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Abstract

This paper presents a new empirical
formula for the design of Riprap bank
protection. The theory of critical velocity
(Yang, 1973) was applied instead of the well
known theory of the critical shear stress
(Shields parameter). The relative roughness in
term of roughness height to water depth and
turbulent effects are taken into consideration in
form of the universal logarithmic velocity
distribution. For the verification of the
developed formula, the data of Mae Kong river
bank protection at Chiang-Rai, Nong-Kai, and
Nakorn-Phanom provinces in the northeast of
Thailand were used. It was found that the
present formula gives reasonable results
compared to the existing formula.

1 Introduction

Riprap is the term given to loose rock
armor, usually obtained by quarrying. It
continues to be the most widely used for
protection of erodible channel boundaries.
Riprap is normally placed by machine. The
major advantage of riprap is that it is very
flexible, so that damage tends to occur
gradually and, as stones can move relative to
one another, is to some extent self-healing.
This allows maintenance work to be carried out
on a routine basis. However, for the protection
using concrete blocks. This requires to prevent
widespread progressive failure once lucalised
failure occurs.

The theory of critical shear stress is
frequently used in the riprap design(Office,
Chief of Engineers, 1970) because it deals with
the force on the channel boundaries. However,
several investigators(Meyer-Peter and Muller,
1948; Bogardy, 1978; Bettess, 1984) have
demonstrated that the Shields parameter or the
dimensionless shear stress is not constant as
used in many riprap design procedure but
varies directly with the relative roughness.
Therefore, many existing design procedures

may apply over a limited range of the relativ
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roughness.

Instead of the use of the critical shear
stress, the present study uses the theory of the
critical velocity developed by Yang(1973). To
include the effect of turbulence, the universal
logarithmic velocity distribution is adopted
resulting in a non-linear implicit equation. The
solution is, then obtained easily by Newton’s
method. Verification of the developed formula
is made by using the data from Mae Kong river
bank protection. Comparisons are also made
among the previous formulae.

2 Method of study
2.1 Dimensional analysis

The pertinent variables applicable to the
stability of coarse particles are

f(D,h,p,V,v},2,)=0 (1)



where D = mean stone size, h = water depth, p
= water density, V = characteristic velocity, v,
=(Ys - Yw), Ys, Yw = specific weights of stone and
water respectively, z, = roughness height of
stone.

General equation of the relative stone
size can be expressed by(on using V, h, and v,
as repeating variables).
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Equation (2) indicates the important of
the relative roughness(z,/h) in determination of
the stone size.

2.2 The critical velocity concept

The boundary shear stress(t,) for a
uniform flow can be written as
T, =pghS; (3)

where S¢ = friction slope

For a rough turbulent flow, the velocity
distribution follows the universal logarithmic
law, i.e,
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where u = flow velocity at height a above the
bottom, us+ = bottom shear velocity, k = von
Karman constant, and z, = roughness height.

Yang(1973) demonstrated that for a
completely rough turbulent regime, the critical
velocity(U,) can be expressed by
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where @ = fall velocity of the particle, C, =
empirical constant(2.05)
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By integration Eq. (4) and inserting Eq.
(5), the critical bottom shear stress(t.) can be
written from the definition ©=pu? as

The fall velocity(w) for the turbulent
flow (Gruat et al., 1970) can be expressed by

p _p 112
0= cm{gD(ST>} ™

where C, = empirical constant, p; and p =

density of stone and water

Combination of Egs. (3), (6), and (7),
the relative stone size(D/h) can be obtained as
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where V = averaged near bank velocity, o =
bank slope angle, 6 = angle of repose of bank
material, k, = empirical in the Manning-
Strickler equation, i.e.

a=-L pye

n

(11)

Equation (8) is similar to the general
equation(Eq. (2)) and will be used to find the
mean stone size in the present study. Because
the roughness height is normally a function of
the stone size(z, = ki/30 = D/30, Chow(1957)).
The solution, therefore, can not be explicitly
computed. However, with the application of



Newton’s method, the solution can be obtained
easily.

3 Results and discussions

Figure 1 shows examples of the
relationship between the relative mean stone
size to the water depth(D/h) and the Froude
number(F). For practical ranges, the Froude
number is varied from 0.1 to 0.5. The well
known equation of Pilarczyk(1984)(Eq. 12,
PIANC, 1987a) and also Izbash’s formula(Eq.
13, Izbash, 1970) are also verified in the same
figure. The ahgle of repose of the bank material
is set equal to 35 degrees. The bank slope is
varied from 1 ;: 2to 1: 3.5.
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where ¢, =stability factor, Ky = turbulence
factor, K¢ = slope factor, A =(y,-y)/y, 6,.=
Shields parameter, b = degree of turbulence

It is found that the present study results
give compromise results between Pilarczyk’s
and Izbash’s. It is also noticed that the more
Froude number, the closer of the results
between the present study and Pilarczyk’s.
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Fig. 1 Relationship between D/h and F

17



Democratic People’s ™,
Republic of Laos e

:\,' Nong-Kai Y
(NK-2,NK-8) *\ Nakom-Phanom
Thailand (NP-1)

Fig. 2 Study location

For field investigation, data from Mae
Kong river bank protection at Chiang-Rai,

Nong-Kai, and Nakomn-Phanom provinces(see
Fig. 2) were used to verify Eq. (8).

Table 1 shows comparisons of the mean
stone size among the three formulae. It is again
found that the mean stone size computed by the
present formula are smaller than Izbash’s but a
little greater than Pilarczyk’s which was used
in the design for these four locations . In
general, the use of Pilarczyk’s and Izbash’s
need experienced engineer. This is because
some parameters in those two formulae, i.e. the
Shields parameter and degree of turbulence
have to be defined before hand. This, in
practical, creates difficulties. On the contrary,
the present study does not use the Shields
parameter. The turbulence effects are also
taken into consideration in form of the
universal logarithmic velocity distribution.

Table 1 Stone size comparisons

Location | Bank siope | D(Pilarczyk) | D(lzbash) | D(Present) | Froude no.
(m) (m) (m) F
CR-2 1.2 0.1 0.28 0.18 0.19
1:2.5 0.08 0.23 0.14
1:3 0.07 0.21 0.13
1:3.5 0.07 0.20 0.12
NK-2 1:2 0.18 0.44 0.28 0.24
1:2.5 0.14 0.36 0.23
1:3 0:13 0.33 0.21
1:3.8 0.12 0.32 0.19
NK-8 1:2 0.14 0.36 0.23 0.22
1:2.6 0.11 0.30 0.18
1:3 0.10 0.27 0.17
1:3.5 0.09 0.26 0.16
NP-1 1:2 0.07 0.20 0.12 0.16
1:2.5 0.05 0.16 0.1
1:3 0.05 0.15 0.09
1:3.6 0.04 0.14 0.08




4 Conclusions

A new formula for the calculation of
stone size in the design of Riprap bank
protection was developed. The theory of
critical  velocity(Yang, 1973) was applied
instead of the well known theory of the critical
shear stress (Shields parameter). The turbulent
effects have also been taken into consideration
in term of the universal logarithmic velocity
distribution. It was found that the present study
results gave compromise results between
Pilarczyk(1984) and Izbash(1970). For the
verification of the developed formula, the data
of Mae Kong river bank protection at Chiang-
Rai, Nong-Kai, and Nakorn-Phanom provinces
were used. Comparisons among the three
formulae indicate more advantage of the
present developed formula than the previous
two formulae.
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