
วิศวกรรมสาร ฉบับวิจัยและพัฒนา ปที่ 18 ฉบับที่ 4 พ.ศ. 2550 RESEARCH AND DEVELOPMENT JOURNAL VOLUME 18 NO.4, 2007

 1

Client Scheduling

Cluster

Virtual IP Web Server

การจัดแบงภาระงานของเวปคลัสเตอรดวยลําดับเสมือน
Load Balancing Systems for Web Cluster via Virtual Token

กริช กองศรีมา1 ผศ.มยุรี เลิศเวชกลุ2

Krit Kongsrima Mayuree Lertwatechakul
1มหาวิทยาลัยราชภฏันครราชสีมา 2สถาบันเทคโนโลยีพระจอมเกลาเจาคุณทหารลาดกระบัง

E-mail kkongsrima@hotmail.com , klmayure@kmitl.ac.th

บทคัดยอ
บทความฉบับนี้นําเสนอแนวทางการจัดแบงภาระงาน (Load

Balancing) ของเวปคลัสเตอร โดยใชการจัดลําดับเสมือนรวมกับการ
ประเมินประสิทธิภาพการใหบริการของเวปเซิรฟเวอรจากทรัพยากรที่มี
อยูขณะนั้น คือ การทํางานของซีพียู หนวยความ จําหลัก และจํานวนการ
เชื่อมตอ กลาวคือ มีการใชโปรโตคอลในการจับกลุมเพื่อทําใหเวป
เซิรฟเวอรจัดลําดับในการใหบริการกันเองโดยกําหนดเปนลําดับเสมือน
เวปเซิรฟเวอรลําดับแรกจะพิจารณาใหบริการถาหากทรัพยากรของ
ตนมีเพียงพอ หลังจากใหบริการแลวก็จะถูกจัดลําดับใหมใหอยูที่ลําดับ
ทายสุด โดยทุกคร้ังหลังจากการพิจารณาใหบริการของเวปเซิรฟเวอร
ลําดับแรกนั้น ไมวาจะใหบริการไดหรือไมไดก็จะตองมีการจัดลําดับ
ใหมใหลําดับแรกไปเปนลําดับสุดทายและลําดับรองลงไปไดขยับลําดับ
ความสําคัญใหมากขึ้นทีละหนึ่งลําดับ จนกระทั่งทุกเครื่องไดมาเปน
ลําดับแรกและเวียนไปเปนลําดับสุดทายอีกคร้ังหนึ่ง ทําใหสามารถลด
ขั้นตอนการจัดแบงภาระงานที่อาจจะเปนคอขวดของระบบเมื่อ
มีการรองขอมากขึ้นเรื่อยๆได

Abstract
This article proposes “Distributed Load Balancing in Web

Clustering System via Virtual Token Technique”. The system uses
Grouping Protocol as to add or delete web cluster’s members and to
make a virtual schedule for them. Load balancing could be done in
round-robin fashion, the current head server of the web cluster will be
rescheduled as the last server either after its servicing or its service
denying caused by its resources insufficiency (memory, CPU usage).
The virtual token technique could be implemented by using Group
Protocol and monitoring of TCP call request segments and call accept
segments. The technique could reduce the need of centralized load
balancing server and may avoid of bottleneck of the centralize control
point at the high request situation.

1. คํานํา
เวปคลัสเตอรไดเปนที่รูจักอยางแพรหลายถึงประโยชนในการ

ใชงานเพื่อใหสามารถรองรับการบริการกับจํานวนของการรองขอ
ปริมาณมากๆได ซึ่งในการใชงานนั้นจะตองเลือกระบบปฏิบัติการและ
โปรแกรมจัดการเพื่อใหเกิดการทํางานของระบบคลัสเตอรที่จะตอง
เขากันได เชน ระบบปฏิบัติการลีนุกสที่สามารถใชรวมกับลีนุกส
เวอรชวลเซิรฟเวอร (Linux Virtual Server)[1] หรือระบบปฏิบัติการ
วินโดวสที่มีเน็ทเวอรคโหลดบาลานซซิ่ง (Network Load Balancing)[2]
ที่สามารถทํางานในลักษณะเปนซอรฟแวรควบคุมการจัดแบงภาระงาน
หรือใชฮารดแวรทําหนาที่นี้ เชน ซิสโกโลคอลไดเร็กเตอร (Cisco
LocalDirector)[3] และเวปมักส(WebMux)[4] เปนตน ซึ่งแนวคิด
พื้นฐานของระบบเวปคลัสเตอรนั้นจะมีเคร่ืองหลัก (Master Server)
คอยตรวจสอบและสงตอเพื่อใหการรองขอเขามาไดรับบริการจาก
เคร่ืองใดเครื่องหนึ่งในกลุมของเวปเซิรฟเวอร ซึ่งกลาวไดวาเครื่องหลักนี้
ทําหนาที่เปนตัวจัดแบงภาระงาน (Scheduler/Dispatcher)

รูปที่ 1 การทํางานของเวปคลัสเตอร

สิ่ งที่ ไดศึ กษาในเบื้ องตนในโครงการวิ จั ยนี้ คือ การ

เปรียบเทียบเพื่อใหไดแนวคิดของระบบใหไดขอดีที่ เปนจุดเดน
ในการนําไปพัฒนาระบบตนแบบใหใชงานไดจริง สามารถใชงานใน
ลักษณะของโอเพนซอรสและสะดวกในการจัดการ เพื่อรองรับจํานวน
ของการรองขอปริมาณมากได

วิศวกรรมสาร ฉบับวิจัยและพัฒนา ปที่ 18 ฉบับที่ 4 พ.ศ. 2550 RESEARCH AND DEVELOPMENT JOURNAL VOLUME 18 NO.4, 2007

 2

Client

DNS Server DNS Server

Web Server1 : DNS query

4 : IP address

2 : DNS query

3 : DNS answer

5 : TCP establish

6 : HTTP request

7 : HTTP response

8 : TCP terminate

Client

Virtual IP
5 : TCP establish

6 : HTTP request

7 : HTTP response

8 : TCP terminate

5.1 : TCP establish

Cluster

Web Server

6.1 : HTTP request

7.1 : HTTP response

8.1 : TCP terminate

1.1 พื้นฐานการทํางานของเวปเซิรฟเวอร
พื้นฐานของการรองขอขอมูลผานเวปนั้นมีขั้นตอนดังนี้ คือ

รูปที่ 2 ขั้นตอนการทํางานในการรับบริการเวปเพจ

1. เคร่ืองไคลเอนททําการรองขอบริการแปลงหมายเลขไอพี
แอดเดรสจากชื่อโดเมนหรือชื่อเวปไซตที่ ผูใชตองการ
เชื่อมตอไปยัง DNS ที่อยูภายในเครือขาย

2. DNS ที่อยูภายในเครือขายทําการแปลงชื่อโดเมนไปเปนไอพี
แอดเดรสให โดยคนหาขอมูลเดิมที่อยูในแคชหรือถามไปยัง
DNS ในระดับถัดไป

3. DNS ในระดับถัดไปหรือ DNS ที่ดูแลโดเมนนั้นๆ ที่ได
สอบถามไปจะทําการตอบกลับมาเปนหมายเลขไอพีแอดเดรส

4. DNS ที่อยูภายในเครือขายจะไดหมายเลขไอพีที่ตอบกลับ
มานั้น และสงคําตอบมาใหเคร่ืองไคลเอนท

5. เคร่ืองไคลเอนทจะทําการสรางการเชื่อมตอโดยโปรโตคอล
ทีซีพี (TCP) ไปยังเวปเซิรฟเวอร โดยอางการเชื่อมตอ
ระหวางหมายเลขไอพีและพอรท ซึ่งทั้งเครื่องตนทางและ
ปลายทางจะทําการสรางการเชื่อมตอระหวางกัน (Three-way
handshake)

6. เมื่อสรางการเชื่อมตอเสร็จสิ้นแลว เคร่ืองไคลเอนทจะทําการ
รองขอขอมูลเวปเพจจากเวปเซิรฟเวอรโดยโปรโตคอล
เอชทีทีพี (HTTP)

7. เวปเซิรฟเวอรทําการตอบกลับโดยสงเอกสารของหนา
เวปเพจกลับไปที่ไคลเอนท ซึ่งในขั้นตอนนี้เคร่ืองไคลเอนท
จะมีการสงขอมูลการรองขอและตอบกลับในลักษณะการ
โตตอบไปมาจนกระทั่งไดขอมูลของหนาเวปเพจทั้งหมด

1.2 พื้นฐานการทํางานของคลัสเตอรเวปเซิรฟเวอร
การทํางานพื้นฐานบนคลัสเตอรนั้นจะตองประกอบดวยการ

เชื่อมตอกันดวยเครือขายความเร็วสูงและสวนของการจัดการที่ทําให
ทุกเครื่องเสมือนเปนเครื่องเดียวกัน ซึ่งจะสามารถสรางเปนคลัสเตอร
แบบเปดหรือแบบปดก็ได การทํางานของเวปคลัสเตอรนั้นแตกตาง

จากการทํางานแบบปกติ คือ ขั้นตอนที่มีการรับการรองขอการเชื่อมตอ
ที่เขามานั้นจะเขามาที่หมายเลขไอพีเสมือน ซึ่งจะตองมีวิธีการกระจาย
การรองขอนี้ไปยังสมาชิกที่อยูในกลุมโดยวิธีการใดวิธีการหนึ่ง โดยจะ
ใหผานเครื่องหลักหรืออาจทําโดยไมผานเครื่องหลักก็ได เหมือนกับ
เคร่ืองหลักคอยทําหนาที่ชี้ใหการรองขอที่ เขามานั้นไปรับบริการที่
เวปเซิรฟเวอรเคร่ืองนั้นๆในกลุม

จากเทคนิคในการรับการรองขอและกระจายการรองขอที่
ไดรับเขามาในคลัสเตอรนั้นนิยมใชการอางหมายเลขไอพีเสมือน (Virtual
IP) เพื่อใหเสมือนมีเครื่องที่มีหมายเลขนี้อยูจริงและสามารถสรางการ
เชื่อมตอกลับไปได การที่ใชหมายเลขเสมือนนี้ทําใหตองใชหมายเลข
ของฟสิคัล (Physical Address/MAC Address) เสมือนดวยเชนกัน แตก็
อาจจะใชเทคนิคแตกตางกันไป เชน ทําในลักษณะยูนิคาสต มัลติคาสต
หรือบรอดคาสต เพื่อทําใหทุกเครื่องสามารถรับเอาการรองขอที่
เขามาในระบบของคลัสเตอรนี้ไปใชพิจารณาตอไปได และในการ
กระจายการรองขอนั้นทําที่เคอรเนลของระบบปฏิบัติการ

รูปที่ 3 ขั้นตอนการทํางานในการรับบริการเวปเพจ
ของเวปคลัสเตอร

2. วิธีการจัดแบงภาระงาน
แนวทางที่สามารถทําได เพื่อการจัดภาระงานในระบบ

เวปคลัสเตอรนั้น สามารถทําไดในชั้นใดๆ ของสถ าป ต ย ก ร รม
ทีซีพีไอพี[5][6][7] เชน

• ชั้นดาตาลิงค (DataLink layer)
ทําในลักษณะของการจัดภาระงานในชั้นดาตาลิงคที่เปนชั้นที่สอง

ของสถาปตยกรรมทีซีพีไอพีโดยพิจารณาจากขอมูลในชั้นทรานสปอรต
(Transport layer) เมื่อมีการรองขอเขามาจากอินเทอรเน็ตจะตองเขามาที่
เครื่องที่ทําหนาที่ เปนตัวกระจายงาน (Dispatcher) เคร่ืองที่ เปนตัว
กระจายงานจะตองทําการจัดภาระงานโดยใหมีเปาหมายเปนเครื่องใด
เคร่ืองหนึ่งจากเวปเซิรฟเวอรที่จะตองเปนผูใหบริการ เครื่องกระจายงาน
จะตองทําการสงตอไปยังเครื่องที่ใหบริการโดยการแกไขขอมูลเฟรมใน
สวนของหมายเลขฟสิคัล (Physical/MAC address) เพื่อสงตอไปยังเครื่อง
นั้น การแกไขขอมูลแพ็กเก็ตนี้ทําเฉพาะที่ชั้นของดาตาลิงคเทานั้นซึ่งไม
เกี่ยวของกับชั้นเน็ทเวอรค (Network layer) ดังนั้นวิธีการนี้ก็
ไมจําเปนตองแกไขขอมูลในสวนหัวของไอพีแพ็กเก็ต (IP Header)
คือสวนของคาผลรวม (Checksum) เครื่องที่เปนเวปเซิรฟเวอรในระบบ

วิศวกรรมสาร ฉบับวิจัยและพัฒนา ปที่ 18 ฉบับที่ 4 พ.ศ. 2550 RESEARCH AND DEVELOPMENT JOURNAL VOLUME 18 NO.4, 2007

 3

ที่ทํางานแบบนี้จะตองมีหมายเลขไอพีแอดเดรสเดียวกัน และเปน
หมายเลขเดียวกันกับตัวกระจายงานดวย เคร่ืองที่เปนเวปเซิรฟเวอรที่
จะตองใหบริการนั้นจะทําการตอบสนองกลับไปยังเครื่องที่ไดรองขอเขา
มาโดยตรง เคร่ืองที่ทําหนาที่กระจายงานจะตองทราบถึงเซสชั่นที่กําลัง
เชื่อมตออยูโดยพิจารณาจากหมายเลขไอพีและพอรท เพื่อใหการเชื่อมตอ
ที่มีอยูเดิมนั้นไดมีการรองขอไปที่เคร่ืองเดิม เราอาจเรียกวิธีการนี้วาเปน
วิธีการแบงภาระงานโดยใชขอมูลจากเซสชั่น คือ หมายเลขไอพีและ
พอรท (Session load balancing based on IP address and TCP port) วิธีนี้
เปนการทํางานรวมกันระหวางชั้น ดาตาลิงคและชั้นทรานสปอรต
(L4/L2)

• ชั้นเน็ทเวอรค (Network layer)
ทําในลักษณะของการจัดภาระงานที่ชั้นเน็ทเวอรคที่เปนชั้นที่สาม

ของสถาปตยกรรมทีซีพีไอพี โดยวิธีการหาเสนทาง (Routing) ที่จะมอง
วาตัวกระจายงานเปนเกตเวย (Gateway) ทําหนาที่ในการเชื่อมตอทั้ง
ภายในและภายนอก ดังนั้นวิธีนี้จะแตกตางจากการกระจายงานในชั้น
ดาตาลิงค คือ การสงตอแพ็กเก็ตจะทําดวยการแกไขหมายเลขของไอพี
แอดเดรส การแกไขหมายเลขไอพีแอดเดรสนี้ทําใหตองมีการแกไขคา
ผลรวมในขอมูลสวนหัวของไอพีดวย ในสวนของการตอบกลับนั้น
จะตองมีการทํางานผานตัวกระจายงานที่ทําหนาที่เปนเกตเวย ซึ่งวิธีการ
กระจายภาระงานแบบนี้ทําใหตัวกระจายงานตองทํางานหนักกวา
แบบแรกที่ไดกลาวมาขางตน

• ชั้นแอพพลิเคชั่น (Application layer)
โดยทําในลักษณะของการแบงภาระงานจากขอมูลภายในชั้น

แอพพลิเคชั่นจากชั้นที่หาของสถาปตยกรรมทีซีพีไอพี เชน ขอมูลของ
เคร่ือง (Content routing based on Host tag) ขอมูลจากที่อยู (Entire URL)
ขอมูลจากคุกกี้ (Dynamic cookie location) หรือขอมูลจากนามสกุลของ
เอกสาร (File extension)

หากแบงการจัดภาระงานใหเปนสองแบบ คือ คงที่ตามวิธีการ
ที่กําหนด (Static Scheduling) กับวิธีที่สามารถปรับเปลี่ยนไดตามสภาวะ
แวดลอมในการทํางาน (Dynamic Scheduling) ซึ่งทั้งสองแบบนี้สามารถ
จัดภาระงานไดโดยวิธีการตางๆ คือ

• คงที่ตามวิธีการที่กําหนด (Static Scheduling)
เชน วนรอบเพื่อใหบริการ (Round Robin) อัตราสวนในการ

ใหบริการ (Ratio) สุมเพื่อเลือกผูใหบริการ (Random)

• ปรับเปลี่ยนไดตามสภาวะแวดลอมในการทํางาน (Dynamic
Scheduling)

เชน พิจารณาจากเวลาตอบสนอง (Response time) พิจารณาจาก
จํานวนการเชื่อมตอ (Least Connection) พิจารณาจากการใชงานซีพียู
(CPU Load) พิจารณาจากการใชงานหนวยความจํา (Memory Utilization)

2.1 วิธีการจัดแบงภาระงานของลีนุกส[1]
การจัดแบงภาระงานของลีนุกสเวอรชวลเซิรฟเวอรนั้นมี

วิธีการพื้นฐานอยู 3 กลุมหลักๆ คือ

• การวนรอบ (Round-Robin)
ทํางานแบบวนรอบจากลําดับแรกถึงลําดับทายสุดของแตละรอบ

และสามารถกําหนดน้ําหนักในการวนรอบ (Weighted Round-Robin) ที่มี
การกําหนดน้ําหนักของการรับบริการ เชน หากเครื่องแรกมีน้ําหนักเปน
1 และเครื่องถัดไปมีน้ําหนักเปน 4 ดังนั้นเครื่องแรกจะตองรองรับ 1 การ
เชื่อมตอ ในขณะที่เคร่ืองถัดไปนั้นรองรับ 4 การเชื่อมตอในแตละรอบ

• การพิจารณาจากจํานวนการเชื่อมตอ (Least-Connection)
ทํางานในลักษณะของการพิจารณาจากความสามารถในการ

ใหบริการจากแตละเครื่องมากขึ้น โดยเครื่องหลักจะคอยตรวจสอบ
เคร่ืองเวปเซิรฟเวอรแตละตัววามีจํานวนการเชื่อมตอเทาใด หากมีการ
เชื่อมตออยูมากก็หมายความถึงทรัพยากรในการใหบริการมีเหลืออยูนอย
และเพิ่มการกําหนดน้ําหนัก (Weight Least-Connection) คลายแบบที่
กลาวขางตน ทําใหกําหนดน้ําหนักของการรับบริการได สามารถ
ทํางานไดในแบบเฉพาะบริเวณ (Locality-Based Least-Connection) และ
แบบเฉพาะบริเวณที่สามารถโอนยายการใหบริการได (Locality-Based
Least-Connection with Replication)

• การพิจารณาจากทิศทาง
คือ พิจารณาจากปลายทาง (Destination Hash Scheduling)

ออกแบบมาเพื่อใชกับ proxy-cache server cluster และพิจารณาจาก
ตนทาง (Source Hash Scheduling) ถูกออกแบบมาเพื่อใชกับ LVS
routers และ firewalls หลายตัว

2.2 วิธีการจัดแบงภาระงานของวินโดวส[2]

สวนการจัดแบงภาระงานของเน็ทเวอรคโหลดบาลานซซิ่ง
มีวิธีการพื้นฐานอยู 3 วิธี คือ

• พิจารณาแบบไมมีความสัมพันธกัน (None Affinity)
เปนการพิจารณาจากทั้งหมายเลขไอพีและพอรทของเครื่องตนทาง

• พิจารณาแบบเจาะจงความสัมพันธ (Single Affinity)
เปนการพิจารณาเฉพาะหมายเลขไอพีของเครื่องตนทาง หากเปน

ไอพีเดิมก็ใหไปที่เคร่ืองเดิมที่ใหบริการอยู

• พิจารณาแบบความสัมพันธของหมายเลขเครือขายแบบคลาส
C (Class C Affinity)

เปนการพิจารณาจากหมายเลขไอพีของเครื่องตนทาง หากมาจาก
ตนทางในเครือขายใด ก็ใหไปที่ เคร่ืองเดิมที่ใหบริการนั้นทั้งหมด
คลายกับการพิจารณาเปนเสมือนหมายเลขเครือขายของคลาส C หนึ่ง
คลาส

วิศวกรรมสาร ฉบับวิจัยและพัฒนา ปที่ 18 ฉบับที่ 4 พ.ศ. 2550 RESEARCH AND DEVELOPMENT JOURNAL VOLUME 18 NO.4, 2007

 4

2.3 เปรียบเทียบวิธีการจัดแบงภาระงาน
โดยรายละเอียดในการทํางานนั้นหากพิจารณาจากลีนุกส

เวอรชวลเซิรฟเวอร จะมีการใชเคร่ืองหลักเพื่อเปนเคร่ืองที่คอยจัดแบง
ภาระงาน ซึ่งการรองขอใดๆ ที่เขามานั้นจะตองมาที่เคร่ืองหลักนี้กอน
เสมอ แลวเคร่ืองหลักจะพิจารณาจากเงื่อนไขที่ไดกลาวมาแลวจาก
ขางตนวาสมควรจะสงการรองขอนี้ใหกับเครื่องใดอีกคร้ังหนึ่ง หาก
พิจารณาถึงเน็ทเวอรคโหลดบาลานซซิ่งนั้น การทํางานจะอิสระจาก
เคร่ืองหลักมากกวา เนื่องจากการพิจารณานั้นแตละเครื่องจะสามารถ
ตัดสินไดเองโดยเงื่อนไขที่ไดกลาวมาแลว แตอยางไรก็ตามทั้งสอง
ระบบนี้ ต า งก็ มี ข อดี ข อ เสี ยที่ ส ามารถสรุปได คือ

• ลีนุกสเวอรชวลเซิรฟเวอร
มีขอดีที่เสถียรภาพของระบบและความนิยมในการใชงานมีเงื่อนไข

หลายๆ แบบที่พิจารณาจากความสามารถในการใหบริการของแตละ
เคร่ืองประกอบกัน ขอเสีย คือ ตองอาศัยเคร่ืองหลักในการตัดสินการ
ใหบริการ

• เน็ทเวอรคโหลดบาลานซซิ่ง
มีขอดีที่ความเปนอิสระจากเครื่องหลัก ขอเสีย คือ การพิจารณาใน

การใหบริการไมไดเนนที่ความสามารถของเครื่องใหบริการ แตไปเนนที่
เคร่ืองที่รองขอเขามา

ดังนั้นบทความในงานวิจัยฉบับนี้จึงขอสรุปแนวทางที่เปน
ไปได เพื่อที่จะทําใหการจัดแบงภาระงานที่เอาขอดีของทั้งสองระบบนี้
มาใชงานจากแนวคิดที่ไดกลาวมา คือ เอาขอดีของการวนรอบ การ
ตรวจสอบในการใหบริการจากทรัพยากรที่มีอยู การลดการทํางาน
บางสวนหรือบางขั้นตอน ความสะดวกในการใชงาน ความคุมคาตอการ
ใชงานในชวงระยะเวลาหนึ่ง และไดพัฒนาโปรแกรมเพื่อใหสามารถ
ทํางานตามแนวคิดนี้ เพื่อนําไปทํางานบนกลุมของเวปเซิรฟเวอร

3. ระบบที่ออกแบบ
ระบบที่ออกแบบนั้นพัฒนาโดยภาษาซีชารป (Csharp) ซึ่งเปน

สวนหนึ่งในวิชวลสตูดิโอดอทเนท (Visual Studio .NET) ของบริษัท
ไมโครซอรฟ ทํางานรวมกับวินโดวโปรโตคอลแคปเจอร (WinPcap)
ผานไลบรารีของชารปพีแคป (SharpPcap) เพื่อทําการดักแพกเก็ตขอมูล
มาตรวจสอบการรองขอการเชื่อมตอและมีการสื่อสารกันระหวางเครื่อง
ที่เปนสมาชิกเพื่อแจงสภาวะของภาระโหลดโดยพิจารณาจากการทํางาน
ของซีพียู หนวยความจําหลัก และจํานวนการเชื่อมตอ ซึ่งรายละเอียด
ของภาระโหลดไดมาจาก

• kernel32.dll
เพื่อนําขอมูลในสวนของการทํางานของซีพียูมาใช

(1)

(2)

• Windows Management Instrumentation (WMI)
เพื่อนําขอมูลในสวนของการใชงานหนวยความจํามาใช

(3)

• TcpListener Class
เพื่อนําขอมูลในสวนของการรองขอการสรางการเชื่อมตอมาใช
ซึ่งพิจารณาจากหมายเลขไอพีและพอรทของการรองขอ คือ
ConnNum

สมการที่ใชในการพิจารณาภาระงานของแตละเครื่อง คือ
(4)

เคร่ืองที่เปนสมาชิกในเวปคลัสเตอรจะมีการแจงสถานะของ
ภาระงานถึงกันเพื่อบอกระดับของภาระงาน โดยตองการใหทราบถึงคา
ระดับภาระงานเพื่ออางอิง สมการที่ใชจึงเปนสมการงายๆที่ไมเนนถึง
การบอกรายละเอียดและความถูกตองแมนยํามากนัก และตนแบบใน
การทํางานของระบบมีสวนประกอบตางๆ ดังนี้

รูปที่ 4 การทํางานของระบบ

3.1 การจับกลุม
การจับกลุมนั้นทําโดยใชโปรโตคอลในการจับกลุมที่ทํางาน

อัตโนมัติ เพื่อใหเกิดลําดับกอนหลังในการทํางานในแตละรอบ โดยให
เคร่ืองที่มีหมายเลขของฟสิคัลนอยที่สุดเปนเครื่องลําดับแรกและ
หมายเลขของฟสิคัลมากที่สุดเปนเครื่องลําดับสุดทาย ดังนั้นการจับกลุม
นี้จะทําใหขอจํากัดของจํานวนเครื่องในคลัสเตอรหมดไป

รูปที่ 5 การจับกลุมของสมาชิกในเวปคลัสเตอร

()
SystemTime

IdleTimeSystemTimeCpuUsage 100×+
=

UserTimeKernelTimeSystemTime +=

MemTotal
CurrentUseMemUsage 100×

=

()MemUsageCpuUsage
ConnNumLoadtotal +

=

วิศวกรรมสาร ฉบับวิจัยและพัฒนา ปที่ 18 ฉบับที่ 4 พ.ศ. 2550 RESEARCH AND DEVELOPMENT JOURNAL VOLUME 18 NO.4, 2007

 5

3.2 การกระจายการรองขอและการจัดแบงภาระงาน
ระบบที่ออกแบบนั้น ใชวิธีการกระจายการรองขอแบบ

เดียวกับเวอรชวลไอพีและลําดับแบบเสมือน เพื่อใหทุกเครื่องไดรับการ
รองขอที่เขามาทั้งหมดซึ่งไมตองกระจายการรองขออีกคร้ังหนึ่ง ดังนั้น
จะทํางานในลักษณะของลําดับการใหบริการ (Queue) ที่รองรับการรองขอ
ที่เขามา

• เคร่ืองที่มีลําดับแรกนั้นจะทําการตัดสินในการรับบริการกอน
หากเครื่องแรกรับบริการนั้นไปแลว เคร่ืองอื่นๆ ก็ตองลบการ
รองขอนั้นออกจากลําดับการใหบริการ เมื่อใหบริการไปแลว
เคร่ืองแรกก็จะปรับลําดับใหไปเปนลําดับสุดทาย และลําดับ
รองลงไปก็จะปรับลําดับความสําคัญใหมากขึ้นทีละ 1 ลําดับ
เพื่อใหทุก เครื่องไดมีสิทธิ์ ไดมา เปนลํ าดับแรกในการ
ใหบริการ

รูปที่ 6 การรองขอที่เขามาในลําดับการใหบริการ

• หากเครื่องแรกไมสามารถใหบริการได ก็จะปรับลําดับใหไป
เปนลําดับสุดทายเชนกัน ดังนั้นเคร่ืองที่มีลําดับที่สองจะตอง
มาเปนลําดับแรกแทนเพื่อทําการตัดสินในการรับบริการ

• การพิจารณาในการใหบริการนั้นจะพิจารณาจากการใชงาน
ซีพียู การใชงานหนวยความจํา จํานวนการเชื่อมตอของ
แตละเครื่องเอง ซึ่งแนวคิดนี้มาจากแนวคิดของการอาสา
หรือเสนอตัวในการทํางาน โดยไมมีการสั่งใหทํางานจาก
เคร่ืองหลัก

3.3 การสรางการเชื่อมตอและตอบกลับ
เมื่อทราบวาใครเปนผูที่จะตองรับการใหบริการนั้นๆ แลว

ก็จะเกิดการเชื่อมตอโดยตรงกลับไปที่เคร่ืองตนทาง ซึ่งแตละเครื่องที่
ใหบริการนั้นจะตองมีการตรวจสอบการรองขอที่ไดรับเขามาอยูเสมอ
เพื่อคอยแยกระหวางเครื่องที่มีการเชื่อมตออยูเดิมและเครื่องที่รองขอเขา
มาใหม เคร่ืองที่มีการเชื่อมตออยูเดิมนั้นก็จะถูกสงไปที่เคร่ืองเดิมที่
ใหบริการนั้น

4. ผลการทดลอง
การวัดประสิทธิภาพของระบบนั้นจะพิจารณาในเรื่อง จํานวน

การเชื่อมตอ (requests/second) ปริมาณขอมูลที่รับสงได (bytes/second)
และคาเวลาเฉลี่ยที่ใชในการสรางการเชื่อมตอ (connection time) การวัด
ประสิทธิ ภ าพทํา บนกา ร เ ชื่ อ มต อ เ ค รื อ ข า ยซึ่ ง มี ร า ยละ เ อี ย ด
คื อ เคร่ืองที่เปนเซิรฟเวอรมีจํานวนตั้งแต 1 ถึง 4 เครื่องเชื่อมตอกันเปน
เครือขายผานอุปกรณสวิชชิ่งของ Allied Telesyn รุน AT-8024 ทํางาน
ที่ความเร็ว 100 Mbps และมีเคร่ืองไคลเอนท 2 เคร่ืองเชื่อมตอกันเปน
เครือขายผานอุปกรณสวิชชิ่งของ Allied Telesyn รุน AT-8024 ทํางาน
ที่ความเร็ว 100 Mbps เชนกัน อุปกรณสวิชชิ่งเชื่อมตอกันดวยความเร็ว
100 Mbps เคร่ืองเซิรฟเวอรเปนเครื่องแบบเดสทอป(Desktop) มี
หนวยประมวลผลแบบ Intel Pentium4 ความเร็ว 2.8 GHz ติดตั้ง
ระบบปฏิบัติการวินโดว 2003 เอ็นเทอรไพรส (Windows Server 2003
Enterprise edition) เซิรฟเวอรเคร่ืองที่หนึ่งและสองมีหนวยความจําหลัก
เคร่ืองละ 512 MB เซิรฟเวอรเครื่องที่สามและสี่มีหนวยความจําหลัก
เคร่ืองละ 256 MB ใชเวปเซอรฟเวอรของวินโดว คือ อินเทอรเน็ท
อินฟอรเมชันเซิรฟเวอร (Internet Information Server : IIS 6.0) ที่ทํางาน
รวมกับระบบการจัดภาระงานที่ออกแบบคือเวอรชวลโทเคน (Virtual
token : vt) เทียบกับการจัดภาระงานของเน็ทเวอรคโหลดบาลานซซิ่ง
(Network load balancing : nlb) แบบไมมีความสัมพันธกัน (None Affinity)

สาเหตุที่เปรียบเทียบระหวางการทํางานแบบเวอรชวลโทเคน
(Virtual token : vt) กับการจัดภาระงานของเน็ทเวอรคโหลดบาลานซซิ่ง
(Network load balancing : nlb) แบบไมมีความสัมพันธ (None Affinity) คือ
จากการทดสอบการจัดภาระงานทั้ง 3 แบบของเน็ทเวอรคโหลดบาลานซซิ่ง
นั้น โดยการจําลองเครื่องไคลเอนทจํานวน 8 ไคลเอนทใหรองขอไปที่
เวปเซิรฟเวอรจํานวน 4 เคร่ืองที่มีการจัดภาระงานในแตละแบบทั้ง
ไคลเอนทและเซิรฟเวอรเชื่อมตอกันในอุปกรณสวิชชิ่งตัวเดียวกันของ
Allied Telesyn รุน AT-8024 ทํางานที่ความเร็ว 100 Mbps พบวาทั้ง 3
แบบนั้นสามารถรองรับการเชื่อมตอและมีเวลาเฉลี่ยที่ใชในการเชื่อมตอ
ใกลเคียงกัน และการพิจารณาภาระงานแบบไมมีความสัมพันธนั้นก็จะ
พิ จ ารณาจากทั้ งหมาย เลขไอพี แอด เดรสและหมาย เลขพอรท
เชนเดียวกับเวอรชวลโทเคน จึง เลือกเอามาเปนตัวหลักในการ
เปรียบเทียบ

ตารางที่ 1 เวลาในการสรางการเชื่อมตอโดยเฉลี่ย
และปริมาณการรองขอ ของ 4 server / 8 client

วิศวกรรมสาร ฉบับวิจัยและพัฒนา ปที่ 18 ฉบับที่ 4 พ.ศ. 2550 RESEARCH AND DEVELOPMENT JOURNAL VOLUME 18 NO.4, 2007

 6

100 Mbps

Web
ClusterClient

network load balancing

0.000

20.000

40.000

60.000

80.000

100.000

120.000

1 client 2 client 4 client 8 client 16 client

re
qu

es
ts

/s
ec

on
d

nlb-1srv
nlb-2srv
nlb-3srv
nlb-4srv

virtual token

0.000

10.000

20.000

30.000

40.000

50.000

60.000

70.000

1 client 2 client 4 client 8 client 16 client

re
qu

es
ts

/s
ec

on
d

vt-1srv
vt-2srv
vt-3srv
vt-4srv

4 server / 8 client

97.800

98.000

98.200

98.400

98.600

98.800

99.000

99.200

99.400

nlb-none nlb-single nlb-class_c vt

m
ill

is
ec

on
d

8 client

รูปที่ 7 กราฟปริมาณการรองขอและเวลาในการเชื่อมตอ

เครื่องไคลเอนทสองเครื่องเปนเครื่องคอมพิวเตอรแบบพกพา

(Notebook) ไคลเอนท เค ร่ืองแรกมีหนวยประมวลผลแบบ Intel
PentiumM ความเร็ว 1.5 GHz มีหนวยความจํา 736 MB เครื่องที่สองมี
หนวยประมวลผลแบบ Intel Celeron ความเร็ว 1.3 GHz มีหนวยความจํา
512 MB ทําการจําลองการรองขอจาก 1 จนถึง 16 ไคลเอนท เพิ่มขึ้น
ทีละ 2 เทา โดยใชโปรแกรมเวปเบนซ (WebBench 5.0)[8] เปนเครื่องมือ
ในการทดสอบ จากการทดสอบโดยใหมีการรองขอโดยตรงจาก
ไคลเอนทไปยังเวปเซิรฟเวอรผานทางหมายเลขไอพีเสมือน

รูปที่ 8 แผนผังการเชื่อมตอเครือขาย

จากผลที่ไดพบวาระบบที่ออกแบบ (virtual token) มีปริมาณ
การรองขอและสามารถสรางการเชื่อมตอในกรณีที่มีเคร่ืองไคลเอนท
จํานวนนอยเคร่ืองไดไมดีเทาเน็ทเวอรคโหลดบาลานซซิ่ง (network load
balancing) แตเมื่อจํานวนไคลเอนทมีมากขึ้นนั้นจะมีความสามารถใน
การรองรับไดใกลเคียงกัน

ตารางที่ 2 ปริมาณการรองขอ (requests/second)

รูปที่ 9 กราฟปริมาณการรองขอ

จากปริมาณการรองขอที่สามารถใหบริการไดนี้สงผลตอ
ปริมาณขอมูลที่รับสงได (bytes/second) ซึ่งเปนสัดสวนโดยตรงตอกันใน
ความสามารถในการรองขอขอมูลและรับสงขอมูล

ตารางที่ 3 เวลาในการสรางการเชื่อมตอโดยเฉลี่ย

(average connection time)

 จากผลการการทดลองพบวาระบบที่ออกแบบนั้นมีแนวโนม
วาหากมีเคร่ืองไคลเอนทมากขึ้น เมื่อเทียบเวลาในการสรางการเชื่อมตอ
ในระบบที่ออกแบบจะใชเวลานอยกวาเน็ทเวอรคโหลดบาลานซซิ่ง
ดังการเปรียบเทียบที่จํานวนเวปเซิรฟเวอร 3 เครื่องและ 4 เครื่อง ซึ่งใน
การนําไปใชงานจริงนั้นจะมีทั้งเซิรฟเวอรและไคลเอนทที่มากกวาการ
ทดสอบจึงคาดการณวาหากมีการรองขอเขามามากขึ้นเรื่อยๆเวลาที่ใชใน
การจัดภาระงานแบบลําดับเสมือนเพื่อรับการรองขอจะยิ่งสูงขึ้น แตก็ยัง
นอยกวาการทํางานของเน็ทเวอรคโหลดบาลานซซิ่ง

วิศวกรรมสาร ฉบับวิจัยและพัฒนา ปที่ 18 ฉบับที่ 4 พ.ศ. 2550 RESEARCH AND DEVELOPMENT JOURNAL VOLUME 18 NO.4, 2007

 7

average connection time - 3 server

0.000
5.000

10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000

1 client 2 client 4 client 8 client 16 client

m
ill

is
ec

on
ds

vt-3srv
nlb-3srv

average connection time - 4 server

0.000
5.000

10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000

1 client 2 client 4 client 8 client 16 client

m
ill

is
ec

on
ds

vt-4srv
nlb-4srv

average connection time

0.000
5.000

10.000
15.000
20.000
25.000
30.000
35.000
40.000
45.000
50.000

vt-3srv vt-4srv nlb-3srv nlb-4srv

m
ill

is
ec

on
ds

1 client
2 client
4 client
8 client
16 client

รูปที่ 10 กราฟเวลาในการสรางการเชื่อมตอโดยเฉลี่ย

5. สรุป

การจั ดภาระงานแบบลํ าดับ เสมื อนที่ ออกแบบนั้ นมี
ความสามารถในการลดเวลาในการเชื่อมตอ (connection time) สามารถ
เรงขั้นตอนของการสรางการเชื่อมตอไดดีขึ้นกวาแบบพื้นฐาน คือ
การทํางานของเน็ทเวอรคโหลดบาลานซซิ่งทั้ง 3 แบบ เนื่องจากการ
จัดภาระงานนั้นจะตองมีกระบวนการในการพิจารณาถึงเคร่ืองที่
เหมาะสมในการรับภาระงาน ดังนั้นเวลาที่ใชพิจารณาในสวนนี้จึงหนวง
ในการจัดภาระงานพอสมควร การจัดภาระงานแบบลําดับเสมือนชวย
ใหการเชื่อมตอเร็วขึ้นไดเพราะกระจายไปยังเปาหมายในลักษณะ
ตามลําดับของผูใหบริการแลวจึงพิจารณาการรับภาระงานทีหลัง
ดังนั้นความเร็วที่ไดจึงมาจากจุดนี้ พบวาเวลาที่ใชในการเชื่อมตอเร็วขึ้น
11 เปอรเซ็นต เมื่อเทียบกับการจัดภาระงานแบบไมมีความสัมพันธ
จากผลของการทดลองวัดประสิทธิภาพเพื่อยืนยันถึงความสามารถของ
ระบบตนแบบดังแนวคิดนั้น ผูวิจัยจะนําแนวทางที่ไดนี้ไปแกไขและ
พัฒนาระบบการทํางานที่สามารถใชงานบนระบบปฏิบัติการอื่นๆ ไดจริง
ตอไป

รูปที่ 11 กราฟแสดงเวลาในการสรางการเชื่อมตอโดยเฉลีย่

6. กิตติกรรมประกาศ
ขอขอบพระคุณโปรแกรมวิชาวิทยาการคอมพิว เตอร

และเทคโนโลยีสารสนเทศ มหาวิทยาลัยราชภัฏนครราชสีมา ที่เอื้อเฟอ
อุปกรณการทดลองที่ใชในงานวิจัยนี้

เอกสารอางอิง
[1] Red Hat Cluster Suite ,
http://www.redhat.com/docs/manuals/enterprise/RHEL-3-
Manual/cluster-suite/
[2] How Network Load Balancing Works , http://www.microsoft.com
[3] Cisco LocalDirector ,
http://www.cisco.com/univercd/cc/td/doc/product/iaabu/localdir/
index.htm
[4] WebMux product page ,
http://www.redhillnetworks.com/products/spec.htm
 [5] V.Cardellini, E.Casalicchio, M. Colajanni and P.S. Yu, “The State
of the Art in Locally Distributed Web-Server Systems”,
ACM Computing Surveys, Vol.34, No.2, June. 2002, pp. 263-311.
[6] T.Schroeder, S.Goddard and B.Ramamurthy, “Scalable Web server
clustering technologies”, IEEE Network,Vol.14, No.3, May/June. 2000,
pp. 38-45.
[7] V.Cardellini, M. Colajanni and P.S. Yu, “Dynamic Load Balancing
on Web-Server Systems”, IEEE Internet Computing, Vol.3, No.3,
May/June. 1999, pp. 28-39.
[8] WebBench , http://cs.uccs.edu/~cs526/webbench/webbench.htm

