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Abstract

This study employs artificial neural
networks (ANNS) to reduce the amount of time
in structural design optimization processes by
genetic algorithms (GAs). In structural desigi.
optimization, structural analysis is always
necessary since it allows structural constraints
to be monitored and satisfied during the
optimization process. Especially, when a GA is
used as an optimizer, due to the nature of GAs,
many structural analyses must be performed.
As a result, this part of the process inevitably
becomes computationally expensive. To avoid
this drawback, an ANN is applied to replace
the structural analysis process in a GA for
structural design optimization. ANNs are
recommended because, in structural
optimization processes, complete structural
responses are not actually necessary. In fact,
any parameters that provide the degree of
constraint violation will be sufficient. As a
result, the network can always be kept simple
and small. Consequently, reduced
computational time can be expected. In this
study, an efficient design of the network is
proposed. The efficiency of this proposed
network is shown by solving optimization
problems of ten-bar truss and one-bay eight-
story frame structures. Results obtained from
the proposed scheme and the conventional
scheme are compared and discussed.

1. Introduction

Recently, genetic algorithms (GAs) have
been applied to solve various structural
optimization problems. This is because of their
advantages of imposing fewer mathematical
requirements for solving problems and of being

very effective at performing global search.
Moreover, GAs are suitable for problems with
discrete variables and most structural
optimization problems have to deal with
discrete design variables. Although GAs have
several appropriate characteristics for structural
design optimization, one of their best
characteristics unfortunately requires long
computational time when GAs are used to
perform  structural  optimization.  This
characteristic is that a GA performs its search
from many points in search space at the same
time. This will essentially reduce the chance of

being trapped in any local optimum points.

Nevertheless, in structural design optimization,
it also means that analysis of many structures,
each of which is in fact one search point, has to
be performed in each generation. In addition, to
obtain good results, many generations are
generally necessary. Due to this reason, the
whole GA process will take long computational
time. To avoid large computational time due to
many structural analyses in  structural
optimization processes, some researchers
employ artificial neural networks (ANNSs) to
replace these structural analyses [1-3]. The
reason why ANNs are used 1is that
computations of ANNs are, in general, lighter
than those of structural analysis processes.
Rogers [1] proposed guidelines for designing
and training a neural network that simulates a
structural analysis program and consequently
reduces the amount of time taken by an
optimization process to converge to an
optimum design. These guidelines include the
selection of training pairs and determination of
the number of nodes on the hidden layer of a
three-layer neural network. In his work, nodes
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on the input layer represent design variables of
the problem being solved while the outputs of
network are the objective function as well as
constrained variables, such as stresses at
several locations on the structure. By using
ANNs, an improved strategy for GAs in
structural optimization that reduces expensive
computation arising from constraint
evaluations was also proposed by Jingui et al.
[2]. In their work, a three-layer neural network,
in which the inputs of the network are design
variables and the outputs are constrained
variables, is used. Marcelin [3] proposed the
use of backpropagation neural networks in
creating function approximations for use in
design optimization based on GAs. His strategy
also consists of substituting, for finite element
calculations in the optimization process, an
approximate response of a neural network. In
his work, the inputs and outputs of the network
are also design variables and constrained
variables, respectively.

It can be seen from the structures of these
existing networks that they are suitable only for

11 gtmrptizenl amalocie el

small structural analysis problems. In the
current practice, the network inputs are usually
assigned to be design variables while the
outputs are constraints. In structural design, the
numbers of design variables and constraints
are, in most cases, linearly proportional to the
size of the structure being designed.
Consequently, if these networks are applied to
large problems, they themselves become large
systems and will require long computational
time. It is therefore very important that the
employed network must be designed in such a
way that its size does not increase in the same
degree as the size of the finite element analysis.
In addition, if a large and complicated network
is used, not only does computational time of
the network become large due to its size but
also training of the network will become
difficult, if not impossible.

In this study, a GA is used in structural
design optimization and, to reduce the
computational time of the GA, an ANN is also
employed to partially replace the structural
analysis process in the GA. The ANN used in
this study is designed in such a way that better
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training and better network prediction can be
expected. The design of this network includes
forms of inputs and outputs of the network.
Special cares are given to the design of the
network inputs and outputs to make certain that
the size of the obtained network does not
depend too much on the size of structures. The
proposed ANN will be trained by using results
obtained from the finite element analysis. After
the training is completed, the network is then
used to provide constraint evaluations to the
GA instead of the finite element analysis. The
network is updated by retraining from time to
time to keep satisfactory accuracy. Results
obtained from the proposed technique and the
conventional GA are compared and discussed.
The computational time used by both methods
are also compared. All calculations in this
study are performed on a Pentium III 733 MHz
computer.

2. A GA-Based Structural Optimization
Process with an ANN Constraint
Evaluator
A GA starts its search from many points in

search space at the same time. These starting

search points are usually selected at random
and known as the initial population. Through
the consideration of fitness values of these
search points, which are given based on their
merit, and the randomized information
exchange among the points, a new set of search
points with higher merit is created. The process
is categorized into three different operators,

1.e., reproduction, crossover, and mutation

operators [4]. By using these three operators,

the process is repeated until a satisfactory result
is obtained. One cycle of this repeating process
is known as a generation.

When GAs are used in structural design
optimization, fitness of each design solution is
given based on the value of the objective
function and the degree of constraint violation.
Generally, an optimization problem using GAs
can be expressed as

Maximize F(x)= F[f(x)]

X= (X, 000 ) e R
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Fig. 1 A GA with an ANN constraint evaluator

under constraints defined as

g,(x)=0, =L XK (2)
For structural design optimization, X is an n-
dimensional vector called the design vector,
representing n design variables of the structure
being optimized, and f(x) is the objective
function. Here, g,(x)’s represent inequality

constraints that the design must satisfy, such as
stress and displacement limits, and K represents
the number of these constraints. Moreover,
F[f(x)] is the fitness function that is defined
as a figure of merit.

It is not possible to directly utilize GAs to
solve the above problem due to the presence of
constraints. In GAs, constraints are usually
handled by using the concept of penalty

functions, which penalize inadmissible
solutions, i.e.,
Fo(x) = F(x) if xe ¥ @
F'(x)= F(x)—- P(x) otherwise

where F denotes the admissible search space.

Here, P(x) is a penalty function whose value
additin
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F*(x) represents an augmented fitness function
after the penalty. Several forms of penalty
functions have been proposed in the literature
[4-7]. Nevertheless, the basic ideas are the
same; i.e., the value of the penalty function
depends on the degree of constraint violation.
To be able to evaluate P(x), it is therefore

necessary to perform structural analyses of all
design solutions in the GA population. Since an
evolution process needs quite a number of
generations to obtain converged results, many
structural analyses will be required and they
will consume a lot of computational time
especially when huge structures are considered.
To circumvent this problem, an ANN will be
trained to provide the degree of constraint
violation instead of the structural analysis.
Using ANNs can be beneficial because, in
structural optimization processes, complete
structural responses are not necessary.
Actually, any parameters that provide the
degree of constraint violation will be sufficient.
As a result, a simple ANN with simple outputs
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Fig. 2 A network architecture for a structure with n structural design components and M

types of constraint

can be used. Consequently, the time necessary
for the simple ANN to provide the necessary
prediction will be small, and the total
computational time can finally be reduced. In
addition, when the size of the structure under
consideration increases, the size of the matrix
equation used in the structural analysis will
increase in a faster fashion than the size of the
ANN does. This is because although the
structure is larger, the outputs from the ANN
can still be kept simple and small since they are
not representing complete structural responses.
Consequently, when larger problems are
solved, the proposed method, which uses an
ANN, will even perform better.

Fig. 1 shows the scheme used in the
proposed optimization process. The system
begins with an ordinary GA. In several early
generations, the finite element analysis is used
to obtain structural responses and the ANN will
not be considered at all. This is because, in
these early generations, the GA population
changes drastically and it is too difficult to
train the network. At an appropriate generation,
the training is performed by using results
obtained from the finite element analysis. In
the subsequent generations, this trained
network is used to predict the degree of
constraint violation instead of the finite

element analysis. After some generations, the
network is updated by retraining, and the newly
updated network is then used in the subsequent
generations. This process is repeated until the
end of the calculation. Updating the network at
every appropriate interval of generations is
necessary because the population keeps
changing generation by generation.
Consequently, the network trained by older
generations may not be able to represent newer
generations well.

3. Design of the Artificial Neural Network
for Evaluation of Constraint Violation
The most important thing to be considered

when an ANN i1s used to replace the structural

analysis in the evaluation of constraint
violation is the design of the network itself.

With improper design, the performance of the

network may drop significantly. In this paper, a

simple network of three-layers (an input layer,

a hidden layer and an output layer) with a

bipolar sigmoid function as an activation

function is employed. The learning algorithm is
the backpropagation algorithm. In this study,
only sizing optimization is considered.

Therefore, the inputs of the network are

sectional types of the members comprising the

structure being fed into the network. Under
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normal circumstances, it is tempting to directly
use sectional properties of the members, such
as areas and moments of inertia, as the inputs
of the network. Nevertheless, since only
sectional types are already sufficient, binary
codes of sectional types used in the GA can be
used as the inputs. Using the GA codes, not
sectional properties, is obviously preferable
because the inputs will be discrete and the
network can learn much better when its inputs
are discrete than when they are continuous.
However, it is found that, for this type of
problem, the network will perform even better
if the inputs are bipolar. As a result, binary
codes used in the GA will be changed into
bipolar codes before they are used as the inputs
of the network. This can be done by simply
changing O into —1. Fig. 2 shows an example
network for a structure with n structural
members. Each member is assumed to have
four types of section to select from; hence, two-
bit strings are used for each member.
Consequently, two input nodes are required for
each member.
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As mentioned earlier, it is enough for the
network to predict only the degree of constraint
violation and the outputs of the network do not
have to be complete structural responses.
Nevertheless, since the nature of different types
of constraint, including the degree of violation,
can be different, it is advisable to separate the
prediction for each type of constraint, meaning
that there should be one output node for each
type of constraint. For example, if there are
displacement and stress constraints to be
considered, two output nodes, one for all the
displacement constraints and the other for all
the stress constraints, will be used. The
network in Fig. 2 shows an example of the
network for a structure with M types of
constraint.

Consider the constraints of an arbitrary type
J. These constraints can generally be expressed
as

(4)

where K’ is the number of the constraints of
this constraint type J. As an example, Fig. 3
shows a truss structure with stress and
displacement constraints. The number of
constraint types and the number of constraints
of each constraint type are shown in the figure.

Next, define the degree of constraint
violation for the type-J constraints as

2 =minls!)

for admissible structures
under the type-J constraints

(6)

for inadmissible structures
under the type-J constraints

()

KJ'

E’ = [min(0,g; )

i=1

Admissible structures under the type-J
constraints are structures that do not violate
this type of constraint. Note that these
admissible structures will have positive or zero
E’ which actually means there is no type-J
constraint violation. On the other hand,
inadmissible structures will have negative E”.



Iranssuens atudsouazian 1% 13 aTUT 2 wer, 2545

The parameter E’ is designed in such a way
that its magnitude shows how much the
structure is far away from the boundary
between the admissible and inadmissible

structures. For admissible structures, E’ is
defined as the minimum value of g/’s. If a
structure is admissible under the type-J
constraint, all of its g; ’s must be positive or at
least zero. If only one of them becomes
negative, the structure becomes inadmissible
with respect to the type-J constraint. What it

takes to change an admissible structure into an

inadmissible structure is to reduce its minimum

g’ to a negative value. Hence, the minimum

value of g/’s is used as E’ for admissible

structures. For inadmissible structures, E’ is
defined as the summation of all negative g;’s.
Note that, for an inadmissible structure, at least
one of its g/ ’s is negative and there can be

some positive or zero g;’s. If all negative

g s of the structure are increased to zero, then

the structure becomes admissible. Therefore,
the summation of all negative g’'s can be

naturally used as E’ for inadmissible

structures.

The degree of constraint violation E” in (5)
and (6) cannot be used directly as the output of
the network without normalization. In this
study, the normalization is done in such a way
that the maximum and minimum values of the

outputs during training are 1 and -1,
respectively. Therefore, we have
E' = E' ||E], E’ <0
~ (7
E'=E' ) E E’'>20

where E” represents the normalized degree of
constraint violation. Here, E’ and E’_

max

denote the maximum and minimum E”’’s of all
training patterns.

In the optimization by the GA, structures
will be categorized into two categories, i.e.,
admissible and inadmissible structures.
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(2) 4-bar truss (b) 20-bar truss
Fig. 4 Truss structures of two different sizes

Structures with positive or zero E’ from every
output node are admissible structures while
structures with negative E’ from at least one
of the output nodes are inadmissible structures.
This classification is sent from the network to
the GA so that each inadmissible structure can
be properly penalized in the calculation of the
fitness. In this study, a very simple form of the

penalty function is used, i.e.,
Px)=4 (8)

where A is a user-defined constant.

To this point, the numbers of nodes in the
input and output layers have been assigned.
The number of nodes in the hidden layer is
thereafter calculated by using a criterion that,
during training, the number of unknown
weights of the network should not exceed the
number of available equations. In the training
of neural networks, the number of equations is
equal to the number of training patterns times
the number of output nodes. Since the numbers
of the input and output nodes of the proposed
network are already fixed, the number of the
unknown weights depends only on the number
of the hidden nodes. Since the number of
training patterns is known, by employing the
aforementioned criterion, the number of the
hidden nodes can easily be determined.
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Fig. 5 Networks for the 4-bar and 20-bar truss structures

By keeping the outputs of the network just
sufficient and simple, the size of the proposed
network can be kept quite small compared with
those networks that provide complete structural
responses. This difference becomes even more
apparent when the size of the structure being
considered becomes larger. To illustrate this
fact, consider two truss structures of different
sizes shown in Fig. 4. Assume that there are
four choices of section to be selected for each
member of the trusses. Therefore, for bipolar
coding of each member, two bits are necessary.
As a result, the network for the 4-bar truss
requires eight input nodes while the one for the
20-bar truss requires 40 nodes. Assume further

that there are two types of constraint, i.e.,
displacement and stress constraints. For each
member, there is one stress constraint and, for
each node, there are two displacement
constraints, i.e., vertical and horizontal
displacements. If the complete responses are
used as the outputs of the network, the network
for the 4-bar truss will require eight output
nodes while the one for the 20-bar truss will
require 40 output nodes. However, if the
proposed design is used, the number of the
output nodes is kept equal to the number of the
constraint types regardless of the total number
of constraints. As a result, the size of the
proposed network will be much smaller than
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Fig. 6 Ten-bar truss structure

that of the conventional one when used with
large structures. Fig. 5 shows comparison of
networks with different designs for the two
example truss structures in Fig. 4.

In this study, the learning rate 7 and the
momentum factor « of the network are
dynamically adjusted during training. Large
values of these parameters are used in early
training cycles and the values are gradually
reduced in later cycles as

®
(10)

Il

rr; X 771 - nmin

ra X ar 2 amin

W:H

al+1

where 7, and @, denote the learning rate and
the momentum factor of the learning cycle ¢.
Moreover, 7, and r, are positive factors that
are both less than one. In addition, 7., and
o represent the minimum boundaries of the

the momentum factor,

learning rate and
respectively.

4. Results
To illustrate the efficiency of the proposed

Table 1 Design parameters for the ten-bar truss

problem
Item Value
Modulus of elasticity 107 psi
Weight density 0.1 Ib/in®
Allowable tensile stress 25,000 psi
Allowable compressive stress 25,000 psi
Maximum x, y-displacements 2in,
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Table 2 GA parameters for the ten-bar truss

problem
Item Value
Maximum number of generations 300
Population size 350
Crossover probability 0.8
Mutation probability 0.001
A 0.01

design of the network, two numerical examples
are solved. They are optimization problems of
a ten-bar truss structure and a one-bay eight-
story frame. For both problems, only sizing
optimization is considered. In this study, the
simple GA is employed for the optimization.
The problems will be solved by using both the
simple GAs with ANN and without ANN. The
quality of the results from both schemes as well
as those reported in the literature will be
compared in order to show the validity of the
proposed technique. After that, the advantage
of the proposed scheme over the conventional
scheme is shown by comparing the
computational time used by both schemes.

4.1 Ten-Bar Truss

The first problem to be considered is the ten-
bar truss structure shown in Fig. 6. Since only
sizing optimization is considered, the design
variables are ten sectional areas of the ten

Table 3 ANN parameters for the ten-bar truss

problem
Item Value

Number of input nodes 50
Number of hidden nodes 13
Number of output nodes 2
n 0.1
o 0.3
r, 0.95
r, 0.95
s 0.01
o 0.01
Number of learning cycles 300
Generatigns at which the 58: ?gb?(l}:’zg?‘lgg: ng,
network is trained 240
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Table 4 Comparison of the results for the ten-bar truss problem

Member Size of member (in”)
Simple GA Simple GA GA GA GA GA
with ANN without ANN (Nanakorn and (Rajeev and (Galante (Camp et al.
(Proposed) Meesormklin [8]) Krishnamoorthy [9]) [103) [11])
1 30.0 33.5 33.5 33.5 33.5 30.0
2 1.99 1.99 1.62 1.62 1.62 1.62
3 26.5 229 22.9 22.0 22.0 26.5
4 13.9 16.9 15.5 155 14.2 13.5
5 2,13 1.62 1.62 1.62 1.62 1.62
6 2.38 1.99 1.62 1.62 1.62 1.62
7 11.5 15 F:22 14.2 7.97 722
8 22.9 18.8 229 19.9 22.9 22.9
9 19.9 229 22.0 19.9 22.0 22.0
10 1.80 1.80 1.62 2.62 1.62 1.62
T°‘ail‘g)""ght 5624.6 5640.5 5499.3 5613.8 5458.3 5556.9

members of the truss. The cross-sectional areas
of members 1, 3, 4, 7, 8 and 9 are taken from
the following 32 discrete values, ie., 3.13,
3.38, 3.47, 3.55, 3.63, 3.84, 3.87, 3.88, 4.18,
422, 449, 4.59, 4.80, 497, 5.12, 5.74, 7.22,
7.97, 11.5, 13.5, 13.9, 14.2, 15.5, 16.0, 16.9,
18.8, 19.9, 22.0, 22.9, 26.5, 30.0, and 33.5 in’.
For the rest of the members, the cross-sectional
areas are taken from the following 32 discrete
values, i.e., 1.62, 1.80, 1.99, 2.13, 2.38, 2.62,
2.63, 2.88, 2.93, 3.09, 3.13, 3.38, 3.47, 3.55,
3.63, 3.84, 3.87, 3.88, 4.18, 4.22, 4.49, 4.59,
4.80, 4.97, 5.12, 5.74, 7.22, 7.97, 11.5, 13.5,
13.9, and 14.2 in. A five-bit string is required
for each design variable because there are, for
each member, 2°=32 choices of sections to be
selected. There are two types of constraint in
this problem, i.e., the stress and displacement
constraints. The design parameters used in the
problem are shown in Table 1 and the GA
parameters are shown in Table 2. In this
problem, the fitness function F(x) is defined

as

1

F o = et

(11)

where weight in pound is used in the equation.
Since there are ten structural members to be
optimized and each member requires a five-bit
string, the number of the input nodes is equal to
50. In addition, since there are two types of

constraint, two output nodes are used. The
network parameters are shown in Table 3. For
this problem, the network 1s first trained at the
20" generation and it is updated by retraining
at the generations listed in Table 3.

The results of the simple GA with ANN are
compared with those of the simple GA without
ANN and of the literure as shown in Table 4. It
can be seen that the results from the proposed
method and the simple GA without ANN are
comparable. This means that using the ANN to
replace the finite element analysis in the GA is
acceptable regarding the quality of the GA
results. Note that the results of these two cases
are the best results of 40 different runs.
Although the result of the proposed scheme is

4000
3500 .______./4
o 3000
£ 2500 +——e— >——=
T3 2000
£ g 1500
£ 2 1000
%v
£ 500
o 0 ‘ 4
g ) g
= o =
E2 58 R
== z = % g
g g
—&— Simple GA with ANN
—i— Simple GA without ANN

Fig. 7 Computational time for the ten-
bar truss problem

14
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s

not as good as those reported in the literature, it
must be noted that in this study only the simple
GA is employed. The results from the literature
shown in Table 4 are obtained from more
sophisticated GAs. Lastly, the computation
time of the simple GA with ANN and the
simple GA without ANN is shown in Fig. 7.
The maximum, minimum and average time is
obtained from the computational time of the 40
runs. It can be clearly seen that the proposed
scheme employs much less time than the
conventional scheme. On average, more than
20% reduction of computational time is
observed.

4.2 One-Bay Eight-Story Frame

The next problem considered here is the
one-bay eight-story frame structure shown in
Fig. 8. The 24 members of the structure are
categorized into eight groups (see Fig. 8). In
this problem, 256 sections are selected from a
list of 268 W-sections from the American
Institute of Steel Construction Allowable Stress

Table 5 Design parameters for the one-bay
eight-story frame problem

Item Value
Modulus of elasticity 29x10° ksi
Weight density 2.83x10™ kip/in®

Maximum x-displacement at the | 2 in.

top of the structure
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Table 6 GA parameters for the one-bay eight-
story frame problem

Item Value

Maximum number of generations 200

Population size 70
Crossover probability 0.85
Mutation probability 0.05
A 10

Design (AISC-ASD) [12] by discarding the 12
biggest sections from the list. Thus, an eight-bit
string is required for each design variable.
There is only one displacement constraint in
the problem that is the maximum x-
displacement at the top of the structure. The
design parameters used in the problem are
shown in Table 5 while the GA parameters are
shown in Table 6. The fitness function used in
this problem is the same as the one used in the
previous problem (see Eq. 11) except that the
unit used in the equation for this problem is kip
instead of pound.

In this problem, there are 24 members to be
optimized. Nevertheless, they are categorized
into only eight groups. Each group needs an
eight-bit string to represent. Consequently, the
number of the input nodes is equal to 64. As
there is only one type of constraint, one output
node is used. The network parameters are
shown in Table 7. Similar to the previous
problem, the network is first trained at the 20

Table 7 ANN parameters for the one-bay eight-
story frame problem

Item Value
Number of input nodes 64
Number of hidden nodes 1
Number of output nodes 1
7 0.1
o 0.3
r, 0.95
5 0.95
Nooin 0.01
o 0.01
Number of learning cycles 300
Generatigns a_t which the gg: ég: f",g gg: ;g: Tgo
network is trained 110, 120, 140, 160, 180
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Table 8 Comparison of the results for the one-bay eight-story frame problem

Fig. 9 Computational time for the one-bay
eight-story frame problem

generation and it is updated at the generations
listed in Table 7.

Similar to the previous problem, the results
of the simple GA with ANN are compared with
those of the simple GA without ANN as well as
those of the literature. The comparison is
shown in Table 8. Again, the results from the
proposed method and the simple GA without
ANN are comparable. Note that the results of
these two cases are also the best results of 40
different runs. It is observed that the result of
the proposed scheme may not be as good as
some of the results from the literature.
However, those results from the literature are
obtained from much more sophisticated GAs.

Finally, the computational time of the
simple GA with ANN and the simple GA
without ANN is compared in Fig. 9. It can be

16

Group Number Simple GA Simple GA GA GA Optimality criteria
with ANN without (Nanakom and (Camp et al. [11]) (Camp et al. [11])
(Proposed) ANN Meesomklin [8])

1 W18x60 | W21x50 | W12x45 W 18 x 46 W 14 x 34

2 Wi6x26 | W12x26 W14 x34 W16 x 31 W 10x 39

3 W18x35 | W2lx44 | WI12x35 W 16 x 26 W 10 x 33

4 W12x16 W10x 19 W 10x 19 Wi2x 16 W 8x18

5 W21x50 | W18x46 W 18 x 35 W 18x35 W 21 x 68

6 W12 x26 W2lx44 W 18 x 40 W18 x 35 W 24 x 55

7 W 18 x 35 W12 x 22 W16 x 36 W18 x 35 W 21x50

8 W 18 x40 W 14x53 W16 x 26 W 16x 26 W 12 x 40

Total weight (kip) 8.49 8.86 7.47 7.38 9.22
3000 clearly seen that the proposed scheme employs
g 2500 —— B impressively much less time than the
S 5 2000 conventional scheme. More than 60%
o 8 . . . .

£ 8 1500 reduction of computational time is observed on
22 J000 e average. It must be noted that, compared with
§ - the previous problem, much higher
. 1 computational time reduction is achieved in
£ N E this problem. This is because the size of the
EB g £ Eg structure in the current problem is much larger
- he g~ than that of the previous problem. As a result,
the analysis time required by the finite element
—&— Simple GA with ANN analysis increases significantly. However, since
—&—Simple GA without ANN the outputs of the network are kept simple and

do not depend on the size of the structure, the
size of the neural network itself increases to a
much lesser degree than the finite element
analysis does. As a result, the computational
time reduction in this problem naturally
becomes much more apparent than that in the
previous example. Therefore, it is evident that
the proposed method will be even more
favorable when used in larger problems.

5. Conclusions

In this study, an artificial neural network is
applied to replace the structural analysis
process in the simple genetic algorithm for
structural design optimization. The objective of
the proposed scheme is to reduce the time
required by structural analyses in the
optimization process. To achieve this goal, the
network used is designed to provide only the
degree of constraint violation, instead of the
complete structural responses, to the optimizer.
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As a result, the form of the network is simple,
and small, which subsequently leads to small
computational time. The proposed network is
used with the simple GA to solve optimization
problems of truss and frame structures. The
results from the proposed scheme and the
simple GA without ANN are comparable. This
means that using ANNSs, instead of the finite
element analysis, to evaluate the degree of
constraint violation in GAs is acceptable
regarding the quality of GA results. As for the
computational time, it can be seen from the
results that the proposed scheme employs much
less time than the conventional GA without
ANN. Moreover, it can be observed that the
time reduction is higher if the proposed scheme
is used in larger structural problems since the
size of the network itself increases to a much
lesser degree than the finite element analysis
does when the size of the structure increases.
As a result, higher benefit is expected from the
proposed scheme when it is used with larger
problems.
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