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Abstract 

A residual soil slope is under 
investigation using a coupled mechanistic 
approach. The numerical code, DEFLOC 
(DEformation FLOw Coupled program), has 
been developed in the MATLAB environment 
that takes into account the basics of unsaturated 
soil behavior. Two-dimensional numerical 
modeling was performed based on the Galerkin's 
method applied to poro-elasticity.  The effects of 
hydraulic characteristics, matric suction and 
degree of saturation on the pore pressure and 
deformation behavior of a residual soil slope 
under rainfall were investigated. The results 
reveal a typical process of infiltration into 
unsaturated soil slopes. 

 
1.  Introduction 
 
Rainfall-triggered slope failures are the most 
common slope instability phenomenon in 
unsaturated residual soils along the monsoon 
affected areas of South Asia and South East Asia 
[1, 2]. Such failures occur on both virgin and 
construction modified hill slopes on the northern 
and north eastern part of Thailand during rainy 
season. The hillslopes are generally covered with 
unsaturated residual soil and often shallow earth 
slips are predominant accounting for about 80 % 
of failures [3]. In general, the failures on 
unsaturated soil occur due to an increase in 
moisture content and a decrease in matric 
suction. Wetting reduces the additional shear 
strength provided by the matric suction and 
causes the failure [4]. A rise in the groundwater 
level also increases the moisture and unit weight 
content of soil, thereby reducing the resisting 
force and increasing the driving moment. 

 
The behavior of partially saturated soils can be 
very different to that of fully saturated and dry 
soils. For many geotechnical problems involving 
unsaturated soils, knowledge of the porewater 
pressures, the negative porewater pressure in 
particular, is of primary importance. The effect 
of negative porewater pressure (matric suction) 
on flow-deformation regime can not be 
overlooked where the concern is a shallow 
failure surface [5]. 
 
A fully coupled flow-deformation system is 
characterized by the procedure that rigorously 
incorporates the interactions among the three 
bulk phases of a deforming porous medium, and 
therefore, fluid flow and mechanical equilibrium 
equations are required to be solved 
simultaneously. In case of an uncoupled analysis, 
a solution to the flow equation is first used to 
determine the pore pressure changes in a given 
time step, and pore-pressure changes are then 
used as applied loads in a deformation analysis. 
The fluid flow and deformation analyses are 
carried out separately. The issue of coupling 
versus uncoupling in consolidation type 
problems has been previously addressed by 
several researchers [6-8]. As pointed out by 
Desai and Saxena [9] and Lewis et al. [10] 
coupling is generally accepted when the forcing 
function is applied to the displacement field, e.g. 
by a physical load or a foundation pressure. The 
response of unsaturated soils subjected to rainfall 
perturbations (forcing function), therefore, is 
described in this research with a coupled flow –
deformation analysis.  
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Several attempts have been made to simulate 
multiphase flow in deforming porous media 
based on the theory of poroelasticity. However, 
only a few fully coupled models of multiphase 
flow in a deforming porous medium are available 
due to the complexities. Although the existing 
models are capable of reproducing some of the 
important behavior of partially saturated soils, 
most models are basic, and impose limitations 
because they do not consider down-slope flows, 
rainfall intensity, and most importantly, the 
dependence of soil permeability on moisture 
content [11-13].  
 
An analytical solution for a coupled problem in 
unsaturated soil is not possible without making 
several simplifying assumptions. However, 
attempts have been made, in recent years, to 
come up with the closed form solution of the 
governing equations of unsaturated soils, 
including equilibrium equations and continuity 
flow equations [14]. Nevertheless, the numerical 
solution becomes indispensable for such a 
complex problem of investigating the behavior of 
partially saturated soils. 
 
This research aims at modeling the flow 
deformation behavior of the unsaturated soil 
subjected to rainfall using a coupled numerical 
code, DEFLOC (DEformation FLOw Coupled 
program). The finite element program developed 
in the MATLAB environment takes into account 
the basic features of unsaturated soil behavior. 
 
2. Theoretical Backgrounds 
 
Early attempts to describe the behavior of 
partially saturated soils made the assumption that 
the effective stress principle is applicable to such 
soils, and that the mechanical behavior can be 
fully described in the conventional (q, p’) stress 
space. Generalized effective stress expressions 
were proposed to include partially saturated soils 
into the conventional soil mechanics framework, 
the best known being that proposed by Bishop 

[15]. The Bishop's approach proved capable of 
reproducing some behaviors of partially 
saturated soils, such as the shear strength 
increase due to suction, but could not explain 
others, such as wetting induced collapse. It is 
now generally accepted that two independent 
stress variables are necessary in order to explain 
the behavior of partially saturated soils. Bishop 
and Blight [16] first used net total stress 
( )apσ − and suction ( )a wp p− to investigate the 
volumetric and strength behavior of partially 
saturated soils and produced graphical 
representations of state surfaces and failure 
envelopes. Researchers suggest that any pair of 
stress state variables among the following: 
( )apσ − , ( )wpσ − and ( )a wp p− can be adopted 
when describing partially saturated soil behavior 
[17]. The most commonly used pair is net total 
stress ( )w apσ − and suction ( )a wp p−  [17, 18]. 
 
3. Mathematical Formulation 
 

 Balanced Equations 
 

 Water Mass Balance Equation 
 
The water mass balance equation for unsaturated 
soil is: 
 
( ) ( )wdiv 0w r

w

nS
t

ρ
ρ

∂
+ =

∂
v                       (1)  

where ρw is the density of water, n is porosity, Sr 
is the degree of saturation, and vw is the velocity 
of water. Density of water is assumed to be 
constant, and hence a weak formulation of Eq 
(1), after taking arbitrary volume integral and 
limiting the scope for two-dimensional problems, 
gives rise to: 
 

( ) w   0r w
A A

nS dA q d dA
t
∂

+ − =
∂∫ ∫ ∫T T T

n n nN N B v�
Γ

Γ   (2)  

 



วิศวกรรมสาร ฉบับวิจัยและพัฒนา ปที่ 18 ฉบับที่ 4 พ.ศ. 2550                  RESEARCH AND DEVELOPMENT JOURNAL VOLUME 18 NO.4, 2007 

 

 3 

in which the term qw, is the water flux across the 
boundary given by: wq = T

wv n . Water flow is 
described by a generalization of Darcy’s 
law: ( )w /w w wK p zv γ= − ∇ + , where Kw is the 
coefficient of permeability, z the elevation head 
and γw the specific weight of water (assumed 
constant). Jacquard [19] proposed a relationship 
for coefficient of permeability, Kw, in terms of 
suction as ( )( ){ }wB

w w ws w w a wK A K A C p p= + −  where 

Aw, Bw, Cw and Kws are constants. In unsaturated 
flow, the hydraulic conductivity is highly 
dependent on the water content of the soil. Only 
when the soil approaches saturation, does the 
hydraulic conductivity become constant. 
Numerical models have been proposed to 
represent the permeability in a variety of 
functional forms, e.g. in terms of matric suction 
or degree of saturation or volumetric water 
content. Lu and Likos presented a summary of 
empirical and macroscopic equations for 
modeling unsaturated hydraulic conductivity 
functions in a tabular form [20]. Among several 
numerical models, Bourgeois [21] equation gives 
relationship between degree of saturation and 
matric suction as described by: 
 
 ( ) ( )( ){ } wB

r ri w rs ri w w a wS S A S S A C p p= + − + −     (3) 

 
where Aw, Bw, Cw, Srs and Sri are constants. In soil 
problems, an increase in suction is accompanied 
by a decrease in the degree of saturation, and a 
decrease in the suction results in an increase in 
the degree of saturation, ultimately approaching 
to one (saturated condition). For isotropic 
conditions, Lloret and Alonso [22] suggested 
state surface as: 
 

( ) ( )
( )( )   

a a w

a a w

e d a p b p p

c p p p

σ

σ

= + − + −

+ − −
    (4) 

 

where a, b, c and d are constants, and e being the 
void ratio. Equation (2) is simplified into the 
weak form: 
 

( ) ( ) w 0
t t
∂ ∂

+ + + + =
∂ ∂

1 2 3 4 5
1 w 1 1 1 1C p C u C C p C      (5)    

 
in which the integrals 1

1C , 2
1C , 3

1C , 4
1C  and 

5
1C are described in Table 1. 

 
 Air Mass Balance Equation 

 
The continuity of air mass filling the soil void is 
given by: 
 

( ) ( )a1 div 0a r r an S HS H
t
ρ ρ∂ ⎡ ⎤ ⎡ ⎤− + + + =⎣ ⎦ ⎣ ⎦∂ wv v    (6)

   
It is assumed that air behaves as an ideal gas, and 
hence density and pressure are related by: 

( )/a aM RT pρ = , where T (K) is the absolute 
temperature, R the gas constant, M the molecular 
weight of air. Similarly, the motion of air can be 
described by a generalization of Darcy’s 
law: ( )a a a aK p zγ= − ∇ +v , where Ka is the 
coefficient of permeability, and γa the specific 
weight of air. Brun proposed a relationship for 
the coefficient of air permeability in terms of 
suction as: ( )( ){ }aB

a a as a a a wK A K A C p p
−

= + − , 

where Aa, Ba, Ca and Kas are constants [23].  The 
weak formulation of Eq (6) reduces to the form 
of: 
 

( ) ( ) ( )   

+   0
t t t
∂ ∂ ∂

+ +
∂ ∂ ∂

+ + + =

1 2 3
3 3 a 3 w

4 5 6 7
3 a 3 w 3 3

C u C p C p

C p C p C C
              (7) 

             
 Momentum Equation 

 
The general momentum balance equation can be 
written as: 
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0∇ + =Tσ b%                              (8) 
 

where σ is the total stress, and b the body forces. 
For this particular problem, the body force is due 
to gravity only and it is taken upward positive. 
Total stress in Eq. (8) can be expressed in terms 
of effective stress using Bishop’s relationship as: 

( ) ( )a a wp p pχ= − + −*σ σ m m m , where χ is a 
function of the degree of saturation,  pa is the 
pore air pressure, and pw is the pore water 
pressure [15]. The well known Bishop’s 
parameter (χ) can be expressed as a function of 
degree of saturation or volumetric water content 
as: 
 

 ;  r rir

s r ri

S S 0 1
1 S

θ θχ χ
θ θ

−−
= = ≤ ≤

− −
                         (9) 

 
where sθ , and rθ  represent saturated and residual 
water contents, respectively, and riS  is residual 
degree of saturation [24]. The nature of m 
implies that the fluid pressure only effect the 
normal stress components. Expressing strain in 
terms of displacement, the discretized moment 
degenerated equation is reduced to: 
 

( )  

    
t t t
∂ ∂ ∂

− + +
∂ ∂ ∂

= + +

1 2 2 3
2 2 a 2 w 2

4 5 6
2 2 2

C C p C p C u

C C C
               (10)   

 
 

4. Governing Equations 
 
The three equilibrium equations are now 
combined to perform a coupled analysis of the 
system. The stress-strain relationship was 
described by using non-linear elastic model 
based on Hooke’s law. The unknowns are pore 
pressure and deformation. The equations in 
incremental Galerkin’s formulation are given in 
matrix as: 

( )

2 3 1
3 3 3

1 2
1 1

1 2 2 3
2 2 2 2

4 5 6 7
3 3 3 3

4 3 5
1 1 1

4 5 6
2 2 2

0

0  
0 0
0 0 0

t

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥ ∂ ⎪ ⎪×⎢ ⎥ ⎨ ⎬

∂⎢ ⎥ ⎪ ⎪−⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭
⎧ ⎫⎡ ⎤ ⎧ ⎫− −
⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪+ × = − −⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥ + +⎣ ⎦ ⎩ ⎭⎪ ⎪⎩ ⎭

a

w

a

w

pC C C
C C p

C C C C u

pC C C C
C p C C

C C Cu

           (11) 

 
 
Table 1: Integrals described in Eqs. (5), (7), (11) 
Water mass balance equations 

n

  

1  

 

r

wA

r
A

w

w
wA

w
A

Sn dA
p

S dA

q d

K dA

K z dA

γ

∂
=

∂

=

=

=

= ∇

∫

∫

∫

∫

∫

1 T
1 n n

2 T T
1 n m

3 T
1 n

4 T
1 n

5 T
1 n

C N N

C N m B

C N

C B B

C B

�
Γ

Γ
 

Air mass balance equations 
( )

( ) ( )

( )

    1  

     1  

  1  

1  =  

1   

   +  

a r
A A

r
A A

r

wA

a
aA

a w
wA

a w

dA H p S dA

n dA H S dA

SH n dA
p

K dA

Hp K dA

q d H q

γ

γ

= + −

= + −

∂
= −

∂

=

=

∫ ∫

∫ ∫

∫

∫

∫

∫ ∫

1 T T T T
3 n n a m n m

2 T T T
3 n n n m n

3 T
3 n n a n

4 T
3 n n a n

5 T
3 n n

6 T T
3 n n a n n a

C N N p m B N m B

C N N N m B u N

C N N p N

C B N p B

C B B

C N N p N N p� �
Γ Γ

Γ

    a w
A A

d

K z dA H K z dA= ∇ + ∇∫ ∫7 T T
3 n n a n n aC B N p B N p

Γ

 

Momentum equations 

Γ

                       Γ

                    

                      

A

A A

A A

dA d
t

dA dA
t

dA dA
t

χ

∂
= =

∂

∂
= =

∂

∂
= =

∂

∫ ∫

∫ ∫

∫ ∫

1 T 4 T
2 m n 2 m

2 T 5 T
2 m n 2 m

3 T 6 T
2 m m 2 m 0

C B mN C N t

C B mN C N b

C B DB C B D ε

�
 



วิศวกรรมสาร ฉบับวิจัยและพัฒนา ปที่ 18 ฉบับที่ 4 พ.ศ. 2550                  RESEARCH AND DEVELOPMENT JOURNAL VOLUME 18 NO.4, 2007 

 

 5 

5.    Application of Model 
 
A soil-slope problem in residual soil is taken for 
the demonstration. The rainfall perturbation is 
taken as the forcing function that affects the flow 
regime as well as soil deformation. The 
displacement boundary conditions and slope 
dimensions are displayed in the Fig. 1. No flow 
boundary is assumed on either side of the slope 
(af, de and fe). Material properties input are 
shown in Table 2. Rainfall intensity of 20 mm/hr 
is applied to surfaces ab, bc and cd  of the slope. 
For the slope in residual soil, pore-air pressure is 
assumed to be zero. Initial water pressure is 
illustrated in Fig. 2 as a contour plot. At water 
table, pore pressure is zero, and it become 
negative upwards, positive downwards as 
computed by: ( )wP g hρ= ± ⋅ ⋅ , where ρ  is the 
density of water, g  is the acceleration due to 
gravity and h  is the height  at which pore 
pressure is computed. The results from the code, 
with rainfall infiltration for 24 hours, are 
presented here. 
 
Table 2: Material Properties 
Water 
permeability 

Kws = 5×10-5 (m/s), Aw = 1.0,  
Bw = 0.96, Cw = 5.16 ×10-4 

Degree of 
saturation 

Sri = 0.08, Srs = 1.0,  
Aw = 0.96, Bw = 3.5,  
Cw = 5.00 ×10-5 

Void ratio – 
state surface 

A = -7.58×10-8, b =-6.45×10-8,  
c = 1.61×10-10, 
d = 0.6462 

Young’s 
modulus 

E = 7.88×109 N/m3 

Poisson’s ratio μ = 0.35 
Rainfall 
intensity 

20 mm/hr 

 
6.    Results and Discussion 
 
With the Dirichlet boundary condition on the 
nodes of the boundary ‘ed’ when the water flows 
into slope, and Neuman Boundary condition 
(impervious boundary) when the water begins to 

discharge from the slope, contours of developed 
pore pressure is plotted as shown in Fig. 3. 
Induced deformation at the end of 24 hours of 
consistent rainfall is presented in Fig. 4 as a 
vector diagram. As expected the arrowheads of 
the diagram point to the slope toe professing a 
impending slope failure. 
 

10m

30
m

10
m

43.8m

20m

a

ef

b

c d

38
73

Figure 1: Domain of Analysis 
 

73.6

49.1

24.5

0.0
-16.4
-32.7
-49.1
-60.0

 
Figure 2: Contour lines of initial pore-pressure 
(in kPa) 

 
 Figure 3: Contour lines of pore-pressure after 24 
hours of rainfall (in kPa) 
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Results from the infiltration induced changes in 
matric suction are presented in Figs 5 and 6.  
Two nodes (node 38 and 73) were carefully 
selected to describe the effects of infiltration. 
Node 38 is close to the slope toe which could be 
affected by accumulation of flow whereas the 
node 73 is 4 m behind the slope. The matric 
suction decreases with time due to infiltration 
and eventually converges towards zero. 
 

Figure 4: Deformation vectors at 24 hrs 
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Figure 5: Time histories of suction at node 38 
 
The response is different depending upon the 
distance from the slope surface and initial 
conditions of water pressure at the nodes. For the 
node closer to the surface (node 38), the 
reduction in matric suction starts immediately, 
whereas for the node 73, matric  suction  remains 

constant until 8 hours of consistent rainfall and 
drops rapidly, as shown in Fig. 6 as it takes more 
time for the seeping rainwater to reach a deep 
place.  
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Figure 6: Time histories of suction at node 73 
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Figure 7: Time histories of net mean stress at 
node 38 
 
The time histories of net mean stress are given in 
Figs. 7 and 8. The increase in net mean stress 
with time as presented in the Figures can be 
attributed to the increase in unit weight of soil 
due to increase of moisture content. As the 
infiltration continues, the net mean stress should 
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stabilize as the soil becomes saturated, and the 
net stress becomes the effective stress as 
described by Terzaghi’s effective stress equation. 
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Figure 8: Time histories of net mean stress at 
node 73. 

7.   Conclusions 

Numerical analysis plays an important role in the 
investigation of the behavior of partially 
saturated soils by highlighting aspects which are 
important in engineering practice, and illustrating 
the effect of partial soil saturation on the 
behavior of geotechnical structures. In this 
connection, the finite element model was 
developed, and the numerical simulation was 
performed on the formulations taking into 
account the basics of unsaturated soil behavior to 
a slope problem in residual soil subjected to 
rainfall. The response of the soil slope to rainfall 
perturbation was studied using time histories of 
matric suction, net mean stress and deformation. 
It was revealed that the matric suction reduced 
immediately closer to the slope surface, but took 
more time for the seeping rainwater to reach a 
deeper place. Likewise, the net mean increased 
due to the increase of moisture content. 
However, the current study uses non-linear 
elastic model based on Hooke’s law. Therefore, 
it is reasonable to continue the analyses only up 

to the stage where the slope failure does not 
occur. Further development is, therefore, 
required to describe the mechanical response of 
unsaturated soil with nonlinear elasto-plastic 
formulation.  

NOTATION 
 
σ, σ*  Total stress, Effective stress vector 
pw, pa  Pore water , Pore air pressure 
Sr  Degree of saturation 
vw, va  Velocity of water, Velocity of air 
qw  Water flux 
ρw, γw  Density/unit weight of water 
z  Elevation head 
Kw  Coefficient of permeability 
Kws, Aw, Bw, Cw  Model parameters for permeability  
Sri,  Aw, Bw, Cw Model parameters for saturation 
a, b, c, d Parameters for state-surface model 
H  Henry’s coefficient 
χ  Bishop’s parameter  
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