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Abstract 

This study presents modeling of cohesive 
cracks in the Element-Free Galerkin (EFG) 
method. A cohesive crack is represented by 
several end-connected straight-line interface 
elements on which a constitutive law of 
cohesive cracks is directly applied. The 
stiffness equation is straightforwardly derived 
by including a term related to the energy 
dissipation along the interface elements in the 
weak form of the system equation. Using the 
interface elements in the EFG method allows 
cracks to propagate virtually without any 
constraint on their directions. Numerical results 
obtained from the proposed method for some 
benchmark tests of plain concrete beams are 
presented and compared with existing 
numerical and experimental results. 
 
1. Introduction 

In modeling crack propagation in quasi-
brittle materials such as concrete, it is 
necessary to take into account the presence and 
the effect of a large nonlinear fracture process 
zone ahead of a crack tip. In the fracture 
process zone, various microevents, such as 
microcracking, crack deflection, crack 
branching, and crack bridging, occur and 
energy is dissipated. The fracture process zone 
has been found to be best represented as an 
extension of the actual crack that is subjected 
to a closing pressure as in the fictitious crack 
model [1]. The general form of the fictitious 
crack model allows both tensile and shear 
stresses to be transmitted across the surfaces of 
the crack. The magnitudes of these transmitted 
stresses are generally assumed to be functions 
of crack displacements. 

Using the fictitious crack model in 
conjunction with the finite element method 

(FEM) to model cohesive crack propagation in 
two-dimensional problems has been receiving 
significant attention from many researchers [2-
5]. However, FEM possesses intrinsic 
disadvantages when it is used in crack 
propagation problems. The most serious one is 
the representation of cracks in finite element 
(FE) models. The use of elements in FEM 
creates difficulties in the treatment of cracks 
that do not coincide with the FE mesh lines. 
Various numerical techniques have been 
developed to solve this crack representation 
problem in FEM. One of the well accepted 
techniques is to remesh the domain of the 
problem in each step of the crack evolution in 
such a way that the mesh lines remain 
coincident with the cracks throughout the 
evolution of the problem [2,4,6]. Several 
complex and robust mesh refinement 
algorithms have been developed [4,6]. These 
algorithms can be computationally more 
expensive than the assembly and solution 
processes. Another popular technique is to 
embed cracks directly into elements and 
modify the stiffnesses of the elements to 
incorporate the existence of the cracks within 
the elements [7,8,9]. However, with this 
technique, it is difficult to maintain the 
continuity of the crack line. As a result, the 
continuity of the crack line is mostly neglected. 
In addition, a spurious mode can also occur if 
the position and orientation of a crack are 
freely allowed within the element. 

Recently, Belytschko et al. [10] proposed a 
new method called the Element-Free Galerkin 
(EFG) method for solving mechanical 
problems with arbitrary geometry. The EFG 
shape functions and their derivatives are 
constructed by using the moving least-square 
(MLS) approximation defined by Lancaster 
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Fig. 1 Crack modeling by interface elements 

and Salkauskas [11]. From a modeling 
viewpoint, the essential feature of the EFG 
method is that only nodal data and boundary 
descriptions are required to formulate the 
discrete Galerkin equations. A background-cell 
structure, which is independent of nodal points, 
is used for the procedure to compute the 
integral expression. Since the method requires 
no element, it is an excellent choice for solving 
crack propagation problems. Several 
extensions of the EFG method to model crack 
propagation have been proposed [12-15]. 
However, all of these works are related to 
brittle cracks with no traction force between 
crack surfaces. The EFG method has been used 
to simulate dynamic crack growth in concrete 
by Belytschko et al. [16]. In their proposed 
method, cohesive cracks are not directly 
included in the weak form of the system 
equation. Instead, to simulate the effect of 
crack cohesion, the transmitted tensile stress 
across the crack surfaces is computed from the 
current crack opening displacement and is 
directly applied to the crack surfaces in the 
subsequent step of the calculation. 

In this paper, a new way to model cohesive 
cracks in the EFG method for 2D domains is 
proposed. A cohesive curved crack is model by 
using straight-line interface elements connected 
to form the crack. These interface elements 
permit the constitutive law of cohesive cracks 
to be considered efficiently. In this study, the 
analysis is performed incrementally. To allow 

accurate results to be obtained without the need 
of iteration, the stiffness equation of the 
domain is constructed by directly including a 
term related to the energy dissipation along the 
interface elements in the weak form of the 
global system equation. The validity and 
efficiency of the proposed method are shown 
by solving several numerical problems. The 
obtained results are compared with results by 
FEM and experiments reported in the literature. 
 
2. Modeling of Cohesive Cracks in the 

Element-Free Galerkin Method 
Consider a two-dimensional domain Ω  in 

the xy  plane with boundary Γ  in Fig. 1(a). 
The boundary Γ  is subdivided into two parts, 
i.e., uΓ  where the displacement is prescribed, 
and tΓ  where the surface traction is prescribed. 
Assume further that there is a crack in the 
domain and it is represented as an additional 
boundary cΓ  inside Ω . The crack boundary 

cΓ  is composed of two opposite surfaces, i.e., 

c
+Γ  and c

−Γ , as shown in Fig. 1(a). In this 
study, the crack is modeled by using connected 
straight-line interface elements as shown in 
Fig. 1(b). Each interface element contains the 
two surfaces of the crack. Fig. 2(a) shows the 

thi  interface element and its local coordinate 
system whose origin is at the center of the 
element. The interface element has two 
coincident surfaces each of which has nodes at 
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Fig. 2 Details of the interface element 

its ends. The two surfaces are designated as the 
positive surface i

c
+Γ  and the negative surface 

i
c
−Γ . When the crack opens, the two surfaces 

move away from each other. The crack 
displacement increment i

cΔ u  along the length 
of the element in the global coordinate system 
shown in Fig. 2(b) is expressed as 
 

( ) ( ) ( )
i

i i i i i ic
c i

c

u
r r r

v
+ −⎧ ⎫Δ

Δ = = Δ −Δ⎨ ⎬
Δ⎩ ⎭

u u u , (1) 

 
where i +Δ u  and i −Δ u  are the displacement 
increments along the positive and negative 
surfaces of the element, respectively. These 
two displacement increments i +Δ u  and i −Δ u  
are expressed in terms of the nodal 
displacement increment ΔU  as 
 

( ) [ ( )]i i i ir r+ +Δ = Δu N x U , (2) 
 

( ) [ ( )]i i i ir r− −Δ = Δu N x U , (3) 
 
where 

 

1

1

( ) 0 ( ) 0( ) 0 ( ) 0 ( )
M

M

N N
N N

⎡ ⎤= ⎢ ⎥⎣ ⎦
x xN x x x

K
K

, (4) 

 
[ ]T1 1 M Mu v u vΔ = Δ Δ Δ ΔU K . (5) 

 
Here, i +x  and i −x  represent two opposite 
points at position ir  on the positive and 
negative surfaces of the interface element, 

respectively. The subscript I  in ( )IN x , IuΔ  
and IvΔ  represent the node number while M  
represents the total number of nodes in the 
domain. In this study, the shape function 
matrix ( )N x  for the EFG method using the 
Gaussian weight function [14] is used. 
Nevertheless, during the construction of the 
shape function matrices, [ ( )]i ir+N x  and 

[ ( )]i ir−N x , the domains of influence of nodes 
are considered based on the visibility criterion 
[14]. The visibility criterion is necessary for 
constructing shape functions near a crack that 
contain the discontinuities in the displacement 
increments. The concept of this criterion is that 
the domain boundaries and any lines of cracks 
are treated as opaque objects during the 
construction of weight functions. Consider, in 
Fig. 3(a), node I  that has a crack line within 
its domain of influence. The radius mId , which 
is used to determine the domain of influence of 
node I , is treated as a ray of light. When the 
ray encounters the opaque crack line, it is 
terminated and the area that is not reached by 
the ray is excluded from the domain of 
influence of node I . As a result, in Fig. 3(a), 
the shaded region becomes the modified 
domain of influence of node I . In consequence 
of the visibility criterion, nodes that are used in 
the approximation of ( )i ir+Δ u  and ( )i ir−Δ u  
will be different as schematically shown in Fig. 
3(b). This difference can be seen in the 
difference between [ ( )]i ir+N x  and [ ( )]i ir−N x . 
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Fig. 3 Domain of influence near a crack 

By substituting (2) and (3) into (1), the 
crack displacement increment i

cΔ u  can be 
written as 
 

( )( ) [ ( )] [ ( )]

( ) ,

i i i i i i
c

i i
c

r r r

r

+ −Δ = − Δ

= Δ

u N x N x U

N U
 (6) 

 
where ( )i i

c rN  is the crack shape function 
matrix defined as 
 

( ) [ ( )] [ ( )]i i i i i i
c r r r+ −= −N N x N x . (7) 

 
Constitutive laws for cohesive cracks are 

normally described based on local coordinate 
systems of the cracks. Therefore, the crack 
displacement increment in the local i ir s−  
coordinate system ˆi

cΔ u  must be introduced, 
i.e., 
 

ˆ ( ) ˆˆ ( ) ( )
ˆ ( )

i i
i i i i ic

c ci i
c

u r
r r

v r
⎧ ⎫Δ

Δ = = Δ⎨ ⎬
Δ⎩ ⎭

u T u , (8) 

 
where ˆi

cuΔ  and ˆi
cvΔ  represent the crack 

sliding and opening displacement increments, 
respectively. In addition, ˆi T  is the 
transformation matrix defined as 
 

cos( ) sin( )ˆ
sin( ) cos( )

i i
i

i i

θ θ
θ θ

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

T . (9) 

 
Here, iθ  is the angle between the local ir  axis 
and the global x  axis as shown in Fig. 2(a). 

Write the transmitted crack traction 
increment ˆi

cΔ t  in the local coordinate system 
as 
 

ˆˆ
ˆ

i
i r

c i
s

t
t

⎧ ⎫Δ
Δ = ⎨ ⎬

Δ⎩ ⎭
t . (10) 

 
Here, ˆi

cΔ t  is defined as the traction increment 
exerted by the positive surface to the negative 
surface of the interface element. 

Next, the crack constitutive law is 
introduced as 
 

ˆˆ ˆ( ) ( )i i i i
c c cr rΔ = Δt D u , (11) 

 
where ˆ

cD  is the crack constitutive matrix 
defined as 
 

0ˆ
0

II

c I

D
D

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

D , (12) 

 
where ID  and IID  represent the mode I and 
mode II crack modulus, respectively. Note that 
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ID  and IID  are functions of the crack opening 
and sliding displacements. 

By employing (6), (8) and (11), the local 
crack displacement increment ˆi

cΔ u  and local 

crack traction increment ˆi
cΔ t  are written in 

terms of the nodal displacement increment ΔU  
as 
 

ˆˆ ( ) ( )i i i i i
c cr rΔ = Δu T N U , (13) 

 
ˆ ˆˆ ( ) ( )i i i i i

c c cr rΔ = Δt D T N U . (14) 
 

In this study, to simulate crack growth, the 
existing crack is lengthened, in each 
incremental step, by extending the crack line 
using a new interface element. The extension 
of the crack is assumed to be of mode I. 
Therefore, the extension occurs when the 
maximum principal tensile stress ahead of the 
crack tip reaches the value of the tensile 
strength of the material. The direction of the 
extension is naturally perpendicular to the 
direction of this maximum principal tensile 
stress. 
 
3. Derivation of the Stiffness Matrix 

Equation 
The weak form of the problem can be 

written as 
 

( )

T

T T
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T

T
c

1
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− Δ Δ Ω− Δ Δ Γ⎢ ⎥
⎢ ⎥
⎢ ⎥
− Δ Δ −Δ Γ⎢ ⎥
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∫

∫ ∫

∫

∫

∑ ∫

ε σ

u b u t

λ u u

u λ

u t

 (15) 

 
The above weak form consists of two parts. 

The terms in the first brackets are the well-
known terms found in the weak form for the 

EFG method which requires the use of 
Lagrange multipliers to enforce the essential 
boundary conditions [10]. Here, Δλ  denotes a 
vector containing Lagrange multiplier 
increments defined as 

 
x

y

λ
λ

Δ⎧ ⎫
Δ = ⎨ ⎬Δ⎩ ⎭
λ . (16) 

 
The term in the second brackets is 

associated to the energy dissipation from the 
cohesive crack which is modeled by cn  
interface elements. The other symbols are 
either mentioned earlier or self-evident. 

In this study, the constitutive law of the 
material in the analysis is assumed to be linear 
elastic, i.e., 
 
Δ = Δσ D ε , (17) 

 
where D  is the constitutive matrix. By 
employing the EFG shape functions with the 
Gaussian weight function [14], the 
displacement increment vector Δu  and the 
strain increment vector Δε  are written in terms 
of the nodal displacement increment vector 
ΔU  as 
 
Δ = Δu N U , (18) 

 
Δ = Δε B U , (19) 

 
where N  and B  represent the shape function 
matrix and its derivative matrix, respectively. 
Note that N  must be constructed by using the 
domains of influence of nodes that are based on 
the visibility criterion [14]. 

The Lagrange multiplier increment Δλ  is 
interpolated from its nodal values by using 
Lagrange interpolation as 

 
( ) ( )u urλΔ = Δ ∈Γλ x N Λ x , (20) 

 
where ( )urλN  is a Lagrange-interpolant matrix 
and ur  denotes the arc length along the 
boundary uΓ . In addition, ΔΛ  is a vector 
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Fig. 4 Tension-softening curves 

containing nodal Lagrange multiplier 
increments of all the nodes on the boundary 

uΓ . 
By substituting (13)-(14) and (17)-(20) into 

(15), the weak form becomes 
 

( ) ( )

( ) ( )

( ) ( )
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T T T T

T T T T

T T T T
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1

ˆ ˆ ˆ
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i
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−
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⎢ ⎥
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+ Δ ΓΔ⎢ ⎥
⎢ ⎥⎣ ⎦
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∫ ∫

∫ ∫
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U B DB U U N b

U N t Λ N N U

Λ N u U N N Λ
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 (21) 
 

Finally, since ( )Tδ ΔU  and ( )Tδ ΔΛ  are 
arbitrary, the stiffness equation is written as 

 
1

20T

ΔΔ ⎧ ⎫⎡ ⎤ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥ ΔΔ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

RK G U
RG Λ

, (22) 

 
where 

 
T T T

1

ˆ ˆ ˆ ,
c

i
c

n
i i i i

c c c
i

d d
−=Ω Γ

= Ω + Γ∑∫ ∫K B DB N T D T N  (23) 

T

u

dλ
Γ

= − Γ∫G N N , (24) 

T T
1

t

d d
Ω Γ

Δ = Δ Ω + Δ Γ∫ ∫R N b N t , (25) 

T
2

u

dλ
Γ

Δ = − Δ Γ∫R N u . (26) 

 
4. Results 

The validity and efficiency of the proposed 
method are shown by solving three numerical 
problems. They are the three-point bending 
test, the four-point single-notched shear test, 
and the four-point double-notched shear test, 
all of plain concrete. The shear fracture 
resistance is neglected in this study. However, 
a very small numerical value is used for the 
mode II crack modulus IID  in order to prevent 
spurious instability. The three tests are 
analyzed with three different types of tension 
softening curve, i.e., the linear softening curve 
[2], bilinear softening curve [3], and 
exponential softening curve [4]. The three 
tension softening curves are shown in Fig. 4. 
The details of the material properties used in all 
problems are shown in Table 1. 
 
4.1 Three-Point Bending Test 

The most commonly used configuration to 
investigate the mode I crack propagation in 
plain concrete is a notched beam subjected to 
three-point bending. In this study, the beam 
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Fig. 5 Geometry of the numerical examples (unit: mm) 

shown in Fig. 5(a) is used. The depth, length 
and thickness of the beam are 100 mm, 510 
mm, and 100 mm, respectively. The ratio 
between the notched depth and the beam depth 
is equal to 0.5. The crack mount opening 
displacement (CMOD) is used as a controlling 
parameter of loading. 

The obtained results are compared with a 
result from FE analysis by Prasad and 
Krishnamoorthy [4] and experimental results 
by Körmeling and Reinhardt [17] as shown in 
Fig. 6(a). It is found that the obtained responses 
are in good agreement with the FE and 
experimental results. However, the results 

obtained with the bilinear and exponential 
tension-softening curves agree better with the 
experimental results. The result obtained with 
the linear tension-softening curve agrees 
closely with the result by Prasad and 
Krishnamoorthy [4] which is also obtained 
with the linear tension-softening curve. The 
bilinear and exponential tension-softening 
curves have steeper initial slopes than that of 
the linear curve. A steeper initial slope means 
that the material is initially more brittle. As a 
result, the results obtained with the bilinear and 
exponential tension-softening curves are 
expected to have lower peak loads than those 



วิศวกรรมสาร ฉบับวิจัยและพัฒนา ปที่ 17 ฉบับที่ 4 พ.ศ. 2549………….RESEARCH AND DEVELOPMENT JOURNAL VOLUME 17 NO.4, 2006 

 

 8 

Table 1 Material properties 
 

Problem E   
(GPa) 

ν  
 

tf  
(MPa) 

FG  
(N/m) Softening Curve 

Linear (LS) 
Bilinear (BS) Three-point bending test 20.0 0.20 2.40 113.0 
Exponential (ES) 
Linear (LS) 
Bilinear (BS) 

Four-point single-notched shear 
test 24.8 0.18 2.80 100.0 

Exponential (ES) 
Linear (LS) 
Bilinear (BS) 

Four-point double-notched shear 
test 27.0 0.10 2.00 100.0 

Exponential (ES) 

obtained with the linear tension-softening 
curve. 

 
4.2 Four-Point Single-Notched Shear Test 

The second numerical example is the four-
point single-notched shear test. In this study, 
the beam shown in Fig. 5(b) is employed. The 
depth, length and thickness of the beam are 306 
mm, 914 mm and 156 mm, respectively. In this 
problem, the crack mount sliding displacement 
(CMSD) is used as a controlling parameter of 
loading. 

The obtained results are compared with a 
result from FE analysis by Alfaiate et al. [3] 
and experimental results by Arrea [18] as 
shown in Fig. 6(b). Note that Alfaiate et al. [3] 
use the bilinear tension-softening curve in their 
analysis. It is found from the comparison that 
the obtained responses are generally in good 
agreement with the FE results by Alfaiate et al. 
[3]. Nevertheless, the obtained numerical 
results are found to significantly have lower 
peak loads than those of the experimental 
results. In fact, it can be observed that the 
initial slopes of the load-CMSD curves from 
the obtained numerical results and the 
experimental results are quite different. Since 
the initial slope depends on the elastic stiffness 
of the beam, the differences in the initial slopes 
imply that the Young’s modulus used in the 
numerical computations may not really be 
accurate. The obtained crack paths are also 
compared with the FE result by Alfaiate et al. 
[3] and the experimental results by Arrea [18] 

in Fig. 7(a). It can be seen that all crack paths 
obtained by the numerical computations agree 
very well. However, they are slightly different 
from the experimental results. 

 
4.3 Four-Point Double-Notched Shear Test 

The last numerical example is the four-
point double-notched shear test. The geometry 
of the tested beam and the boundary conditions 
are shown in Fig. 5(c). The depth, length, and 
thickness of the beam are 200 mm, 800 mm, 
and 100 mm, respectively. The crack mount 
sliding displacement (CMSD) is used as a 
controlling parameter of loading.  

The obtained results are compared with FE 
and experimental results by Bocca et al. [2] in 
Fig. 6(c). In general, good agreements between 
the obtained results and the FE and 
experimental results can be observed. The 
obtained results with the bilinear and 
exponential softening curves seem to agree 
better with the experimental result. The FE 
result by Bocca et al. [2] which is obtained 
with the linear tension-softening curve is found 
to have a higher peak load than those of the 
experimental result and the proposed result 
with the same type of the tension softening 
curve. Nevertheless, its postpeak response 
agrees well with the experimental result as well 
as the proposed results obtained with the 
bilinear and exponential tension-softening 
curves. In Fig. 7(b), the crack paths are 
presented. All of the crack paths agree very 
well.  
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Fig. 6 Responses of the numerical examples 
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Fig. 7 Crack paths 

5. Conclusions 
In this paper, modeling of cohesive cracks 

in the Element-Free Galerkin (EFG) method is 
presented. Interface elements are used in the 
model to represent displacement discontinuities 
due to cracks. A curved crack is simply 
represented by connected straight-line interface 
elements. To simulate crack growth, the 
existing crack is lengthened in each 
incremental step by extending the crack line 
using an interface element. The interface 
elements permit the constitutive law of 
cohesive cracks to be considered directly and 
efficiently. The relative displacement 
increments between the two opposite surfaces 
of the interface elements are the crack 
displacement increments. The crack 

displacement increments are written in terms of 
the nodal displacement increments by using the 
EFG shape functions that employ the visibility 
criterion. To allow accurate analysis to be 
performed without the need of iteration, the 
stiffness equation of the domain is constructed 
by directly including a term related to the 
energy dissipation along the interface elements 
in the EFG weak form of the global system 
equation. If this energy term is not directly 
included in the derivation, the cohesive stresses 
on the crack surfaces will have to be treated as 
applied surface tractions. Subsequently, their 
magnitudes will have to be determined via 
iterations. The interface elements and the EFG 
method allow a crack to propagate without any 
constraint on its direction and without 
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remeshing. The analysis of example problems 
taken from the literature clearly shows the 
validity and efficiency of the proposed method. 
The results of the proposed method are found 
to be in good agreement with the FE and 
experimental results from the literature.  
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