผนผังการจัดกลั่นสิ่นก้าชั่นที่ 1

ส่วนชั้นที่ 2 จะเป็นพื้นที่ที่ใช้ในการจัดเก็บข้อมูลของไอลรอนิคส์ รวมถึงตู้เครื่องยนต์และตู้ไฟฟ้าที่ต้องการติดตั้งในห้องนี้ ทั้งนี้เพื่อให้สามารถจัดการและบำรุงรักษาได้สะดวกยิ่งขึ้น



รูปที่ 5 แสดงแผนผังการจัดคลังสินค้าชั้นที่ 2


2.5 รูปแบบการที่หลักของกองค์กังสินค้า

การ ไหลดของคลังสินค้าจะเริ่ม (1) จากการรับของที่บริเวณรับส่งสินค้าเข้าและรอคือการเคลื่อนย้ายของไหลดเข้าไปยังบริเวณที่จัดเก็บของ ไหลดในชั้น 2 โดยจัดเรียงตามประเภทและขนาดของของ ไหลด หลังจากนั้น (2) อะไหลดจะถูกย้ายออกจากสถานที่เก็บ โดยพนักงานเมื่อมีการสั่งซื้อของ ไหลด จากลูกค้าและ

ทำการบรรจุสินค้า ขั้นตอนสุดท้ายคือ (3) การจัดส่งอะไหล่ที่ทำการบรรจุแล้วไปยังแพนกส่งออกทั่วในประเทศไทยและต่างประเทศ

รูปที่ 6 แสดงการเคลื่อนย้ายของอะไหล่รัฐจักรยานยนต์ (2W)

รูปที่ 7 แสดงการเคลื่อนย้ายของอะไอลรดยนต์ (4W)

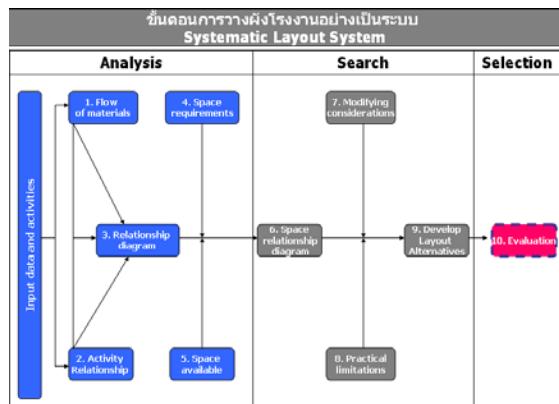
การให้ผลของคลังสินค้าจะเริ่ม (1) จากการรับของที่บริเวณรับส่งสินค้าเข้าและรอคือการเคลื่อนย้ายของให้เข้าไปยังบริเวณที่จัดเก็บของไว้แล้วในชั้น 1 โดยจัดเรียงตามประเภทและขนาดของของไว้ หลังจากนั้น (2) อะไหล่จะถูกย้ายออกจากสถานที่เก็บโดยพนักงานเมื่อมีการสั่งซื้อของ ให้ล่าจากลูกค้าและทำการบรรจุสินค้า ขั้นตอนสุดท้ายคือ (3) การจัดส่งอะไหล่ที่ทำการบรรจุแล้วไปยังแผนกส่งออกทั้งในประเทศและนอกประเทศ โดยถ้าเป็นการส่งออกนอกประเทศจะเปลี่ยนค้าที่มีขนาดค่อนข้างนักและใช้ค่อนเทนเนอร์เป็นตัวในการส่งออก

2.6 หลักการจัดวางผังโรงงาน

การจัดวางผังโรงงานหมายถึง การจัดตำแหน่งของอุปกรณ์ เครื่องจักร สิ่งอำนวยความสะดวก และคน ให้อยู่ในตำแหน่งที่เหมาะสม สะดวกต่อการปฏิบัติงาน และเกิดประสิทธิภาพมากที่สุด โดยปกติแล้วผังโรงงานที่ดีเมื่อมีการปฏิบัติงานจริงแล้ว จะต้องสามารถตอบสนองสิ่งเหล่านี้ได้ดี

1. ต้นทุนการผลิตที่ต่ำหรือลดลง เพื่อทำให้ได้ชั้งผลกำไรที่สูงที่สุด

2. อุบัติเหตุที่เกิดจากการทำงานจะต้องไม่เกิดหรือว่าลดลงจากเดิม


3. การไหลของงานจะต้องลื่นไหลสะดวกไม่เกิดความขัดแย้งไม่ล่าช้า และสามารถส่งของออกไปยังลูกค้าได้ทันตามกำหนด

โดยทั่วไป ข้อที่กล่าวมานี้จะต้องมีการคำนึงถึงหลักการเกี่ยวกับ หลักความพอใช้ หลักการลอกเลียนแบบ หลักการไหลของสิ่งของและสุดท้ายคือหลักการอาศัยประสบการณ์ ด้วยถึงจะถือว่าเป็นการวางแผนผังโรงงานที่ดี

2.7 ทฤษฎีการจัดวางผังโรงงาน

1. รูปแบบการจัดวางผังโรงงานอย่างมีระบบ สิ่งที่สำคัญที่สุดของการจัดวางผังโรงงานอย่างมีระบบต้องมีการคำนึงถึงขั้นตอนการทำงาน พื้นที่และทิศทางการไหลของงาน (Flow of Materials) เพราะเนื่องจากว่าหากมีการจัดวางผังโรงงานอย่างดีแล้วแต่เมื่อสถานการณ์การทำงานลูกค้าเปลี่ยนไปหรือทิศทางการไหลของงานเปลี่ยนไปผู้วางแผนผังโรงงานจะต้องทำการเปลี่ยนผังโรงงานใหม่เพื่อให้การไหลของงานเป็นไปในทิศทางที่ลูกค้าต้องซึ่งเมื่อนำการวิเคราะห์การไหลของงานและวัสดุอุปกรณ์ และความสัมพันธ์ของแต่ละกิจกรรมมาเขียนอยู่ในรูปแผนภูมิความสัมพันธ์ (Relationship chart) ในตำแหน่งและทิศทางที่เหมาะสมซึ่งขั้นตอนต่อมาเป็นการวิเคราะห์เนื้อที่ของสถานที่ทำงาน เครื่องจักร อุปกรณ์ในการทำงานต่างๆ และสิ่งอำนวยความสะดวก ความสะดวกหรือสิ่งสนับสนุนการผลิต เมื่อได้ได้เนื้อที่มาแล้ว ก็นำมาเขียนเป็นแผนภาพความสัมพันธ์ของเนื้อที่ ซึ่งขั้นตอนนี้ เป็นขั้นตอนที่สำคัญ เพราะเนื่องจากจะเป็นแนวทางในการกำหนดตำแหน่งของกิจกรรม ได้อย่างเหมาะสม โดยที่จะต้องมีการปรับปรุง โดยพิจารณาจาก การขนาดสิ่นค้า การปฏิบัติงาน

และอื่นๆ เพื่อให้การวางแผนผังโรงงานเป็นไปได้มากที่สุดและทำการทดลองว่าวิธีไหนเป็นวิธีที่ดีที่สุดและเหมาะสมมากที่สุด

รูปที่ 8 รูปภาพแสดงขั้นตอนการวางแผนผังโรงงานอย่างมีระบบ

2. การไหลของวัสดุ (Flow of materials) การไหลของวัสดุ เป็นสิ่งสำคัญที่ผู้จัดวางผังโรงงานต้องคำนึงเป็นอย่างมาก โดยจะใช้แผนภูมิต่างๆ มาเป็นเครื่องมือช่วยในการวิเคราะห์ดังนี้

2.1 แผนภูมิการทำงานของกระบวนการผลิต (Operation Process Chart)

2.2 แผนภูมิการไหลของกระบวนการผลิต (Flow Process Chart)

2.3 แผนภูมิการทำงานหลายผลิตภัณฑ์ (Multi-Product Process Chart)

2.4 แผนภูมิการไหลไปกลับ (From-To Chart)

2.5 แผนผังการไหล (Flow diagram)

3. การวิเคราะห์ความสัมพันธ์ คือการวิเคราะห์ความเกี่ยวพันธ์กันของกิจกรรมต่างๆ หรือขั้นตอนการทำงานแต่ละขั้นตอน โดยอาศัยแผนภูมิความสัมพันธ์ ซึ่งมีขั้นตอนดังนี้

3.1 การกำหนดกิจกรรม หมายถึงบริเวณสถานที่ สิ่งของ เช่น อาคารสำนักงาน ทางเดินหลัก ลิฟต์ จุดรับส่งสินค้า ซึ่งเป็นส่วนที่สำคัญมาก เช่น กันเพราะเนื่องจากว่าหากมีการกำหนดกิจกรรมผิดแล้ว ก็จะมีผลทำให้การวิเคราะห์ผิดไปจากความเป็นจริง และไม่ควรมีกิจกรรมมากไปกว่า 40 กิจกรรม เพราะเนื่องจากว่าการมีกิจกรรมมากเกินไปทำให้ลำบากต่อการจัดวางผังโรงงาน

3.2 ศึกษาตัวแปรต่างๆ ที่มีผลต่อความสัมพันธ์ เพื่อให้มีการจัดความสัมพันธ์ได้ถูกต้อง มีความถูกต้อง และเหมาะสมที่สุด

โดยมีหลักเกณฑ์การแปลงค่าเป็นความสัมพันธ์ A E I O U X ดังนี้

ขั้นตอนที่ 2 หาความสัมพันธ์ระหว่างแผนก

แบบสอบถามส่วนที่ 2 จะเป็นแบบสอบถามในเรื่องความสัมพันธ์ระหว่างกิจกรรมที่ส่งผลต่อปัจจัยทั้ง 5 เมื่อผู้วิจัยทำการหาความสัมพันธ์ในปัจจัยความถี่ในการขนถ่ายสินค้าจะได้ค่าดังตารางที่ 1

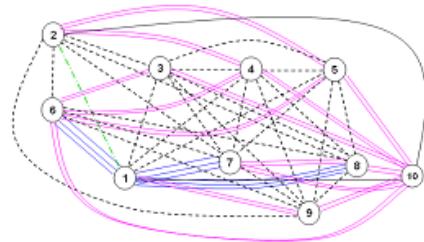
	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	1.10	2.3	2.4	2.5	2.6	2.7	2.8
A	14	12	12	11	0	0	0	0	0	1	1	1	7	3	3
E	6	8	5	5	2	0	0	0	0	1	1	1	12	13	
I	0	0	3	3	1	0	0	0	0	0	0	1	5	4	
O	0	0	0	1	14	12	12	1	0	6	6	5	0	0	0
U	0	0	0	0	3	8	8	1	0	12	12	13	0	0	0
X	0	0	0	0	0	0	0	18	20	0	0	0	0	0	0

	2.9	2.10	3.4	3.5	3.6	3.7	3.8	3.9	3.10	4.5	4.6	4.7	4.8	4.9	4.10
A	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	15	0	3	3	2	16	16	14	1	0	2	18	19	13	2
I	2	0	7	6	2	1	4	3	0	7	2	1	1	7	0
O	3	0	7	8	2	3	0	3	5	9	0	0	0	0	3
U	0	6	3	3	13	0	0	0	8	4	16	1	0	0	11
X	0	14	0	0	1	0	0	0	6	0	0	0	0	0	4

	5.6	5.7	5.8	5.9	5.10	6.7	6.8	6.9	6.10	7.8	7.9	7.10	8.9	8.10	9.10
A	0	0	0	2	0	0	0	3	0	0	4	0	4	18	0
E	3	18	17	13	2	15	20	16	2	0	12	4	15	2	0
I	0	1	3	5	0	4	0	1	6	5	3	0	1	0	0
O	3	0	0	0	6	1	0	0	3	5	0	5	0	0	0
U	8	0	0	0	10	0	0	0	6	10	0	10	0	0	2
X	6	1	0	0	2	0	0	0	3	0	1	1	0	0	18

รูปที่ 10 แสดงค่าความถี่ของความสัมพันธ์ในปัจจัยเรื่องของ การขนถ่ายสินค้า

ซึ่งวิธีการที่นี่จะต้องทำการหาความถี่ของความสัมพันธ์ ของทุกๆปัจจัย


ขั้นตอนที่ 3 จัดทำ Relation Diagram

1. นำค่าที่ได้มาจากแบบสอบถามในส่วนที่ 1 มา คุณกับความถี่ของความสัมพันธ์ในแต่ละระดับของปัจจัยต่างๆ มีสูตรที่ใช้ในการคำนวณ ดังนี้

2. ผลรวมค่าคะแนนความสัมพันธ์ X ค่าที่ได้มาทั้งหมดในทุกๆปัจจัย

ยกตัวอย่างเช่น การคำนวณหาคะแนนความสัมพันธ์ ระหว่างแผนกที่ 1 (Receiving part) และ 2 (Binning bumper) ที่ ระดับ A (แผนกที่สองจำเป็นต้องอยู่ใกล้กันอย่างยิ่ง) ในทุกๆปัจจัย $(12*7.3) + (6*6) + (11*6.5) + (5*5.8) + (10*4.8) = 271.1$

3. นำตารางสรุปค่าคะแนนความสัมพันธ์ของแผนกต่างๆ ในทุกระดับและทุกปัจจัย มาสรุปค่าความสัมพันธ์อีกครั้ง

รูปที่ 13 แผนภาพความสัมพันธ์ของกิจกรรม

ขั้นตอนที่ 5 พัฒนาการวางแผนคลังสินค้าที่ได้มาจากการวางแผนภาพความสัมพันธ์ของแต่ละกิจกรรม (Development alternative) ทางผู้วิจัยมีทางเลือก 2 ทางดังนี้

1. ข้ายแผนก 2 ให้ใกล้กับแผนกที่ 1 ให้นำกันขึ้น
2. ข้ายแผนก 2 และ 8 ให้ใกล้กับแผนกที่ 1 ให้นำกันขึ้น

4. สรุปผลการวิจัย

ทางเลือกที่ 1 และทางเลือกที่ 2 มีระยะเวลาโดยรวมเท่ากันคือ 790 เมตรซึ่งลดลงจากแบบแรกเริ่มที่ยังไม่มีการปรับปรุงผังคลังสินค้าเป็นระยะทาง 50 เมตรและระยะเวลาในทางเลือกที่ 1 และ 2 ใช้ระยะเวลาเท่ากันคือ 31.6 นาทีซึ่งลดลงจากเดิม 4.9 นาทีที่แต่ด้วยระยะทางความสัมพันธ์ระหว่างแผนกของทางเลือกที่ 2 มีค่าน้อยกว่าระยะทางความสัมพันธ์ของทางเลือกที่ 1 ดังนั้นผู้วิจัยจึงได้ทำการเลือกแบบทางเลือกที่ 2 ในการปรับปรุงผังคลังสินค้าการณ์ศึกษา เพื่อทำให้ประสิทธิภาพในการดำเนินงานภายในคลังสินค้ามีแนวโน้มที่ดีขึ้นในส่วนของการลดต้นทุนการจัดการคลังสินค้าเมื่อทำการปรับปรุงผังคลังสินค้าแล้วผู้วิจัยพบว่าสามารถลดค่าใช้จ่ายในส่วนของการนำสินค้าเข้าคลังสินค้าได้ดังสรุปในตารางที่ 12 ซึ่งพบว่าก่อนทำการปรับปรุงคลังสินค้าดังเดือน ก.พ 2552 ถึง ก.ค 2552 มีค่าใช้จ่ายเกิดขึ้น 2,969,460 บาท และเมื่อทำการปรับปรุงคลังสินค้าแล้วมีค่าใช้จ่ายเกิดขึ้น 1,621,776 บาท ซึ่งการปรับปรุงคลังสินค้าในแบบทางเลือกที่ 2 สามารถลดค่าใช้จ่ายได้เป็นจำนวน 1,347,684 บาท

5. ข้อเสนอแนะ

1. ควรมีการปรับปรุงระบบการเก็บข้อมูลต้นทุนต่างๆ ให้เป็นระบบ และมีความละเอียดมากขึ้น พร้อมทั้งจัดการอบรมให้ความรู้แก่พนักงาน เพื่อให้มีความรู้ความเข้าใจถึงความสำคัญในการเก็บบันทึกข้อมูล ทำให้การบันทึกข้อมูลเป็นไปอย่างมีประสิทธิภาพ และได้ข้อมูลที่มีความถูกต้องสมบูรณ์มากที่สุด

2. ควรมีการปรับปรุงระบบการคำนวณและประมาณผลข้อมูลต้นทุนต่างๆ ให้เป็นระบบ โดยทำการเชื่อมโยงข้อมูลเข้ากับระบบบัญชี และจัดทำระบบฐานข้อมูลสนับสนุนต่างๆ ข้อมูลต้นทุนต่อหน่วยของตัวผลักดันต้นทุนในแต่ละกิจกรรมนั้น สามารถนำໄไปใช้ในการวิเคราะห์คุณค่าของแต่ละกิจกรรมในกระบวนการบริหารตามฐานกิจกรรม (Activity-Based Management) ซึ่งสามารถนำໄไปวิเคราะห์ และทำการปรับปรุงเพื่อลดความสูญเปล่าของกิจกรรมต่างๆ ลงให้เหลือน้อยที่สุด

6. กิตติกรรมประกาศ

ขอขอบพระคุณทางผู้บริหาร, พนักงานทุกท่านของโรงงานกรณีศึกษา ที่ได้สละเวลาช่วยเหลือให้ข้อมูลตลอดจนให้ความร่วมมือในการให้ข้อมูล ความร่วมมือ การทำงานที่ผู้วิจัยได้แนะนำเพื่อให้การทำงานวิจัยในครั้งนี้ สำเร็จลุล่วงไปด้วยดี ขอขอบพระคุณ รองศาสตราจารย์ สุทธิศน์ รัตนเกื้อ กั้งวน อาจารย์ที่ปรึกษาของข้าพเจ้า ที่ให้โอกาส และ คำแนะนำแก่ ข้าพเจ้า สุดท้ายนี้ขอกราบขอบพระคุณ บิดา มารดา ญาติพี่น้อง และเพื่อนทุกคนที่เคยสนับสนุน ช่วยเหลือและให้กำลังใจตลอดจนขอขอบพระคุณคณาจารย์ทุกท่านที่ได้ประสิทธิ ประสาทวิชาแก่ผู้วิจัย จนสามารถทำงานวิจัยนี้สำเร็จลุล่วงไปได้ด้วยดี

เอกสารอ้างอิง

- [1] วันชัย ริจิรวนิช และ สุทธิศน์ รัตนเกื้อ กั้งวน. การวิเคราะห์ต้นทุนอุตสาหกรรมและงบประมาณ, สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย, 2540
- [2] จิรพัฒน์ เงาประเสริฐวงศ์. การวิเคราะห์ต้นทุนอุตสาหกรรมและการจัดทำงานงบประมาณ, สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย, 2543

- [3] วรศักดิ์ ทุมนานนท์. ระบบบัญชีบริหารและการบริหารต้นทุนกิจกรรม. กรุงเทพฯ: ธรรมนิติ, 2548
- [4] สรวลด อิศรางกูร ณ อยุธยา. การจัดทำระบบต้นทุนฐานกิจกรรมของโรงงานผลิตโทรทัศน์สี. วิทยานิพนธ์ปริญญามหาบัณฑิต. ภาควิชาบริหารธุรกิจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 2547
- [5] พิชญ์ เตชะกำธร. การวิเคราะห์กิจกรรมเพื่อจัดทำระบบต้นทุนกระบวนการของโรงงานผลิตตู้แสดงสินค้า. วิทยานิพนธ์ปริญญามหาบัณฑิต. ภาควิชาบริหารธุรกิจ คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย, 2550
- [6] Hansen and Mowen. Management Accounting. Cincinneti: South-Western College, 2000
- [7] John C. Lere. Activity-Based Costing: A Powerful Tool for Pricing: Department of Accounting. Minnesota: St. Cloud State University,

Oct-08	Department: Production (PC)	Cost Element	Activity (Cost Object)	Cost Driver Rate	GM Allocated	Direct Cost Ratio	Charged From SU	Total Cost	Process Cost
			กิจกรรม : Pump - งานปั๊มน้ำ	6,004,491.89	493,664.77	6,498,156.66	2,082,753.05	8,580,909.71	2,082,753.05
			วัสดุรับซื้อ : เพื่อผลิตภัณฑ์และสัมภาระตามกำหนดที่ต้องการ	606	387	234,509.80	3.91%	19,280.44	253,790.24
			ปั๊มน้ำ : ได้รับรับผลิตภัณฑ์ตามกำหนดที่ต้องการ	606	387	234,509.80	3.91%	19,280.44	253,790.24
			กิจกรรม : Die - งานลึก ผลิตภัณฑ์ปั๊มน้ำ	1,120	949	1,063,249.30	17.71%	87,416.01	1,150,665.31
			วัสดุรับซื้อ : เพื่องานปั๊มน้ำตามกำหนดที่ต้องการ	1,120	949	1,063,249.30	17.71%	87,416.01	1,150,665.31
			ปั๊มน้ำ : ได้รับผลิตภัณฑ์ตามกำหนดที่ต้องการ	1,120	949	1,063,249.30	17.71%	87,416.01	1,150,665.31
			กิจกรรม : Cover - งานเคลือบผิวผลิตภัณฑ์	275	1,593	437,737.69	7.29%	35,989.00	473,726.69
			ปั๊มน้ำ : ได้รับผลิตภัณฑ์ตามกำหนดที่ต้องการ	275	1,593	437,737.69	7.29%	35,989.00	473,726.69
			กิจกรรม : Frame - งานปั๊มน้ำผลิตภัณฑ์	275	876	240,692.25	4.01%	19,788.73	260,480.98
			วัสดุรับซื้อ : เพื่อให้ได้รับผลิตภัณฑ์ตามกำหนดที่ต้องการ	275	876	240,692.25	4.01%	19,788.73	260,480.98
			ปั๊มน้ำ : ได้รับผลิตภัณฑ์ตามกำหนดที่ต้องการ	275	876	240,692.25	4.01%	19,788.73	260,480.98
			กิจกรรม : Painting - งานพ่นสี	1,430	115	164,501.46	2.74%	13,524.64	178,026.10
			วัสดุรับซื้อ : เพื่อนำไปรื้อส่วนปรับลดตามกำหนด	1,430	115	164,501.46	2.74%	13,524.64	178,026.10
			ปั๊มน้ำ : ได้รับสีตามกำหนดที่ต้องการ	1,430	115	164,501.46	2.74%	13,524.64	178,026.10
			กิจกรรม : Coil - งานพัฒนาผลิตภัณฑ์	110	16,042	1,761,479.46	29.34%	144,821.64	1,906,301.10
			วัสดุรับซื้อ : เพื่อนำไปรื้อส่วนปรับลดตามกำหนด	110	16,042	1,761,479.46	29.34%	144,821.64	1,906,301.10
			ปั๊มน้ำ : ได้รับผลิตภัณฑ์กำหนด	311	592	334.72	9.86%	48,699.34	641,034.06
			วัสดุรับซื้อ : เพื่อใช้กันน้ำลดภาระตามกำหนด	311	592	334.72	9.86%	48,699.34	641,034.06
			กิจกรรม : Shaft - งานทำเกนน์ผลิตภัณฑ์	361	485	174,927.32	2.91%	14,381.81	189,309.13
			วัสดุรับซื้อ : เพื่อตัดเก็บน้ำลดภาระตามกำหนด	361	485	174,927.32	2.91%	14,381.81	189,309.13
			ปั๊มน้ำ : ได้รับผลิตภัณฑ์กำหนด	242	5,512	1,335,059.89	22.23%	109,763.16	1,444,823.05
			วัสดุรับซื้อ : เพื่อปรับลดภาระตามกำหนด	242	5,512	1,335,059.89	22.23%	109,763.16	1,444,823.05
			ปั๊มน้ำ : ได้รับรีซิร์ฟชั่นตามกำหนด					368,596.73	1,813,419.78

ตารางที่ 1 ต้นทุนการผลิต