FransTnes atuideuazyinn U0 12 atfudi 3 wa. 2544

RESEARCH AND DEVELOPMENT JOURNAL VOLUME 12 NO 3, 2001

Cracking Localization Analysis Using a Specially Treated Smeared Crack

Finite Element Model with Energy Consideration
Pruettha Nanakorn and Vasan Thitawat
Sirindhorn International Institute of Technology, Thammasat University
PO Box 22, Thammasat-Rangsit Post Office
Pathumthani 12121, Thailand
Phone (66-2) 986-9011-13 Ext. 1906
Fax (66-2) 986-9011-13 Ext. 1900
E-Mail: nanakorn @siit.tu.ac.th

Abstract

In this paper, an analysis method to analyze
problems involving cracking localization is
proposed. The proposed analysis method
employed the well-known smeared crack
model. Nevertheless, in the finite element
formulation, a mixed formulation that
discretizes not only displacements but also
crack strains is used. This is to allow stability
consideration of crack patterns to be done
efficiently. Stability analysis of crack patterns
is done by performing eigenvalue analysis of
Hessian matrices obtained from the mixed
finite element formulation. At each bifurcation
point identified by the stability analysis, the
actual equilibrium path is incrementally traced
by searching for a crack pattern with the
minimum total potential energy increment.
Search algorithms employed include an
exhaustive search algorithm and a genetic
algorithm. Finally, the proposed analysis
method is used to analyze the four-point
bending problem of plain concrete and the
results are discussed.

1. Introduction

Tensile failure of quasi-brittle materials
such as concrete is commonly known to start
from formation of cracks, and propagation of
the newly formed cracks or existing defects.
After that, these cracks will localize into one or
a few cracks. This will subsequently lead to the
final failure. In order to capture the ultimate
capacity of such materials in a structure,
consideration of cracking localization cannot
generally be neglected. However, the
consideration of cracking localization needs a
very expensive computation because solution
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methods for solving localization problems
involve checking stability and bifurcation of
many different equilibrium paths.
Consequently, many researchers avoid the
consideration of cracking localization by either
allowing many cracks to grow without the
consideration of localization [1-3] or by
assuming positions for localized cracks [4].
The first approach is not realistic and can
generally lead to inaccurate results. Having
many cracks without localization allows an
incorrect amount of energy to dissipate from
the domain. Thus, obtained results will also be
inaccurate. However, in some cases where the
gradient of stress is very high, it is possible that
major cracks will finally prevail and other
cracks will undergo elastic unloading even
when cracking localization is not considered.
The second approach, which assumes positions
of localized cracks prior to analysis, may yield
reasonable results in some cases. These include
cases where assumed positions of localized
cracks are reasonably or undoubtedly correct
and cases where solutions are not sensitive to
locations of localized cracks. Nevertheless, the
approach is not appropriate for general cases
since locations of localized cracks may not be
easily predicted or solutions may be sensitive
to locations of cracks. ‘
Consideration of stability and bifurcation of
equilibrium states is one of the major tasks to
be done in the analysis of cracking localization.
Many researchers have considered stability and
bifurcation of equilibrium states by
investigating definiteness of stiffness matrices
[5-6]. When a stiffness matrix is positive-
definite, an equilibrium state is considered
stable. The same theory can be applied to the
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analysis of cracking localization. However,
cracking is an irreversible process. In this case,
stability and bifurcation of equilibrium states
can be determined by investigating definiteness
of stiffness matrices (Hessian matrices)
constructed with respect to irreversible
parameters [7]. These irreversible parameters
can be crack opening displacements in the
discrete crack approach or crack strains in the
smeared crack approach. Investigating
definiteness of Hessian matrices will provide
information on stability of equilibrium paths.
Consequently, bifurcation points can be
located. Nevertheless, tracing the actual
equilibrium path needs some more effort.
Employing Gibbs’ statement of the second
law of thermodynamics, Nemat-Nasser [8]
pointed out that the equilibrium path that
makes the total potential energy an absolute
minimum would also render the elastic energy
an absolute minimum. In addition, this path
will also be the actual equilibrium path [9].
Employing the same concept, Brocca [10] used
crack opening displacements in the discrete
crack finite element analysis as irreversible
parameters in the analysis of cracking
localization. In his work, Hessian matrices
constructed with respect to irreversible crack
opening displacements are used to investigate
stability and bifurcation of crack patterns, In
addition, the equilibrium path is also traced by
using the Simplex method to find the path with
the minimum total potential energy. From his
work, it is clear that Hessian matrices
constructed with respect to irreversible
parameters can easily be obtained when the
discrete crack approach is employed because
irreversible parameters are discrete.
Nevertheless, the discrete crack approach is not
suitable for problems with many cracks in the
domain. Usually, in the cracking localization
analysis, there will be many cracks occurring
in the domain. As the number of cracks
increases, the mesh topology may have to be
changed to cope with the new crack patterns
and this leads to more degrees of freedom. On
the other hand, the smeared crack approach,
which is more suitable for problems with many
cracks, does not provide any discrete
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irreversible parameters for construction of
Hessian matrices. Another disadvantage of the
smeared crack approach is that, with this
approach, it is necessary to define the crack-
band width or the crack characteristic length.
For fairly regular meshes, the characteristic
length is frequently determined in an intuitive
way which 1s difficult to generalize in a formal
manner for irregular meshes and arbitrary crack
directions. However, for two-dimensional
domains, this problem can be overcome. Oliver
[11] proposed a general approach for
calculation of the characteristic length. In his
study, a crack is modeled as a limiting case of
two singular lines that coincide with the
boundary of elements covering the crack path.
The expression for the characteristic length is
obtained by analyzing the energy dissipated
from the band bounded by these two singular
lines.

To allow the consideration of cracking
localization in the smeared crack model,
Nanakorn and Soparat [12] proposed an
analysis method that uses the smeared crack
finite element model with a mixed formulation.
In their work, the discretization is performed
not only on the displacement field but also on
the crack strain field. The newly introduced
discrete nodal crack strain variables serve as
the discrete irreversible variables needed for
the localization analysis. However, their work
is limited to stability analysis of crack patterns,
and there is no attempt to trace the complete
equilibrium path.

In this study, an analysis method for
cracking localization is proposed. In the
proposed method, stability of crack patterns is
investigated by employing the analysis method
proposed by Nanakorn and Soparat [12]. When
the current crack pattern becomes unstable, the
stable crack pattern with the minimum total
potential energy is searched for and selected as
the solution path [8]. In the search for the
stable crack pattern with the minimum total
potential energy, an exhaustive search
algorithm and a genetic algorithm are used.
The proposed analysis method is used to solve
the cracking localization problem of a four-
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point bending beam of plain concrete. Finally,
the obtained results are discussed.

2. Smeared Crack Model with a Mixed
Finite Element Formulation
In the smeared crack model, the total strain
increment Ae is decomposed into the strain
increment of the intact elastic solid Ag” and

the strain increment of the cracked solid Ag”,
i.e.,

Ae=Ag’ + Ae”. (1)

The relationship between the global crack
strain increment Ag® and the local crack strain
increment Ag” is expressed as

Ag” = TAg” (2)
where T is the transformation matrix, which
can be written as a function of the angle
between the vector normal to the crack surfaces
and the global x-axis.

By following Nanakorn and Soparat [12],
the total potential energy increment of a

cracked domain V is expressed as
AIT = AIT" + AIT"

4 jAa“TD“Ae“ av
2 v

(3)
- j Au” AfqV — jAuTAtdS
% s

+ [l j Aé”T]A)“Aé”dV}.
2 vV

The total potential energy increment AII
shown above consists of two parts that are the

mechanical potential energy increment AIT"

and the dissipated energy increment AIT”.
Here, Au denotes the displacement increment

vector. In addition, D’ and D denote the
constitutive matrices for the intact elastic solid
and the cracked solid, respectively. Finally, Af
and At represent the body force increment
vector and the surface traction increment
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Fig. 1 A problem with one cracked element
surrounded by intact elastic elements [12]

+ X

vector, respectively.

Discretizing both displacement and local
crack strain increments, we have for the i
element in the finite element analysis [12]

Au=NAU,
Aécr — NcrAiEc'r

(4a)
(4b)

where N and N represent the shape function
matrices for the displacement increment and
the local crack strain increment, respectively.

In addition, A'U and A'E® represent the
nodal displacement increment and the nodal
local crack strain increment, respectively. Note
that the local crack strain increments are not
continuous across elements and the nodal local
crack strain increments of the same node for
different elements can be different. One
example is a problem with one cracked element
surrounded by uncracked elements (see Fig. 1).
In the cracked element including its boundary,

non-zero crack strain increments can be
expected. However, in the surrounding
uncracked elements, the crack strain

increments are expected to be zero because
there is no crack in those elements. On the
contrary, the total displacement increments
must be continuous across all the elements.

From (2) and (4), the total strain increment
and the global crack strain increment are
expressed as

Ae=BA'U,
Aec‘r - TNL'J'AiI::cr .

(5a)
(5b)
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From (1), (3) and (5), the total potential
energy increment can be expressed as

= % j A'U'BTD’BA'U4V
v
_ é [AUTB D TN AR 2y
v
.1 jA"E”TN""'TTD”BA*‘Udv
27 (©)
+% jA"E:"TN“""TTD"TN"A*‘E”dV
v
+% IAEEchNchDcrNcrAi'EcrdV
v

- jAfUTN""Ade - jA"UTNTAtdS.
|'l'

S

Applying  the  stationary  condition
S(AIT)=0, we obtain the element stiffness
equation for the ;™ element as

0 ko | AU (AR &
P e
where  k,, = [BD’BaV,
v
=~ [B"D"IN“4v,
v
k,, =— [N“"T"D’Bav,
v
k;, = [N (D" + T'D°TIN"av
4
Ar = [NTAfdV + [NTAtdS .
14 N
After assembling all element stiffness
equations and applying prescribed

displacements and forces, the system stiffness
equation is arranged as

K, K,][AU] [AR, -
K, K, [|AE"| |AR,
where AU and AE” are the nodal

displacement increment and the nodal local
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crack strain increment of the
respectively.

The static condensation is then used to
remove the nodal displacement increment from
the obtained system matrix equation.
Consequently, the equation can be written in

the following form, i.e.,

system,

KrrAE(:r = ARL‘I‘ (9)

where K and AR are defined as
K“=K,,-K K“Klz, (10a)
AR” =AR, -K, K /AR,.  (10b)

In the consideration of stability of crack

patterns, the eigenvalue analysis of K is
performed. If all the eigenvalues are positive,
then it means that the stationary solution in (9)
is stable with respect to the current crack
pattern. Otherwise, the stationary solution is
unstable and bifurcation occurs. Note that this

analc

scheme 1s nnlv used for stahility

............... (S il o S0 ouu..uul._y a11a1_ybl:> Ul
crack patterns, not for obtaining the
displacement  solution. The displacement

solution will be obtained from the original

smeared crack model where the basic
unknowns are the nodal displacement
increments,

3. Equilibrium Path with The Minimum

Total Potential Energy

When the equilibrium path reaches a
bifurcation point, a fan of many possible
equilibrium  paths emanates from the
bifurcation point. In fact, if instability occurs in
the real system, the actual equilibrium path is
the path that contains the minimum total
potential energy [9] or the minimum elastic
strain energy [8]. These two conditions are
actually the same [8], if one defines the total
potential energy in the usual way. In this study,
the minimum total potential energy criterion is
employed. However, since the analysis is
performed incrementally, and the total
potential energy is written in the incremental
form [see (3)], the stable path with the
minimum total potential energy increment is
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Fig. 2 Examples of coding of crack patterns

the desired solution path.

In order to obtain the solution path with the
minimum total potential energy increment,
energy increments of all possible equilibrium
paths, which depend on their crack patterns,
can be compared. This approach of comparing
all possible solutions 1is essentially an
exhaustive search. The algorithm for this
search approach is simple and straightforward.
Nevertheless, it is obvious that the technique is
expensive and suitable only for small problems
where the complete search is still possible. In
the case of larger problems where many cracks
occur in the domain and, as a result, many
crack patterns are possible, the exhaustive
search may not be practical and it is advisable
to employ an appropriate optimization
technique to find the minimum energy path. In
this study, a genetic algorithm (GA) [13] is
used for this purpose because this optimization
technique is suitable for problems with discrete
variables. Variables in the minimization
problem of the total potential energy increment
are discrete statuses of cracks that can be either
opening or unloading. Since GAs do not
require the evaluation of the gradient of the
function being minimized or maximized, the
evaluation of the total potential energy
increment is enough for the minimization
process.

In this study, the simple GA is employed. It
is composed of three different operators, i.e.,
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operators. These three operators are based on
the same basic elements in the real natural
genetics. The details of this technique can be
found in the literature [13-14].

In general, GAs do not directly work with
the parameters themselves. The algorithms
start with coding of the parameter set. For

11 e |
coding, binary strings are most popular and

convenient. Each point in a search space, often
called “individual” in the GA terminology, is
represented by a single string of number 0’s
and 1’s. The optimization problem of this study
is to minimize the total potential energy
increment. The total potential energy increment
to be minimized is a function of crack patterns.
Therefore, each crack pattern will be coded as
a binary string. The idea of the coding is to
have each bit in a binary string represent the
status of one particular crack. If the value of
the bit is one (1), it indicates that its
corresponding crack is opening. If the value of
the bit is zero (0), the corresponding crack is
unloading., Fig. 2 shows examples of the
coding of two different crack patterns. The
number of bits used in the string is equal to the
number of the existing crack paths.

In GAs, the reproduction operator defines a
process in which individuals are selected for
mating based on their fitness values relative to
that of the population. Fitness is defined as a
figure of merit. Individuals with higher fitness
values have higher probabilities of being
selected for mating and subsequent genetic
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actions. Consequently, highly fit individuals
live and reproduce, and less fit individuals die.
In this study, a crack pattern that results in a
smaller total potential energy increment will be
given a higher fitness value.

In the crossover operator, new strings are
created by exchanging information among
strings. Many crossover operators exist in the
literature [13]. Generally, two strings are
selected at random as a crossover pair and
some portions of the two strings are
exchanged. The two strings participating in the
crossover are known as parent strings and the
resulting strings are known as children strings.
In this study, three types of crossover operator
are employed, i.e., one-point, two-point and
uniform crossover operators. Fig. 3 shows an
example of the one-point crossover. In this
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(a) Before (b) After

Fig. 6 Mutation

study, the one-point crossover is performed by
randomly selecting a crossing site along the
parent strings and by exchanging all bits on the
right hand side of the selected crossing site. In
the case of the two-point crossover, two
crossing sites are randomly selected and all the
bits between the two crossing sites of the two
parent strings are exchanged as shown in Fig.
4. For the uniform crossover, the number of
bits to be crossed over and their positions are
randomly determined. Fig. 5 shows an example
of this type of crossover in this study.

It is clear that the crossover operator may
yield better or worse children strings. To be
able to adjust the degree of the uncertainty of
the crossover phase, it is not necessary to use
all individuals in the mating pool in the
operator. This is done by adjusting the
probability that a crossover is performed
(crossover probability).

The last genetic algorithm operator is the
mutation operator. Fig. 6 shows an example of
the mutation operator employed in this study.
The mutation operator changes 1 to 0 and vice
versa at a randomly chosen bit. The operator is
used sparingly with a small probability
(mutation probability).

4. Analysis Procedure

In the analysis, the specimen under
consideration is analyzed by using the
conventional smeared crack model. Cracks are
initiated when the maximum tensile stress
reaches the tensile strength of the material.
After that, the cracks follow the tension-
softening curve, which is treated as one of the
material properties. The tension-softening
curve is the relationship between the tensile
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(a) Specimen geometry
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(b) Tension-softening curve

Fig. 7 Four-point bending problem

stress transferred across the crack surfaces and
the crack opening displacement. Note that, in
this study, shear retention of cracks is assumed
negligible. As mentioned earlier, the analysis is
done incrementally. In each step, the stability
of the obtained crack pattern will be
investigated by performing eigenvalue analysis
of the matrix K obtained from the mixed
smeared crack finite element formulation [12].
If the crack pattern is found to be stable, the
analysis is continued to the next step. However,
if the crack pattern is unstable, the search for
the crack pattern with the minimum total
potential energy increment must be performed.
Here, if the number of possible crack patterns
is not very large, an exhaustive search can be
employed; otherwise, a GA will be used,
instead. It must be noted that, if a GA or
another optimization technique is used, the
obtained crack pattern may have a near-
minimum total potential energy increment, not
the true minimum one for the finite element
discretization being currently used. In order to
compare total potential energy increments of
different crack patterns, the energy for cases
with different crack patterns must be evaluated
under the same controlled parameter. In this
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allowable crack path

(a) 1 allowable
crack path

(b) 5 allowable
crack paths

(c) 13 allowable
crack paths

(d) 31 allowable
crack paths

Fig. 8 Specimen with different numbers of
allowable crack paths

study, the controlled displacement is used.
After the crack pattern with the minimum or
near-minimum total potential energy increment
is obtained, the analysis is carried on to the
next step. The same process is then repeated
and the actual equilibrium path can be traced.

5. Results

Here, the classical four-point bending beam
test of plain concrete shown in Fig. 7a is
investigated.  Specimen’s  dimension  is
300x100x100 mm. Controlled displacements
are applied at the top of the beam, 100 mm
from both ends. Young’s modulus and Poison’s
ratio used are 27.5 GPa and 0.2, respectively.
Unit weight of the material is 2,300 kg/m>. The
tension-softening curve used is shown in Fig.
7b. In the analysis, four-noded quadrilateral
elements are employed. The finite element
mesh consists of 2,232 elements and 2,288
nodes (see Fig. 7a).

For this problem, it can be reasonably
assumed that all crack paths are straight. To
simplify the problem, cracks will be allowed to
occur only on the pre-specified paths. The
problem is solved both with and without the
specimen’s self-weight. When the self-weight
is neglected, the problem is solved with various
numbers of allowable crack paths as shown in
Fig. 8, and, in all of these cases with different
allowable crack paths, the equilibrium path
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(a) Load-controlled displacement responses

Fig. 9 Load-controlled displace

with the minimum total potential energy
increment is traced by employing an
exhaustive search. In addition, only for the case
with 31 allowable crack paths, a GA is also
employed for the search. When the self-weight
is considered, the analysis is done only for the
case with 31 allowable crack paths, and the
equilibrium path with the minimum total
potential energy increment is traced by
employing both exhaustive search and GA. GA
parameters used in the analysis are shown in
Table 1.

Fig. 9a shows load-controlled displacement
responses for all of the calculations mentioned
above. Moreover, it also includes the case with
31 allowable crack paths when the cracking
localization is not considered. This additional
case is performed without the self-weight and it
will allow the importance of the localization
analysis to be observed. Fig. 9b shows crack
patterns obtained from these different cases at
the loading points indicated by black circular

Table 1 GA parameters

Population size 40
Number of generations 40
Crossover probability 0.80
Mutation probability 0.05

(b) Crack patterns

ment responses and crack patterns

markers on every response curve. At these
loading points, the main cracks in all cases
reach the length of 90 percent of the beam
depth. For the case with 31 allowable crack
paths with the localization consideration (the
cases D and E), it can be seen that the results
obtained from the exhaustive search and the
GA are exactly the same. Therefore, it is
shown that GAs can be used instead of the
exhaustive search. It must be noted that the
time used by the exhaustive search is very
much longer than that used by the GA. For the
cases B, C, and D where no self-weight is
assumed, it can be seen that the obtained
results, both crack patterns and response
curves, are not much different. Therefore, for
this problem, having only five allowable crack
paths that are distributed properly is sufficient
for obtaining the converged solution. Since it
can be observed from the crack patterns of the
cases B, C, and D that there are actually two
long cracks in the beam, it may be understood
that the response is actually governed by two
main localized cracks which are not localized
into one crack until at a much later loading
stage. Also from the response curves, it is seen
that the results of the case A, which assumes
one localized crack at the center of the span,
and the case F, which does not consider the
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localization, are very much different from
those of the cases B, C, and D which properly
consider the localization. Finally, from a
comparison of the results of the cases D
(without self-weight) and E (with self-weight),
it can be seen that the load-displacement
responses of both cases are very similar.
Therefore, for this particular problem,
neglecting the self-weight does not have a
significant effect. Nevertheless, it can also be
observed from the obtained crack patterns that
the two main cracks are closer to each other
when the self-weight is considered. This is
expected since the self-weight makes the stress
higher at locations closer to the center of the
span. Fig. 10 shows the crack patterns of the
cases D and E at different loading stages.

6. Conclusions

In this study, an analysis method for
cracking localization in quasi-brittle materials
is presented. The analysis method employs the
smeared crack finite elements with a mixed
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formulation for the stability investigation of
crack patterns. In the mixed formulation, the
discretization is performed on not only the
displacement field but also the crack strain
field. The discretized crack strains will allow
the stability analysis of crack patterns to be
done more easily. At bifurcation points, the
actual equilibrium path is traced incrementally
by finding the path with the minimum total
potential energy increment. The search for the
minimum total potential energy increment is
done by employing both the exhaustive and
GA search algorithms, depending on the size of
the problem being solved. It is found in this
study that GAs can be efficiently used for this
search. The results obtained from the four-
point bending problem of plain concrete clearly
show that the true localized solutions are very
much different from the solution obtained by
assuming one localized crack at the center of
the span. Furthermore, the true localized
solutions are also very much different from the
solution obtained without the localization
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consideration. It is also found that there are two
major localized cracks that are not localized
into one crack until at a much later loading
stage. The behavior of the beam is therefore
governed by these two cracks. This clearly
illustrates that assuming only one localized
crack from the beginning may lead to
erroneous results. Finally, it is found that, for
the four-point bending test of plain concrete,
neglecting the self-weight does not have
significant effect on the obtained results. With
self-weight or without self-weight, there are
two main localized cracks. Although these two
cracks are slightly closer when the self-weight
is considered, the difference between the

obtained responses from both cases are
negligible.
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