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Abstract

This paper presents the numerical
simulation of concrete beams subjected to bi-
axial loading by performing nonlinear finite
element analysis which adopts isotropic three-
dimensional brick elements. For the constitutive
model of reinforced concrete under complicated
state of stress, the present analysis utilizes the
proposed model by Hauke and Maekawa [2]
which accounts for the anisotropy of tension
softening and stiffening of concrete cracks. The
numerical results are compared with the

tha fmin oanla anoawad
experimental results of the true-scale concrete

beams under bi-axial loading in terms of load-
deflection relationship. In the present test, there
are four rectangular beams of 150 X 350 mm.
cross-section and 1600 mm. lengths, and two
parameters, i.e. the stirrup steel and the ratio of
two lateral loads are considered. The
comparisons indicate that the proposed model
by Hauke and Maekawa [2] can reasonably
simulate the nonlinear behavior of all four
tested beams. Hence, this model could be a
numerical tool to study the nonlinear behavior
of concrete beams under complicated loads
associated with the true-scale test which is more
expensive and time-consuming.

1. Introduction

At present, due to advanced technology
in civil engineering, the shape of concrete
structure becomes complex, and it may be
subjected to the complicated loads, such as
unexpected loads or accidental loads. For the
reinforced concrete beam, the direction of loads
may be arbitrary with respect to principal axes
of beam cross section. This type of loading
condition is hereinafter called bi-axial loading.

With the advent of digital computer and
nonlinear finite element analysis,
understanding of behavior reinforced concrete
beam up to failure state can be achieved. This
study attempts to numerically simulate the test
results of reinforced concrete beams under bi-
axial loading. The three-dimensional nonlinear
finite element analysis is performed by using
the program developed by Concrete
Laboratory, The University of Tokyo, called as
COM3 [1].

In the finite element mesh of beams,
isotropic 20-node brick element is adopted. By
using the smeared crack model proposed by
Hauke and Maekawa [2], an anisotropy
behavior related to arbitrary crack direction in
the three- dimensional space can be taken into
account. In order to trace nonlinear behavior of
the beams, numerical simulation is performed
incrementally. Iterative numerical procedure is
used for each computation step.

2. Nonlinear Finite Element Analysis

2.1 Numerical Procedure

Following the normal procedure for
nonlinear finite element formulation [3], the
incremental stiffness equation is expressed by

[K{]{u"}: {R:}_{F;} (1)
where

[K,] is tangent stiffness matrix

{#}  isnodal displacement vector

{R} isexternal force vector

is internal force vector
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In order to establish nonlinear load-
displacement curve, numerical simulation is
performed incrementally and unbalanced forces
correction is performed by iterative procedure.
Typically, the numerical procedure is
performed as follows

1. Set up incremental stiffness equation
in the global system based on the

current geometry and matenal
properties.
2. Solve the incremental stiffness

equation Eq. (2), for load increment
and update to the current deformed
structure.

(&I e} = (&}, -{F}; = {ar}; )
where

[K,]' is incremental or tangent stiffness

matrix at iteration m and
incremental load step ».

is nodal displacement vector at

iteration m and incremental load
step n.
{AR}" is unbalanced forced vector at

iteration m and incremental load
step n.
{R}n is external
incremental load step ».
{F}' is internal force vector at iteration

force vector at

m and incremental load step #.
m and n are iteration and incremental
load step, respectively.

3. Compute strains from the updated
displacement.

4. Using material models to compute
stresses and tangent stiffness.

5. Form internal
stiffness

force and tangent
matrix. Comparing the
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internal force with the external force
which is assumed constant during
iteration step, the unbalanced forces
are determined.

6. Using the unbalanced forces and the
current tangent stiffness matrix, the
incremental equation is resolved.

The above steps (1) to (6) are repeated
until the wunbalanced forces are within
allowable tolerances. For the next incremental
load step, the steps (1) to (6) are restarted until
failure occurs.

2.2 Modeling of Reinforced Concrete

In this study, the reinforced concrete
behavior is treated macroscopically as a
continuum in a finite region. In this case, the
so-called smeared crack modeling which
macroscopically deals with cracked concrete
and reinforcing bar is introduced by expressing
the average stress and strain relationships. The
relationships can be described by combining
the constitutive laws for concrete and
reinforcing bar [1]. With various kinds of the
action of stresses, constitutive law of concrete
1s composed of 1) concrete under tension, 2)
concrete under compression and 3) shear
transfer along the crack plane. Regarding the
constitutive law for reinforcement, models
under uni-axial loading in tension and
compression are introduced. In addition, the
anisotropic cracking model proposed by Hauke
and Maekawa [2] is used in the constitutive law
of three-dimensional cracked concrete.

(a) Concrete under tension

The model representing concrete
subjected to tensile force is shown in Fig.1.
From the figure, the softening is expressed by
Eq.(3) in which the softening parameter ¢
indicates the effect of bond between
reinforcement and concrete surrounded.

= f[i—} 3)

!
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Eq. (3) with ¢=0.4

Mean tensile stress , O

Eq. (3) with ¢=2.0

&y
Mean tensile strain, &,

Fig.1 Tension model for concrete [1]

where, o, and ¢, are tensile stress and strain

respectively. f, is tensile strength and ¢, is

cracking strain. The value of ¢ depends on the
crack location and direction relative to
reinforcement  provided, regardless  of
reinforcement ratio. In other word, there are
two extreme cases defining ¢ value as follow;
(1) the crack occurs inside bond effective zone
(RC zone-reinforced concrete zone) and direct
normal to the reinforcing bar, and (2) the crack
occurs outside bond effective zone (PL zone-
plain concrete zone) or direct parallel to the
reinforcing bar [4]. For the first case, stress can
be transferred across the crack with use of
bonding between concrete and reinforcing bar.
For the other case, stress is transferred across
the crack by aggregate interlocking, without
bonding effect from reinforcement. Hence,
tensile stress reduces gradually for the first case
and drastically for the other case in which the ¢
value is respectively defined as 0.4 and 2.0

(Fig.1).

(b) Concrete under compression

Based on the concept of continuum
fracturing and plasticity, the relationship
between compressive stress and compressive
strain in concrete can be obtained, as shown in
Eq.(4) and Fig.2.

o' = EUK(SC . gp'] )
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K =exp| -0.73 —6“—, 1-exp| —1.25 8‘,
&€ &

co co

' ! 2 ,
g, =& —&, [—OJ 1-expy—0.35 8‘,
7 &

co

!

o',e, are compressive stress and strain,

respectively
E, is initial tangential elastic constant

K is fracture parameter

!
¢, is plastic compressive strain

t
£, is uniaxial compressive strength
! ’

€,, is compressive strain corresponding to f,

£,

/

I

£ c

co

Fig.2 Concrete under compression

(c) Shear transfer along the crack plane
The transfer of shear along a concrete
crack plane is expressed by Eq.(5) and Fig.3.

=0y
where

(%)
G+

1/G, +1/G,

T

B
G =3 =
st }/ f:¢r1+ﬁ2

B= 21 (2 for reinforced concrete)

t

N1/3
Ja = 18( 2 j (unit: kgf./cm®)

7,y are mean shear stress and strain
G is shear secant modulus
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G, 1s shear modulus of uncracked concrete
G,,is shear modulus due to cracks
&, 1s tensile strain normal to crack plane

/.18 intrinsic shear strength

Normalized shear stress

Tensile strain (5000)

Ny

Fig.3 Shear model for concrete

(d) Reinforcement

With cracks, the stresses acting on a bar
take the maximum values at crack planes.
Hence, the mean yield strength is lower than
that of bare bar. Below elastic limit, stress-
strain relationship of reinforcement is set equal
to that for the bare bars. The model for
reinforcement is shown in Fig4. In case of
compressive  loading, the  stress-strain
relationship of bare bar is adopted.

A

SN

Average stress

Z is average yield strength

v

Average strain

Fig.4 Reinforcement model

(e) Anisotropic cracking

Regardless of  arrangement of
reinforcement, however, direction of crack in
concrete volume is generated (n-direction).
Hence, neither parallel (2-direction) nor normal
(1-direction) of the direction of crack relative
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to reinforcement, concrete must shows mixed
performance between the two extreme cases.
The behavior of cracking regardless of
reinforcement brings concrete to anisotropic
softening. Fig.5 shows the treatment of mixed
formulation of post-cracking behavior [2].

oilf;

Softening
= ¢(2)=2.0
@:L» . olfs _ _
AL z Mixed behavior
(2) = c(n)or 0(9)
Ha B g
Bar M b

“' i

o)
—> v Softening
o Pge
&

Fig.5 Anisotropy of tension softening [2]

3. Test of Bi-Axial Loading

Fig.6 shows the test of reinforced
concrete beam subjected to bi-axial Ioading [4].
Rather than using the multi-hydraulic jacks,
two lateral loads are applied to the beam
specimen by tilting the beam at a certain angle
(B). Since the load from one hydraulic jack
applied in vertical direction does not coincide
with the principal axes (x,y) of the beam cross-
section, two lateral loads can be simultaneously
applied to the beam. As shown in Fig. 6(a), the
applied vertical load Vi which passes through
shear center G is decomposed into two lateral
loads acting in x and y directions, i.e., ¥, and K
respectively. Hence, ratio of the loads inx and
y directions can be changed in accordance with
the tilt angle of the beam (fB) between the
principal axes and line of the apply load, Vj.
The beam specimen is simply supported and
subjected to a concentrated load at midspan. In
order to achieve such loading scheme, one
loading stub at midspan and two support stubs
at ends are provided as can be seen in Fig. 6
(b).

There are four reinforced concrete beam
specimens in bi-axial loading test performed by
the authors [5]. In Fig.7 and Table 1, all
specimens have the same dimension, i.e.
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Loading stub

. . 3
X 8 x
H
G + Jé G
Tilted specimen
(a) Two loads acting in principal x and y axes (b) Test specimen tilted at 20 degree

Fig. 6 Bi-axial loading test with one hydraulic jack providing load in vertical direction

Table 1 General details of specimens

. Longitudinal Shear
; . Tilt Shear Concrete | . .
Specimen | Section anele span Beam span shrengih reinforcement: [reinforcement:
& P yield strength | yield strength
By x By B a L f
(mmxmm)| (Degree)| (mm) (mm.) (MPa) (MPa) (MPa)
B20
20
B20W
e 150x350 800 1600 28 DB25: 440 RB6: 370
45
B45W
RB9@100 mm. RB6@100 mm.
(Stronger span) ﬂ (Weaker span) R
|
A S
1600 mm. ﬁ
5
2300 mm.

50

B20 B20W - B45
Longitudinal steel: DB25
Stirrup steel: RB6

Fig. 7 Dimension of test specimens
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rectangular cross-section of 150 by 350 mm.
and span length of 1600 mm. In the test, the
ratio of the two lateral loads or the tilt angle S
is considered as one parameter. There are two
cases: 1) specimens B20 and B20W for g = 20
degrees, and 2) specimens B45 and B45W for
[ =45 degrees. Another parameter considered
in the test is the stirrup steel. Similarly, there
are two cases: 1) specimens B20 and B45 with
stirrup steel, and 2) specimens B20W and
B45W without stirrup steel.

4. Numerical Results

In order to predict the nonlinear
behavior of the tested beams, three-
dimensional nonlinear finite element analysis
by using isotropic 20-node brick element and
Hauke and Maekawa’s constitutive model is
performed. Due to the symmetrical condition at
the midspan of the beam, only a half span of
the beam is analyzed. In modeling, the beam is
discretized into 254 brick elements and 1,513
nodes. Fig.8 shows the finite element mesh of
the beam. In the nonlinear analysis, the
displacement at midspan is incrementally
controlled.

From the results of nonlinear finite
element analysis, Figs. 9 (a), (b), (¢), (d) show
the relationship between vertical shear force
and displacements, i.e. vertical and lateral
displacements, at midspan for the specimens
B20, B20W, B45 and B45W, respectively. In
the range of ascending branch of the curve, fair
agreement between analytical results and
experimental results can be seen for all results
of Fig. 9. However, in the descending branch
after the peak point of the curve, the analytical
results deviate from the experimental ones. The
reason is that since the large amount of
longitudinal reinforcement is provided for
preventing flexural failure of the tested beams,
the experimental results exhibits ductile
behavior, i.e. large deformation in this
descending branch. On the other hand, in the
analysis, due to the lost of numerical stability
after the peak point, the load suddenly drops,
and hence the ductile behavior cannot be well
predicted.

Regarding the ultimate shear capacity
or the peak load of the curves in Fig. 9,

22
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comparisons between those obtained from the
tests and the analytical results are made in
Table 2. It can be seen that the present finite
element analysis gives the calculated ultimate
shear capacity quite close to the tested results,
1.e. the difference is in the range of (-1%)-
(6%).

Load at mid-span

i

Reaction at support
stub

Mid-span

Fig.8 Finite element model of reinforced
concrete beam specimens subjected to bi-
axial shear (Half specimen)

5. Conclusions

In this study, the nonlinear behavior of
four reinforced concrete beams subjected to bi-
axial loading is simulated by performing three-
dimensional finite element analysis. A half of
the beam is modeled by 254 three-dimensional
brick elements with 1,513 nodes. The present
analysis adopts the constitutive models of
concrete and reinforcement in the three-
dimensional cracking state proposed by Hauke
and Maekawa [2]. It can be seen that the
numerical results obtained especially in terms
of ultimate bi-axial shear capacity agree well
with the test results of all four beams.
Therefore, the three-dimensional finite element
analysis with the proposed constitutive model
by Hauke and Maekawa [2] could be used to
predict the ultimate capacity of reinforced
concrete structures subjected to complicated bi-
axial loading. As a result, in the prediction of
ultimate capacity, this type of numerical
approach should be encouraged to be used
associated with the experimental approach.
Hence, the number of test can be significantly
reduced leading to the reduction of time and
cost consumed.
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(c) Specimen B45
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(b) Specimen B20W
g0, L
160 23te1a Vertical
140 4 : ateral
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E., 100 ; rtical
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8601 —_
40 4 —— Experiment
20 ——&— Analysis
0 ¢ T T T )
5 0 5 10 i3 20 25
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(d) Specimen B45W

Fig.9 Relationships between Vertical shear force-displacements at midspan

Table 2 Comparisons of ultimate shear capacity obtained from tests and analyses

, Experiment (kN) Analysis (kN) Exp./Ana.
Specimen

Vi Vu Va

B20 156.5 1575 0.99

B20W 108.0 103.7 1.04
B45 113.4 111.0 1.02

B45W 81.3 76.8 1.06
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