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Abstract

This study presents modeling of cohesive
cracks in the Element-Free Galerkin (EFG)
method. A cohesive crack is represented by
several end-connected straight-line interface
elements on which a constitutive law of
cohesive cracks is directly applied. The
stiffness equation is straightforwardly derived
by including a term related to the energy
dissipation along the interface elements in the
weak form of the system equation. Using the
interface elements in the EFG method allows
cracks to propagate virtually without any
constraint on their directions. Numerical results
obtained from the proposed method for some
benchmark tests of plain concrete beams are
presented and compared with existing
numerical and experimental results.

1. Introduction

In modeling crack propagation in quasi-
brittle materials such as concrete, it is
necessary to take into account the presence and
the effect of a large nonlinear fracture process
zone ahead of a crack tip. In the fracture
process zone, various microevents, such as
microcracking, crack  deflection, crack
branching, and crack bridging, occur and
energy is dissipated. The fracture process zone
has been found to be best represented as an
extension of the actual crack that is subjected
to a closing pressure as in the fictitious crack
model [1]. The general form of the fictitious
crack model allows both tensile and shear
stresses to be transmitted across the surfaces of
the crack. The magnitudes of these transmitted
stresses are generally assumed to be functions
of crack displacements.

Using the fictitious crack model in
conjunction with the finite element method

(FEM) to model cohesive crack propagation in
two-dimensional problems has been receiving
significant attention from many researchers [2-
5]. However, FEM possesses intrinsic
disadvantages when it is wused in crack
propagation problems. The most serious one is
the representation of cracks in finite element
(FE) models. The use of elements in FEM
creates difficulties in the treatment of cracks
that do not coincide with the FE mesh lines.
Various numerical techniques have been
developed to solve this crack representation
problem in FEM. One of the well accepted
techniques is to remesh the domain of the
problem in each step of the crack evolution in
such a way that the mesh lines remain
coincident with the cracks throughout the
evolution of the problem [2,4,6]. Several
complex and robust mesh refinement
algorithms have been developed [4,6]. These
algorithms can be computationally more
expensive than the assembly and solution
processes. Another popular technique is to
embed cracks directly into elements and
modify the stiffnesses of the elements to
incorporate the existence of the cracks within
the eclements [7,8,9]. However, with this
technique, it 1is difficult to maintain the
continuity of the crack line. As a result, the
continuity of the crack line is mostly neglected.
In addition, a spurious mode can also occur if
the position and orientation of a crack are
freely allowed within the element.

Recently, Belytschko et al. [10] proposed a
new method called the Element-Free Galerkin
(EFG) method for solving mechanical
problems with arbitrary geometry. The EFG
shape functions and their derivatives are
constructed by using the moving least-square
(MLS) approximation defined by Lancaster
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Au : prescribed displacement increment

At : prescribed surface traction increment

Ab : body force increment
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Fig. 1 Crack modeling by interface elements

and Salkauskas [I11]. From a modeling
viewpoint, the essential feature of the EFG
method is that only nodal data and boundary
descriptions are required to formulate the
discrete Galerkin equations. A background-cell
structure, which is independent of nodal points,
is used for the procedure to compute the
integral expression. Since the method requires
no element, it is an excellent choice for solving
crack  propagation  problems. Several
extensions of the EFG method to model crack
propagation have been proposed [12-15].
However, all of these works are related to
brittle cracks with no traction force between
crack surfaces. The EFG method has been used
to simulate dynamic crack growth in concrete
by Belytschko et al. [16]. In their proposed
method, cohesive cracks are not directly
included in the weak form of the system
equation. Instead, to simulate the effect of
crack cohesion, the transmitted tensile stress
across the crack surfaces is computed from the
current crack opening displacement and is
directly applied to the crack surfaces in the
subsequent step of the calculation.

In this paper, a new way to model cohesive
cracks in the EFG method for 2D domains is
proposed. A cohesive curved crack is model by
using straight-line interface elements connected
to form the crack. These interface elements
permit the constitutive law of cohesive cracks
to be considered efficiently. In this study, the
analysis is performed incrementally. To allow

accurate results to be obtained without the need
of iteration, the stiffness equation of the
domain is constructed by directly including a
term related to the energy dissipation along the
interface elements in the weak form of the
global system equation. The validity and
efficiency of the proposed method are shown
by solving several numerical problems. The
obtained results are compared with results by
FEM and experiments reported in the literature.

2. Modeling of Cohesive Cracks in the
Element-Free Galerkin Method
Consider a two-dimensional domain Q in
the xy plane with boundary I' in Fig. I1(a).

The boundary I' is subdivided into two parts,
i.e.,, I, where the displacement is prescribed,

and I', where the surface traction is prescribed.

Assume further that there is a crack in the
domain and it is represented as an additional
boundary I', inside €. The crack boundary

I', is composed of two opposite surfaces, i.e.,

I and T,

., as shown in Fig. 1(a). In this
study, the crack is modeled by using connected
straight-line interface elements as shown in
Fig. 1(b). Each interface element contains the
two surfaces of the crack. Fig. 2(a) shows the
i"™ interface element and its local coordinate
system whose origin is at the center of the
element. The interface element has two
coincident surfaces each of which has nodes at
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(b)

Fig. 2 Details of the interface element

its ends. The two surfaces are designated as the
positive surface 'T"; and the negative surface

'T,. When the crack opens, the two surfaces
move away from each other. The crack
displacement increment A'u, along the length

of the element in the global coordinate system
shown in Fig. 2(b) is expressed as

Aiuc(ir):{i::c}:Aiu+(ir)_Aiu—(ir)’ (1)

C

where A'u" and A'w are the displacement
increments along the positive and negative
surfaces of the element, respectively. These

two displacement increments A'u* and A'u

are expressed in terms of the nodal
displacement increment AU as

A ('r)=N['x"('n)]AU, )
A'w ('n=N['x"('N]AU. 3)
where

_INxX 0 ..N,x 0

N(X){ 0 NM.. 0 Ny @
AU=[Au, Ay, Au,  Av, ] (5)
Here, 'x* and 'x  represent two opposite

points at position 'r on the positive and
negative surfaces of the interface element,

respectively. The subscript | in N, (x), Au,
and Av, represent the node number while M

represents the total number of nodes in the
domain. In this study, the shape function
matrix N(x) for the EFG method using the

Gaussian weight function [14] is wused.
Nevertheless, during the construction of the
shape function matrices, N['x"('r)] and
N['x ('r)], the domains of influence of nodes
are considered based on the visibility criterion
[14]. The visibility criterion is necessary for
constructing shape functions near a crack that
contain the discontinuities in the displacement
increments. The concept of this criterion is that
the domain boundaries and any lines of cracks
are treated as opaque objects during the
construction of weight functions. Consider, in
Fig. 3(a), node | that has a crack line within
its domain of influence. The radius d_, , which

is used to determine the domain of influence of
node |, is treated as a ray of light. When the
ray encounters the opaque crack line, it is
terminated and the area that is not reached by
the ray is excluded from the domain of
influence of node | . As a result, in Fig. 3(a),
the shaded region becomes the modified
domain of influence of node | . In consequence
of the visibility criterion, nodes that are used in
the approximation of A'u*('r) and A'u ('r)
will be different as schematically shown in Fig.
3(b). This difference can be seen in the
difference between N['x"('r)] and N['x ('r)].
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Fig. 3 Domain of influence near a crack

By substituting (2) and (3) into (1), the
crack displacement increment A'u, can be
written as

Alu (') =(N['x"('N]-N['x"('n])AU ©
='N_('NAU,

where iNc(ir) is the crack shape function

matrix defined as

'N.('N=N['x"('N] = N['x ('] (7

Constitutive laws for cohesive cracks are
normally described based on local coordinate

systems of the cracks. Therefore, the crack
displacement increment in the local 'r—'s
coordinate system A, must be introduced,

1e.,

N

Aiﬁ°(ir):{Ai\7 ('r)

}: '"TA'u,('r), (8)

where A'G, and A'U, represent the crack
sliding and opening displacement increments,

respectively. In  addition, 'T is the
transformation matrix defined as

7 { cos('9) sin(ie)}. ©)

—sin('0) cos('6)

Here, '@ is the angle between the local 'r axis
and the global X axis as shown in Fig. 2(a).
Write the transmitted crack traction

increment A't

. In the local coordinate system

as

ig Aif\r
At =" b
A'f,

Here, A't, is defined as the traction increment

(10)

exerted by the positive surface to the negative
surface of the interface element.

Next, the crack -constitutive
introduced as

law 1is

A't.('n=D.A"a ('), (11)

where ﬁc is the crack constitutive matrix
defined as

I
ﬁc: D 0 ’
0 D

where D' and D" represent the mode I and
mode II crack modulus, respectively. Note that

(12)
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D' and D" are functions of the crack opening
and sliding displacements.

By employing (6), (8) and (11), the local
crack displacement increment A'di, and local

crack traction increment A't, are written in

terms of the nodal displacement increment AU
as

A'a ('r)="T'N,('nAU, (13)

A't.('ry=D, 'T'N,('r)AU. (14)

In this study, to simulate crack growth, the
existing crack is lengthened, in each
incremental step, by extending the crack line
using a new interface element. The extension
of the crack is assumed to be of mode I.
Therefore, the extension occurs when the
maximum principal tensile stress ahead of the
crack tip reaches the value of the tensile
strength of the material. The direction of the
extension is naturally perpendicular to the
direction of this maximum principal tensile
stress.
3. Derivation of the Stiffness Matrix

Equation

The weak form of the problem can be
written as

j 5(Ae")AedQ
Q

~[s(au")AbdQ - [ 5(AuT)ATT
~[ 5(an")(Au-Au)dT

L, (15)
- j S(Au")AMT

_r“

+[Z [ ol )Aifcdl"] =0.

i=1 irE

The above weak form consists of two parts.
The terms in the first brackets are the well-
known terms found in the weak form for the
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EFG method which requires the wuse of
Lagrange multipliers to enforce the essential
boundary conditions [10]. Here, AL denotes a

vector  containing  Lagrange  multiplier

increments defined as

Al A 16
“im (16)

The term in the second brackets is
associated to the energy dissipation from the
cohesive crack which is modeled by n,

interface elements. The other symbols are
either mentioned earlier or self-evident.

In this study, the constitutive law of the
material in the analysis is assumed to be linear
elastic, i.e.,
Ac =DAg, (17)
where D is the constitutive matrix. By
employing the EFG shape functions with the
Gaussian  weight  function  [14], the
displacement increment vector Au and the
strain increment vector Ag are written in terms
of the nodal displacement increment vector
AU as

Au =NAU, (18)

Ag=BAU, (19)
where N and B represent the shape function
matrix and its derivative matrix, respectively.
Note that N must be constructed by using the
domains of influence of nodes that are based on
the visibility criterion [14].

The Lagrange multiplier increment AA is
interpolated from its nodal values by using
Lagrange interpolation as
AMX) =N, (r,))AA

xel',,

(20)

where N, (r,) 1s a Lagrange-interpolant matrix
and r, denotes the arc length along the

boundary I', . In addition, AA is a vector
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containing nodal  Lagrange  multiplier - I N'N,dI, (24)
increments of all the nodes on the boundary r
L. AR, jN AbdQ+ [NTAWT, (25)
By substituting (13)-(14) and (17)-(20) into I

(15), the weak form becomes AR, = —j Nl Audl. (26)

s(auT) j B'DBJOAU - 5(AU") j NTAbdQ
Q

AUT)INTAtdF 5(AA") J.N NdTAU

)

S(AA J.N AudI - 5(AU") fN N,dTAA

Iy

la(AUT Zj 'NUTTD, TN dFAU}
=0.

Il'l"

e2y)

Finally, since 5(AUT) and 5(AAT) are

arbitrary, the stiffness equation is written as

& el fen,

where

(22)

jB DBdQ+zj 'NTTTD, 'TINLAT,  (23)

|1|1~

r

u

4. Results

The validity and efficiency of the proposed
method are shown by solving three numerical
problems. They are the three-point bending
test, the four-point single-notched shear test,
and the four-point double-notched shear test,
all of plain concrete. The shear fracture
resistance is neglected in this study. However,
a very small numerical value is used for the

mode II crack modulus D" in order to prevent
spurious instability. The three tests are
analyzed with three different types of tension
softening curve, i.e., the linear softening curve
[2], Dbilinear softening curve [3], and
exponential softening curve [4]. The three
tension softening curves are shown in Fig. 4.
The details of the material properties used in all
problems are shown in Table 1.

4.1 Three-Point Bending Test

The most commonly used configuration to
investigate the mode [ crack propagation in
plain concrete is a notched beam subjected to
three-point bending. In this study, the beam
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Fig. 5 Geometry of the numerical examples (unit: mm)

shown in Fig. 5(a) is used. The depth, length
and thickness of the beam are 100 mm, 510
mm, and 100 mm, respectively. The ratio
between the notched depth and the beam depth
is equal to 0.5. The crack mount opening
displacement (CMOD) is used as a controlling
parameter of loading.

The obtained results are compared with a
result from FE analysis by Prasad and
Krishnamoorthy [4] and experimental results
by Koérmeling and Reinhardt [17] as shown in
Fig. 6(a). It is found that the obtained responses
are in good agreement with the FE and
experimental results. However, the results

obtained with the bilinear and exponential
tension-softening curves agree better with the
experimental results. The result obtained with
the linear tension-softening curve agrees
closely with the result by Prasad and
Krishnamoorthy [4] which is also obtained
with the linear tension-softening curve. The
bilinear and exponential tension-softening
curves have steeper initial slopes than that of
the linear curve. A steeper initial slope means
that the material is initially more brittle. As a
result, the results obtained with the bilinear and
exponential tension-softening curves are
expected to have lower peak loads than those
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obtained with the linear tension-softening
curve.

4.2 Four-Point Single-Notched Shear Test

The second numerical example is the four-
point single-notched shear test. In this study,
the beam shown in Fig. 5(b) is employed. The
depth, length and thickness of the beam are 306
mm, 914 mm and 156 mm, respectively. In this
problem, the crack mount sliding displacement
(CMSD) is used as a controlling parameter of
loading.

The obtained results are compared with a
result from FE analysis by Alfaiate et al. [3]
and experimental results by Arrea [18] as
shown in Fig. 6(b). Note that Alfaiate et al. [3]
use the bilinear tension-softening curve in their
analysis. It is found from the comparison that
the obtained responses are generally in good
agreement with the FE results by Alfaiate et al.
[3]. Nevertheless, the obtained numerical
results are found to significantly have lower
peak loads than those of the experimental
results. In fact, it can be observed that the
initial slopes of the load-CMSD curves from
the obtained numerical results and the
experimental results are quite different. Since
the initial slope depends on the elastic stiffness
of the beam, the differences in the initial slopes
imply that the Young’s modulus used in the
numerical computations may not really be
accurate. The obtained crack paths are also
compared with the FE result by Alfaiate et al.
[3] and the experimental results by Arrea [18]

Table 1 Material properties

RESEARCH AND DEVELOPMENT JOURNAL VOLUME 17 NO.4, 2006

in Fig. 7(a). It can be seen that all crack paths
obtained by the numerical computations agree
very well. However, they are slightly different
from the experimental results.

4.3 Four-Point Double-Notched Shear Test

The last numerical example is the four-
point double-notched shear test. The geometry
of the tested beam and the boundary conditions
are shown in Fig. 5(c). The depth, length, and
thickness of the beam are 200 mm, 800 mm,
and 100 mm, respectively. The crack mount
sliding displacement (CMSD) is used as a
controlling parameter of loading.

The obtained results are compared with FE
and experimental results by Bocca et al. [2] in
Fig. 6(c). In general, good agreements between

the obtained results and the FE and
experimental results can be observed. The
obtained results with the bilinear and

exponential softening curves seem to agree
better with the experimental result. The FE
result by Bocca et al. [2] which is obtained
with the linear tension-softening curve is found
to have a higher peak load than those of the
experimental result and the proposed result
with the same type of the tension softening
curve. Nevertheless, its postpeak response
agrees well with the experimental result as well
as the proposed results obtained with the
bilinear and exponential tension-softening
curves. In Fig. 7(b), the crack paths are
presented. All of the crack paths agree very
well.

E v f, G .
Problem (GPa) (MPa) (N/m) Softening Curve
Linear (LS)
Three-point bending test 20.0 0.20 2.40 113.0 Bilinear (BS)
Exponential (ES)
S Linear (LS)
Four- le-notched sh
g point single-notched shear ), ¢ 0.18 2.80 1000 Bilinear (BS)
Exponential (ES)
. Linear (LS)
Four-point le-notched sh
our-point double-notched shear 0.10 2.00 100.0 Bilinear (BS)

test

Exponential (ES)
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Fig. 6 Responses of the numerical examples
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Fig. 7 Crack paths

S. Conclusions

In this paper, modeling of cohesive cracks
in the Element-Free Galerkin (EFG) method is
presented. Interface elements are used in the
model to represent displacement discontinuities
due to cracks. A curved crack is simply
represented by connected straight-line interface
elements. To simulate crack growth, the
existing crack is lengthened in each
incremental step by extending the crack line
using an interface element. The interface
elements permit the constitutive law of
cohesive cracks to be considered directly and
efficiently.  The  relative  displacement
increments between the two opposite surfaces
of the interface elements are the crack
displacement increments. The crack

10

displacement increments are written in terms of
the nodal displacement increments by using the
EFG shape functions that employ the visibility
criterion. To allow accurate analysis to be
performed without the need of iteration, the
stiffness equation of the domain is constructed
by directly including a term related to the
energy dissipation along the interface elements
in the EFG weak form of the global system
equation. If this energy term is not directly
included in the derivation, the cohesive stresses
on the crack surfaces will have to be treated as
applied surface tractions. Subsequently, their
magnitudes will have to be determined via
iterations. The interface elements and the EFG
method allow a crack to propagate without any
constraint on its direction and without
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remeshing. The analysis of example problems
taken from the literature clearly shows the
validity and efficiency of the proposed method.
The results of the proposed method are found
to be in good agreement with the FE and
experimental results from the literature.
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