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Abstract

This paper presents an ant colony
optimization algorithm for sizing optimization
of structures. Recently, a heuristic optimization
technique called ant colony optimization
(ACO) has been developed for combinatorial
optimization problems. The main concept of
the technique is inspired by the way ant
colonies function in the real world. An ant
colony can collectively perform complicated
tasks even with a low intelligence level of each
individual ant. This complex colony-level
behavior is obtained via interactions among

individual ants which are achieved by using a
chemical The
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ACO technique has been used in a few types of
optimization problem with satisfactory results.
In this study, the technique is applied to solve
sizing optimization problems of structures. To
this end, the structural optimization problems
being considered have to be formulated in a
suitable way that fits the ACO technique. Since
the basic concept of the ACO is simple, the
proposed ACO algorithm can be easily
implemented. The validity of the algorithm in
solving structural sizing optimization problems
is investigated by solving sizing optimization
problems of truss structures. The obtained
results positively show the effectiveness of the
proposed ACO algorithm in solving structural
sizing optimization problems.

cuhetance called nheromone
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1. Introduction
Ant colonies can collectively perform

complicated tasks even with a low intelligence

level of each individual ant. One of the
examples is the foraging behavior of ants. An
ant colony is capable of finding the shortest
path between its nest and a food source without

using visual clues. This capability of the colony
is achieved by indirect communication between
ants via the use of pheromone. It is well-known
that ants lay and follow pheromone trails.
These simple trail-laying and trail-following
mechanisms enable the colony to seek out the
shortest paths.

Consider a colony of ants shown in Fig.1. In
the figure, it is assumed that there are two
available paths of different distances between
the colony’s nest and a food source from which
ants may select. At the beginning, the ants will
select the two paths with equal probability,

meaning that there will be approximately half
of the ants selecting cach path. Since the

shorter path requires less time to complete, for
the same amount of time, the ants on the
shorter path will be able to complete more
rounds. As a result, the quantity of pheromone
on the shorter path grows faster than on the
longer one. Due to the shorter path’s higher
pheromone level, more ants will be
probabilistically attracted to the shorter path
and lay even more pheromone on this path.
Finally, the levels of pheromone on the two
paths will be so different that virtually all ants
will select the shorter one.

It is important to note that pheromone trails
established by ants do not last forever but
rather they evaporate. This pheromone
evaporation is also an important mechanism
since it avoids too rapid a convergence towards
a sub-optimal path. In other words, it allows a
very good path that has not been discovered by
ants until after a certain number of trips to
overtake those moderately good paths that are
discovered earlier. The three aforementioned
mechanisms, i.e. pheromone-trail laying,
pheromone-trail following and pheromone
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Fig. 1 (A) At the beginning, ants select the longer and shorter paths with equal probability.
(B) Pheromone is deposited faster on the shorter path. More ants select the shorter path.

(C) Finally, all ants select the shorter path.

evaporation, can be artificially simulated by
computers and constitute the Ant Colony
Optimization (ACO) technique. -

Recently, the ACO technique is becoming
popular among researchers in the field of
heuristic optimization (see, for example, a
survey in [1]). The problem that seems to fit
the technique naturally is the traveling
salesman problem [2]. Nevertheless, the
technique has been applied to various types of
problem, such as the quadratic assignment
problem [3], the just-in-time sequencing
problem [4], optimization problems for
designing and scheduling of batch plants [5],
etc. The application of the technique in the
field of civil engineering is still rare (see, for
example, [6]).

The ACO technique has been developed for
combinatorial optimization problems. Most of
practical  structural design  optimization
problems consider only sizing optimization,
which is basically combinatorial optimization.
In this study, the ACO technique is applied to
solve structural sizing optimization problems.

To this end, the structural sizing optimization
problems under consideration have to be
prepared in a suitable way that fits the ACO
technique. After that, a simple ACO algorithm
can be implemented. To show the validity and
efficiency of the proposed algorithm, sizing
optimization problems of two truss structures
are solved. For comparison, one of the
problems is also solved by a genetic algorithm.
The results obtained by the proposed algorithm
are also compared with those from the
literature. Finally, the performance of the
proposed algorithm is discussed.

2. Ant Colony Optimization for Sizing
Optimization of Structures
To understand the concept of the ACO for
sizing optimization of structures, consider Fig,

" 2 that shows a sizing optimization problem of a

truss structure with three members. Since the
truss has three members, there are three design
variables, i.e. 41, A2 and 43, which represent
the areas of the three members. Assume that
the section of each member is to be selected
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Fig. 2 An ACO approach for sizing optimization of a three-bar truss.

from four available choices. As a result, the
optimization becomes a problem of finding the
combination of these sections that results in an
optimal structure. The problem 1is a
combinatorial optimization problem and can be
thought of as a foraging problem of an ant
colony, As shown in Fig. 2, an artificial nest
and a food source can be established. In the
figure, node 1 represents the nest and node 4
represents the food source. The ants will have
to move from node 1 to node 4 by passing all
other nodes in between. Between each pair of
nodes, there are four available sub-paths,
representing four different available sections
for each design variable. The partial walk of
the ants between nodes 1 and 2 represents the
selection for the design variable 4;, and the
partial walks between the subsequent nodes are
for the subsequent design variables.

For the ACO to work, artificial ants will
have to make many artificial tours and they
must obey the following simple rules; i.e.

1) Ants will probabilistically select paths with
higher levels of pheromone. In other words,
paths with higher pheromone level will
have higher chance to be selected by ants.

2) The amount of pheromone laid by an ant on
the path which it has walked depends upon
the quality of the path. If the path is of high
quality, the ant that has walked the path
will lay a large amount of pheromone on

the path. For structural sizing optimization,
a path is considered high quality if it
represents an admissible structure with low
weight.
These two rules, though simple, are enough for
the colony to perform its task.
The first rule can be implemented by setting
the probability of a sub-path being selected by
an ant in the tour f as

ey

Here, p(A4[,t) denotes the aforementioned

probability where A° represents the @ sub-

path for the design variable i. In addition, S;
denotes the total number of available sub-paths

for the design variable i. Finally, 7(4/,?)
denotes the amount of pheromone of the sub-
path A7 in the tour ¢.

As an example, consider a partial walk

- between nodes 1 and 2 in the example in Fig. 2.

The partial walk between nodes 1 and 2 is the
selection for the design variable 4;. Between
nodes 1 and 2, there are four available sub-
paths; i.e. S)=4. The probability of the sub-path
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SECT3 ( 4] ) being selected by an ant, for
example, can be written as

p(d3 1) = A0 @)

ZT(AIk ’t)

For the first tour where there is still no
pheromone on any sub-paths, a random
selection can be used.

To be able to implement the second rule of
ants, it is necessary to define a parameter that
represents the quality of the path. Since each
path actually represents a design, the objective
function value and the degree of constraint
violation of each design must be considered in
order to evaluate the quality of the design or
path. For sizing optimization of structures, the
following form of a quality function Q may be
employed:

O(A) =Q,(A) - AE(A). ()
Here, A denotes a design vector defined as
A=[4,4,,.,4] 6]

where 4; represents the /™ design variable and »
denotes the number of design wvariables.
Moreover, Q,(A) is a function representing the
basic quality value calculated from the
objective function while E(A) is a non-
negative function representing the degree of
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(A) Some designs selected by ants are admissible.
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constraint violation. In addition, A denotes a
user-defined positive constant.

In order to have further control over the
optimization, the quality function obtained in
(3) will not be used directly. Rather, it will be
scaled into a certain range. In this study, the
bilinear scaling techniques shown in Fig. 3 will
be used. In the figure, the scaling scheme A is
used when, in the tour under consideration,
there are some admissible designs selected by
the ants and the scaling scheme B is used when
all designs selected by the ants are inadmissible.
The subscripts min, max and avg denote the
minimum, maximum and average values,
respectively. In addition, C and Z are user-
defined constants. The scaled quality function
O™ will be used in the subsequence calculation
instead of Q.

By employing the general procedure for
ACO algorithms (see, for example, [7]), the
pheromone-trail-laying algorithm can be
constructed. To this end, denote the design
vector A selected by the ant An¢, during the

tour ¢ as A(4nt,,¢) and define a function Az
as

[0 [A(4nt,,0]/n
:if Ant; has
traversed A/ (5)
during the tour ¢

AT(A}, Ant b)) =5

0 :otherwise.

.
E E

B E

min avg max

(B) All designs selected by ants are inadmissible.

Fig. 3 Bilinear scaling for the quality function.
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Note again that » denotes the number of the
design variables.
Let

V()= ZQ“[A(AM; 0] (6)

where M denotes the number of the ants. It can
be seen that F(7) is actually the summation of
the value of A7 in the tour ¢.

Next, let
M
ZAI(A,.",Antj,r)
AT(A%, 1) =L . 7
(47,1) 70 (N
Finally, define the pheromone-updating
scheme as
t(Af,1+1) = AT(4] 1) fe]
(4l t+ 1) =(1—-p)r(4,0)+ pAT(4f 1) t22
()
s

where p denotes the evaporation factor. This

factor is used to control the evaporation rate.
Actually, it can be seen from (8) that, in the
first tour, there is no pheromone evaporation.
From the second tour, the evaporation is
implemented by the term (1— p)z(4f,t) while
the pheromone laying is implemented by the
term pAT(4S,t) . It can be seen from (5)-(8)
that the sum of pheromone values of all sub-
paths remains equal to 1 in all tours,

In the calculation, identification of the best
obtained design of all tours is naturally
required. For a design to be acceptable, it must
be at least admissible. Therefore, the quality
function defined in (3) cannot directly be used
for the purpose of finding the best admissible
design and a new rule of comparison must be
employed. In the algorithm, finding the best
admissible design is actually equivalent to
finding the ant which selects that design. To
find the best ant from all available ants in the
calculation, the following rule of comparison is

12
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defined; i.e. Ant;, is considered to be better
than Anz; when

1) Ant, selects an admissible design while

Ant; selects an inadmissible design, or
2) Both Ant; and Ant; select admissible

designs but Ant;’s design has a larger 0,

or
3) Both Ant, and Ant; select inadmissible

designs but Ant, ’s design has a smaller E.

Finally, the complete algoritbm can be
summarized as

Tour=1;
All_Ants Select Paths(Random);
Calculate_Paths Quality( ),
Find_The Best Ant_of The Tour();
Update_The Best Ant _of All Tours();
All_Ants _Lay Pheromone( ),
For Tour=2to N
{
All_Ants Select Paths(Pheromone Based);
Calculate Paths Quality( );
Find The Best Ant of The Tour();
Update_The Best Ant of All Tours();
Pheromone_Evaporation( );
All Ants Lay Pheromone( );

/

3. Results

To investigate the validity and efficiency of
the proposed ACO algorithm, two numerical
examples are solved. They are sizing
optimization problems of two truss structures,
i.e. a six-bar truss and a ten-bar truss. To be
able to clearly see the advantages of the
proposed algorithm, the obtained results of the
six-bar truss problem are compared with those
obtained by a genetic algorithm (GA). A
genetic algorithm is selected for comparison
because it 1s well accepted that genetic

. algorithms are currently one of the best

optimization techniques available. The
comparison of the results from these two
techniques includes not only the quality but
also the uniformity of the results. In this way,
the actual performance of the proposed
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Fig. 4 Six-bar truss.

Table 1 Design parameters for the six-bar truss
problem.

Item Value
Modulus of elasticity 107 psi
Weight density 0.1 Ibfin.?
Allowable tensile stress 25,000 psi
Allowable compressive stress 25,000 psi
Maximum y-displacement 2 in.

algorithm can really be discussed. Finally, the
results are also compared with those from the
literature.
3.1 Six-Bar Truss

The first problem to be considered is the six-
bar truss shown in Fig. 4. Since only sizing
optimization is considered, design variables are
six sectional areas of the six members of the
truss. The cross-sectional area of each member
is taken from the following 32 discrete values,
ie. 1.62, 1.80, 2.38, 2.62, 2.88, 3.09, 3.13, 3.38,
3.63, 3.84, 3.87, 4.18, 4.49, 4.80, 4.97, 5.12,
5.74, 7.22, 7.97, 11.5, 13.5, 13.9, 14.2, 15.5,
16.0, 18.8, 19.9, 22.0, 22.9, 26.5, 30.0, and
33.5 in.> There are two types of constraint in
this problem, ie. stress and displacement
constraints. Design parameters used in the
problem are shown in Table 1. Since the
allowable stress values for tension and
compression are the same, it implies that
buckling behavior is not considered. Note that,
in the calculation of stress and displacement
responses, only the two point loads shown in
Fig. 4 are considered as the applied forces
whereas the weight of the structure is neglected.

RESEARCH AND DEVELOPMENT JOURNAL VOLUME 14 NO.1, 2003

Table 2 ACO parameters for the six-bar truss
problem.

Item Value
Number of ants 100 and 300
Number of tours 100

P 0.3

A 0.0002

c 2

Z 5

Table 3 GA parameters for the six-bar truss
problem,

Item Value
Population size 100 and 300 .
Number of generations 100

Crossover probability 0.85

Mutation probability 0.05

A 0.0002

C 2

Z 3

In this problem, the basic quality function
and constraint-violation function are defined as

1
Ty RO 9
Qo(A) 1+ Weight 8)
NE -
E(A)= ZmaX(M,OJ
i= g,
' (9b)
NN
+

Zmax(%—av"« ,o}

i=l

Here, the unit of weight used is pound. In
addition, o and v represents the stress and y-
displacement, respectively. The subscript a
denotes the allowable values. Moreover, NE
and NN represent the number of elements and
the number of nodes, respectively.

Table 2 shows ACO parameters used in this
problem. For comparison, two sets of

. calculations with different numbers of ants are

13

performed. For each set, 200 runs are carried
out. The reason why many runs are required is
that the ACO technique includes probabilistic
processes. As a result, even with the same
problem and the same calculation parameters,
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Table 4 Comparison of the results obtained by the proposed algorithm and the genetic

algorithm for the six-bar truss problem.

Method Minimum Maximum Average Standard
weight of the  weight (Ib) weight (1b) deviation of
solutions of weights (lb)
200 runs (Ib)

Proposed Number of ants

100 4962.1 5199.1 4992 4 36.1

300 4962.1 5003.9 4964.8 6.60
GA Population size

100 4962.1 5298.3 5031.1 68.4

300 4962.1 5028.1 4971.9 15,1

different results may be obtained from different
runs. Many test runs will allow the efficiency
of the technique, in terms of the result quality
as well as the result uniformity, to be discussed.

As mentioned earlier, the problem is also
solved by using a genetic algorithm. Here, a
standard genetic algorithm will be used. The
quality function for the ACO algorithm defined
in (3), with its components defined in (9), is
used as the fitness function in the genetic
algorithm. In addition, the bilinear scaling
techniques shown in Fig. 3 are also used for
fitness scaling in the genetic algorithm (for
more information related to genetic algorithms,
see, for example, [8-10]). Similar to the ACO
calculation, two sets of calculations with
different population sizes are performed in the
GA calculation and, for each set, 200 runs are
carried out. Note that genetic algorithms also
contain probabilistic processes, and to
investigate the efficiency of genetic algorithms,
many runs are required. Table 3 shows GA
parameters used in this problem.

Define the best design as an admissible
design  with the  minimum  weight.
Consequently, the solution of a run is defined
as the best design ever found in that run even
though it may not be the best design of the last
tour (ACO) or the last generation (GA) of the
run. For each set of calculations, after the 200
solutions of its 200 runs are obtained, the
minimum, maximum, average and standard
deviation values of the weights of the 200
solutions are found. Among the 200 solutions,
the solution with the minimum weight is

14

naturally the best solution for that particular set
of calculations.

Table 4 shows the comparison of the results
obtained by the proposed algorithm and the
genetic algorithm. From the results of the ACO
algorithm, it can be seen that the best solutions
obtained with 100 and 300 ants are the same.
Nevertheless, the average and worst solutions
are improved rather significantly when the
number of ants is increased from 100 to 300. In
addition, the standard deviation of the weights
of the results also decreases drastically when
300 ants are used. This indicates that the
quality of the results obtained with more ants is
more consistent. The genetic algorithm also
gives the same best solution regardless of the
population size. Moreover, increasing the
population size also increases the quality of the
average and worst solutions. Nonetheless, the
average and worst solutions from the genetic
algorithm are inferior to those from the ACO
algorithm (see Table 4). Moreover, the
standard deviations of the weights of the results
of the genetic algorithm are larger than those of
the ACO algorithm. This clearly shows that the
ACO algorithm yields results that are more
uniform than the GA results.

The best result obtained from the proposed
ACO algorithm is compared with results
reported in the literature in Table 5. The results

. from the literature are obtained by genetic

algorithms. It can be seen that these results are
exactly the same. Table 6 shows the
constrained displacements and stresses of this
best solution. It can be clearly seen that the
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Table 5 Comparison of the results with the
literature for the six-bar truss problem.

Size of member (in.%)
Genetic Algorithms

Membar Proposed Rajan [8] Nanakorn and
Meesomklin [9]

| 30.0 30.0 300

2 19.9 19.9 19.9

3 15.5 15.5 15.5

4 7.22 7.22 7.22

5 22.0 22.0 220

6 22.0 22.0 22.0

Total

weight  4962.1 4962.1 4962.1

(1b)

Table 6 Constrained displacements and
stresses of the best solution (with the total
weight of 4962.1 Ib)

Node/Element  y-displacement  Stress (ksi)
(in.)

1 0 6.67

2 -1.77 -10.1

3 -2.00 -6.45

4 0 19.6

5 -0.701 -6.43

6 - 6.43
critical constraint is the y-displacement
constraint,

3.2 Ten-Bar Truss

The next problem to be considered is the
ten-bar truss shown in Fig. 5. This problem is
one of the benchmark problems used to test
structural optimization methods. Also in this

problem, only sizing optimization is considered.

Therefore, design variables are ten sectional
areas. The cross-sectional areas of members 1,
3,4, 7, 8 and 9 are taken from the following 32
discrete values, i.e. 3.13, 3.38, 3.47, 3.55, 3.63,
3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59, 4.80,
457, 5,12, 5874, 7.2, 197, 11.5. 145, 130
14.2, 15.5, 16.0, 16.9, 18.8, 19.9, 22.0, 22.9,
26.5, 30.0, and 33.5 in.%2 For the rest of the
members, the cross-sectional areas are taken
from the following 32 discrete values, i.e. 1.62,
1.80, 199, 2.13, 2.38, 2.62, 2.63, 2.88, 2.4,
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Fig. 5 Ten-bar truss.

Table 7 Design parameters for the ten-bar
truss problem.

Item Value
Modulus of elasticity 107 psi
Weight density 0.1 Ib/in.?
Allowable tensile stress 25,000 psi
Allowable compressive stress 25,000 psi
Maximum x- and y-displacements 2 in.

Table 8 ACO parameters for the ten-bar truss
problem.

Item Value
Number of ants 500
Number of tours 200

P 0.3

A 0.0002
c 2

VA 5

3.09, 3.13, 3.38, 3.47, 3.55, 3.63, 3.84, 3.87,
3.88, 4.18, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12,
574,722,797, 11.5, 13.5, 13.9, and 14.2 in.?
The constraints considered in this problem are
also stress and displacement constraints. The
design parameters and ACO parameters are
shown in Tables 7 and 8. Similar to the
previous problem, in the calculation of stress
and displacement responses, only the two point
loads shown in Fig. 5 are considered as the
applied forces whereas the weight of the

. structure is neglected. The components of the

15

quality function shown in (9) are also used for
this problem. However, in this problem, the
constraint on the horizontal displacement has to
be added to (9b).
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Table 9 Comparison of the results with the literature for the ten-bar truss problem.

Size of member (in.?)

Genetic Algorithms

Merihér Proposed  Nanakorn and Rajeev and Campetal.  Galante
Meesomklin [9] Krishnamoorthy [10] [11] [12]

1 30.0 33.5 335 30.0 335

2 1.80 1.62 1.62 1.62 1.62

3 26.5 229 22.0 26.5 22.0

4 14.2 1553 15.5 13:5 14.2

3 1.62 1.62 1.62 1.62 1.62

6 1.62 1.62 1.62 1.62 1.62

7 11.5 7.22 14.2 7.22 797

8 19.9 22.9 19.9 22.9 22.9

9 22.0 22.0 19.9 22.0 22.0

10 1.80 1.62 2.62 1.62 1.62

Total weight (Ib)  5537.0 5499.3 5613.8 5556.9 5458.3

Table 10 Constrained displacements of the results for the ten-bar truss problem,

Displacement (in.)

Node Proposed Nanakorn and Rajeev and Camp etal. [11] Galante [12]
Meesomklin [9] Krishnamoorthy
[10]

x-disp y-disp x-disp y-disp x-disp y-disp x-disp y-disp x-disp y-disp
1 0 0 0 0 0 0 0 0 0 0
2 -0.261 -1.07 -0.277 -1,35 -0.319 -0.998 -0.242 -1.34 -0.292 -1.29
3 -0.504 -2.00 -0.506 -2.00 -0.538 -2.00 -0.504 -2.03 -0.541 -2.01
4 0 0 0 0 0 0 0 0 0 0
5 0.250 -0.803 0.241 -0.792 0.221 -0.759 0.267 -0.810 0.238 -0.778
6 0.334 -1.91 0.267- -1.97 0.344 -1.88 0.305 -2.00 0.277 -1.97

Table 11 Constrained stresses of the results for the ten-bar truss problem.

Stress (ksi)
Element Proposed Nanakorn and Rajeev and Campetal. [11] Galante [12)
Meesomklin [9] Krishnamoorthy
[10]
1 6.94 6.68 6.13 7.40 6.61
2 233 0.740 3.43 1.07 1.08
3 -7.24 -7.69 -8.85 -6.71 -8.11
4 -6.75 -6.37 -6.09 -7.28 -6.92
5 7.56 155 6.65 14.7 14.4
6 2.59 0.740 343 1.07 1.08
7 11.3 14.9 9.44 153 13.9
8 -7.68 -7.65 -7.48 -7.54 -7.50
9 6.16 6.35 6.71 6.32 6.32
10 -3.29 -1.05 -3.00 -1.52 -1.52

Similar to the previous problem, 200 runs
are carried out with the proposed ACO
algorithm. The best result of the 200 runs is
compared with results reported in the literature
in Table 9. The results from the literature are

16

obtained by genetic algorithms. It can be seen
that the quality of the result obtained from the
proposed algorithm is comparable with that of
the results from the literature although some
results from the literature are better. However,
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if the results from the literature are carefully
investigated, it is found that some of these
results actually violate the given displacement
constraint. Tables 10 and 11 show the
displacements and stresses of the results in
Table 9. As in the previous problem, the
critical constraint is the y-displacement
constraint. In this study, the constraints are
strictly enforced and only admissible results
can be considered as solutions. If those results
in Table 9 that are inadmissible are excluded
from the comparison, the quality of the result
from the proposed algorithm and the quality of
the results from the literature become even
more indistinguishable. In addition, it must be
noted that since the ACO algorithm used in this
study is a simple one, even better results may
be expected when a more sophisticated ACO
algorithm is employed.

4. Conclusions

In this study, an algorithm based on the
ACO for sizing optimization of structures is
proposed. The ACO mimics the way ant
colonies function in the real world. An ant
colony is capable of finding the shortest path
between its nest and a food source by the use of
pheromone. The task of finding the shortest
path is achieved by using three basic
mechanisms, i.e. pheromone-trail laying,
pheromone-trail following and pheromone
evaporation. These three mechanisms comprise
the ACO and can be simulated by computers.
In this study, sizing optimization problems of
structures are first formulated in a suitable way
that fits the ACO approach. To this end, the
optimization problem under consideration is
transformed into a foraging problem of an ant
colony. Each design solution is interpreted as a
route that ants can use to walk from the
colony’s nest to a food source. A better design
is made to be equivalent to a shorter route. The
proposed algorithm is used to solve sizing

optimization problems of truss structures. The

comparison with the results obtained by a
standard genetic algorithm shows that, in terms
of the result quality, the performance of the
ACO and the performance of the genetic
algorithm are comparable. Nevertheless, in
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terms of the result uniformity, the ACO
evidently outperforms the genetic algorithm. In
addition, it is also found that the results from
the proposed ACO algorithm are as good as the
best results found in the literature. It is
expected that better performance of the
algorithm can be achieved if schemes that are
more sophisticated are included in the
algorithm.
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