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Abstract
In this study, a new finite element

analysis method for problems involving
material nonlinearity is proposed. The
proposed analysis method is derived from the
Equivalent Inclusion Method. In the proposed
method, the material undergoing nonlinear
behavior is changed into an equivalent material
with  strains called  eigenstrains.  For
convenience, the material in the linear region is
selected as the equivalent material. Doing
analysis this way will keep the constitutive
relationship unchanged. Therefore, the global
stiffness remains the same for all
computational steps. The task in each step is
then reduced into finding the varying
eigenstrains. The equation for finding the
eigenstrains can be much smaller than the
global stiffness equation. Therefore, the
computational time can be greatly reduced if
the nonlinear region is small compared with the
whole domain.
1. Introduction

The finite element analysis involving
material nonlinearity generally consumes long
computational time. It is because, in this kind
of analysis, the constitutive relationship of the
material changes along the computational
steps. The change in each step will lead to a
completely new global stiffness equation that
has to be solved again. In some cases where the
proportion of the material undergoing nonlinear
behavior is small compared with the whole
domain, it will be advantageous if we are able
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to utilize solutions from the previous step in the
current step. The Equivalent Inclusion Method
[1, 2] may be the answer. In this method, the
inhomogeneous material will be changed to an
equivalent homogeneous material with a kind
of residual strain called eigenstrain. For
example, if we apply the method to elastic-
plastic analysis, the material with plastic
regions will be changed into the original elastic
material with  eigenstrains. Since the
constitutive relationship can be kept unchanged
in this method, the global stiffness will not
change. Therefore, the computation is changed
from solving a new global stiffness equation to
solving an equation for eigenstrains. If the
proportion of the nonlinear material is small,
the equation for computing eigenstrains will be
small and the computational time is expected to
decrease significantly.

The Equivalent Inclusion Method has
been applied to solve many problems that
contain inhomogeneities (see, for example, [3-
5]). However, the applications are usually
limited to inhomogeneities in two- or three-
dimensional infinite solid domains. In most
cases, the elliptic (2-D) or ellipsoidal (3-D)
inhomogeneities will be considered because the
analytical solutions for these cases can be
obtained with less mathematical difficulty.
Nevertheless, Yamaguchi et al. [6] applied the
Equivalent Inclusion Method in the elastic-
plastic analysis of frame structures. They
introduced eigenmoment and eigenshear and
formulated an analysis method based on these
eigenmoment and eigenshear. By finding the
Green’s function associated with the
eigenmoment numerically, the analysis of the
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Fig. 1 Equivalent problem and its decomposition

frame structures could be carried out. Inspired
by their work, this paper presents a finite
clement analysis method for general solid
problems having nonlinear materials based on
the Equivalent Inclusion Method. Although
only two-dimensional problems are discussed,
the idea can be generally extended to three-
dimensional problems. The validity of the
proposed method is shown and the advantage
over the conventional method is also presented.

2. Equivalent Inclusion Method

Consider a body D with a sub-domain Q
having different material properties from those
of the remaining matrix shown in Fig. 1. The
material properties of the matrix and the sub-
domain Q are denoted by C,, and Cirs
respectively. It is assumed that the body is
under the stress-free condition before the
application of loads. A stress field caused by
applied loads is denoted by 0,;(x) where x is a

position vector. This stress field can be thought
of as the superposition of a stress field when a
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homogeneous material is assumed and the
stress disturbance due to the presence of the
inhomogeneity. Eshelby [1, 2] first pointed out
that the stress disturbance due to
inhomogeneities could be simulated by stresses
caused by inclusions with appropriate applied
strains. These strains are generally called
eigenstrains. Therefore, instead of solving the
original inhomogeneous problem, an equivalent
problem, where the material is considered
homogeneous, can be considered. In the
equivalent problem, the inhomogeneity is
replaced by an inclusion that has the same
material properties as those of the matrix but
contains eigenstrains as shown in Fig. 1. These
eigenstrains, if appropriately selected, will
result in a stress field that simulates the stress
disturbance due to the inhomogeneity. Since, in
this method, the original problem with
inhomogeneities is changed into an equivalent
homogeneous problem containing inclusions
with eigenstrains, the method is called
“Equivalent Inclusion Method.”



Following Mura [2], we denote the stress
field and the corresponding strain field, when a

homogeneous material is assumed, by o;/(x)

and € (x), respectively. In addition, the stress
disturbance and strain disturbance are denoted
by o(x) and &(x), respectively. According
to the Hooke’s law, we have

0 d _ " o d x

o; +0; = Ciu (5,{, +5,(,) in Q M
o d l 0 o .

o, +0; =Ciy (gJU + 5“) in D-Q.

Consider the equivalent problem. The
problem is decomposed into 2 sub-problems
(see Fig. 1). The first sub-problem corresponds
to a problem that considers no inhomogeneity
and no eigenstrains in the domain. The

relationship between the stress field o, (x) and

the strain field €;;(x) in this sub-problem can
be expressed as

U: = C;,-'HS:.* : (2)

The second sub-problem represents the
stress disturbance field o (x) and the strain
field 8:.:.(3&)
inhomogeneity. In the second sub-problem, no
applied loads are considered and the eigenstrain

disturbance due to the

field € (x) is introduced in the sub-domain
Q. The applied eigenstrains result in the stress
field o (x) and the strain field €j(x) in the

domain. The relationship between the stress
disturbance and the strain disturbance can be
written as

o d . *
oy =Culey —&y)  In Q 3)

From Egs. (2) and (3), we get

0 d _ o d 2l
c;to; =Chy (gﬂ ey~ s”) in Q @

d - 0 d 4
o;+0,; =Cy (3,(, + g”) in D—-A.

The stress fields in the original problem
and in the equivalent problem must be equal.
Therefore, from Eqgs. (1) and (4), we have

.l 0 d . [ d L 5
C_:‘,:‘M(gk! +5w)= (’._-',r'k.‘(gkf TEy — gid) in Q. (5)

It is possible to express the stain
disturbance € (x) in terms of the applied

eigenstrain £, (x), i.c.,

7 -
£, (x)= Isw(x, x)e,, (x)dx'
0

(6)

where x and x’ are position vectors and
s, (X,x") is a function which can be obtained
by the Green’s function method [2]. Therefore,
we have

C;'k;[ﬁ':;(x) + ,[Swrf (X6 (x')dx'] =

Q

(;‘y‘k.‘(f":f ( X) + ISI_}'}(.I’ (x5x’)£f:.-n (x’)dx, = ng(x)] (7)
Q
in Q

where the eigenstrain €, can be determined for

a given €. After obtaining €, the stress field

i

oy +oy and strain field €;, +€; can be
subsequently determined. Note that the last

equation is valid everywhere in €.

3. Finite element analysis of problems with
inhomogeneities using the Equivalent
Inclusion Method

Consider a simple two-dimensional finite
element problem shown in Fig. 2. The type of
the elements used in this analysis is the four-
noded quadrilateral element. In the problem,
there are some elements whose material
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Fig. 2 Equivalent Inclusion Method in finite element analysis

properties are different from the rest of the
domain. These elements are distinguished by
the shaded area. To solve the problem, we
consider an equivalent problem, which is also
shown in Fig. 2. In the equivalent problem, the
material is considered homogeneous. The
inhomogeneity elements are replaced by
elements with the material of the matrix and, in
these elements, eigenstrains are introduced.
The first task is to determine these eigenstrains.
Knowing the eigenstrains will subsequently
lead to the complete solution of the problem.
To this end, Eq. (7) will be employed in each
inhomogeneity element. Before that, consider
Eq. (6), which is the relationship between the

“(x) and the eigenstrain

disturbance strain ¢

£ ” (x) . Assume in the equation that both strains

are constant in each element and use the values
of the strains evaluated at the centers of the
elements. Therefore, Eq. (6) can be rewritten in
matrix form as

*

E‘ =SE (8)

where E° denotes the eigenstrains at the
centers of the inhomogeneity elements, i.e.,

El 8]
v |Es ;
E'={21-1% 9)
E:N S;HI

in which E; represents an eigenstrain vector

Ll * * ra
[&} £, 7’.01] evaluated at the center of the

1h

i” inhomogeneity element. It is assumed in
this example that there are totally m

inhomogeneity elements. Here, € represents
each component of the vector E*. The vector

E“, written in the same way as E', represents
the strain disturbance components at the centers
of the inhomogeneity elements. Note that both

E’ and EY are 3mx 1 vectors.

To solve the equivalent problem, the
problem is decomposed into 2 sub-problems as
discussed earlier (see Fig. 1). Components of
the matrix S in Eq. (8) can be obtained
numerically by solving the second sub-problem
with different unit eigenstrain components.
Note that, in the second sub-problem, there are
no applied loads and only eigenstrains are
considered. For example, we first set



(10)

in the second sub-problem and solve the
problem by FEM. From the analysis, the

displacement disturbance u:; at all nodes and

the strain disturbance ¢ at the centers of all

elements are obtained. Therefore, we have the
first column of the matrix S, i.e.,

SII x x
S X
s=|"" (11)
Sml X X
Next, we set
0
X 1
Ef'=d | (12)
0

and obtain the second column of the matrix S.
The analysis is repeated with different unit
components of the eigenstrains until the
complete matrix S is obtained. This means that
the total number of the analysis will be 3m
times.

Solving the first sub-problem (see Fig. 1)
which is the problem without inhomogeneities

by FEM, we obtain the displacements u; at all

nodes and also the strains E,: at the centers of

all elements. After that, the strains 8:; in the

inhomogeneity elements are arranged in matrix
form in the same way as the eigenstrain vector

*

E ,ie.,
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E}
. El’)
E’={" (13)
E,
where E represents a strain vector
"
[&‘;’ £, ;V:V] evaluated at the center of the

i” inhomogeneity element.

Next, construct a 3mx3m constitutive
matrix for the inhomogeneity elements defined
as

(14)

m

where the diagonal term ¢, is the ordinary

3x3 constitutive matrix for the i”
inhomogeneity element. Also, construct a
3mx3m  constitutive matrix for the
inhomogeneity elements when the
homogeneous material is assumed, i.e.,
. 0
c=| ¢ (15)
0
¢

The matrix C
diagonal terms ¢, in the matrix C’ by the

matrix ¢ that is the ordinary 3x3 constitutive
matrix for the matrix material.
Then, Eq. (7) can be written as

is created by replacing all

C'(E* +SE’)=C(E’ + SE" —~E") (16)

which yields the solution for the eigenstrains,
1.€.,

E =[c-c’)s-cf'(c’ -c)E*. an



During the analysis to obtain the matrix
S, the displacement disturbance u;: at all nodes

and the strain disturbance aj.: in all elements

are obtained for different unit eigenstrains.
Therefore, the nodal displacement vector U can
be expressed as

3m
U=U"+) Ulg (18)

i=1

where U represents the nodal displacement
vector obtained from the first sub-problem and

UY is the nodal displacement disturbance
vector obtained when €, =1 [see Eq. (9)] is
applied to the second sub-problem.

Moreover, the strains in an arbitrary /"
element can be computed from

3m
E, =E/+ (E!)e (19)

i=1

where E, represents the element strain vector

.:,.
[sx g, y_r_,,] . Here, E} denotes the element
strain vector obtained from the first sub-
problem and (E}’ );. denotes the element strain

disturbance when ¢; =1 [see Eq. (9)] is applied

in the second sub-problem. Note that all
element strain vectors represent values at the
centers of the elements.

It is clear that big computational effort is
necessary for solving this sample problem
using the Equivalent Inclusion Method. The
problem must be analyzed one time to obtain
the solution when the homogeneous material is
assumed and another 3m times to obtain the
matrix S. Furthermore, the matrix equation for
the eigenstrains must be solved before the final
solution can be obtained. In this case, the
proposed solution method, of course, cannot
compete with one step calculation in the
conventional method. However, the advantage
of the proposed method is expected in the
analysis of problems with material nonlinearity
where many computational steps are necessary.

4. Finite element analysis of problems with
material  nonlinearity  using  the
Equivalent Inclusion Method

Before considering problems  with
material nonlinearity, the validity of the
method will be shown. In the proposed method,
the eigenstrains are assumed constant within
the elements. To verify that the assumption
does not significantly affect the accuracy of the
method, a problem that exhibits high stress
gradient is selected for the investigation. Here,

i y E=0, 5, 10, v=0 —
E=1, v=0
+— —
- 1 e
v X
- 41 7y > -
== T =
S -
“ 80 —

Fig. 3 Plane stress problem with inhomogeneity
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Fig. 4 Results from the conventional method and the proposed method

the method is used to solve a plane stress
problem shown in Fig. 3. In the problem, a unit
thickness plate with the dimension of 80x41 is
subjected to uniform applied stress o =1 at
both ends. Assume the Young’s modulus
E =1.0 and Poisson’s ratio v =0 everywhere
in the domain except in a small region at the
center of the plate (see Fig. 3). In the small
region, the Poisson’s ratio is set to be 0 and
various values of the Young’s modulus are
used. The problem 1is solved by the
conventional method and the proposed method.

In the analysis, 80 elements and 41
elements are used along horizontal and vertical
directions, respectively, and there are 20
elements in the inhomogeneity. The results are
shown in Fig. 4 for the Young’s modulus in the
small region equal to 0, 5 and 10. In the figure,

the normal stress o, along a line y=0 is

plotted. The solid lines represent the results
from the conventional method. From the
comparison, a very good agreement between
the results from the proposed method and the
conventional method can be observed.
Therefore, the validity of the proposed analysis
method is confirmed.
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Next, the method is used to analyze
problems with material nonlinearity. Consider
again a uniaxial problem shown in Fig. 2.
Assume the dimensions of the domain to be
10x10 with unit thickness. Also assume the
Young’s modulus £=1.0 and v =0 for every
element at the initial state. After loading, the
Young’s modulus for the material in the shaded
area (see Fig. 2), which occupies 10% of the
total area of the domain, is assumed to follow
the piecewise-linear constitutive law given in
Fig. 5. The mesh used in the analysis is also
shown in Fig. 2. There are totally 10x10
elements and there are 10 elements with the
nonlinear material.

The problem is solved incrementally by
the conventional method and the proposed
method. The analysis is stopped when the
uniaxial normal stress is equal to 0.5, which is
the end of the constitutive curve. The machine
used in the analysis is a SUN ULTRA 1
workstation with the Solaris 2.5 operating
system. The main purpose of solving this
problem is to compare the computational time
used by both methods. The number of steps
used in the analysis is varied from 100 to 1000.
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As for the accuracy, it is found that the
incremental computations by the conventional
and proposed methods yield the same exact
solution. The exact solution can be obtained
because the numbers of steps are selected so
that the constitutive law, which is given in
piecewise-linear fashion with the strain interval
of 0.1, can be exactly satisfied. After
completing the analysis with 10% nonlinear
material, a new problem with 20% nonlinear
material is solved. The problem with 20%
nonlinear material is made by setting 10 more

elements to be the nonlinear elements. The
added nonlinear elements are selected across
the section in such a way that the uniaxial
condition is assured. Fig. 6 shows the results
obtained from the proposed method. The
graphs are the relationships between the
applied load and the displacement of the
surface where the load is applied for the cases
with 10% and 20% nonlinear material. As
mentioned earlier, the obtained results are
exactly equal to the exact solutions.

The computational time for the analysis

Applied 6
load
5
4
3
2 -
1
0
0 2 4 6
Displacement

—e— Proposed and exact (10% nonlinear) |

—@— Proposed and exact (20% nonlinear)

Fig. 6 Applied load and displacement relationships of the uniaxial problem
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Fig. 7 Comparison of computational time

is shown in Fig. 7. From the figure, it is clear
that the proposed analysis method is very much
faster than the conventional one when the ratio
of the material undergoing nonlinear behavior
is small compared with the whole domain. This
advantage is reduced when the proportion of
the nonlinear material increases. This is
expected because the larger number of
nonlinear elements will result in the larger
matrix equation for eigenstrains [Eq. (7).
which is to be solved in every step. Besides
that, the larger number of nonlinear elements
means the larger matrix S in Eq. (8).
Therefore, the evaluation of the components of
the matrix S at the beginning of the analysis
will take longer time. Nevertheless, a big
advantage over the conventional method can be
seen if the ratio between the number of the
nonlinear elements and the total number of the
elements is less than 20%. Furthermore, the
advantage becomes even stronger when the
larger numbers of steps are used.

5. Conclusions

This work presents a new finite element
analysis method for general solid problems
with materials undergoing nonlinear behavior.
For simplicity, only two-dimensional problems
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are discussed. However, the idea can be
generally extended to three-dimensional
problems. The proposed analysis method is
based on the Equivalent Inclusion Method. In
this method, the nonlinear material is changed
into an equivalent material with eigenstrains.
Since the constitutive relationship is kept
unchanged, the computation in each step is
reduced into solving for the unknown
eigenstrains. If the proportion of the nonlinear
material is small compared with the whole
domain, the matrix equation for eigenstrains
will be small. Therefore, the computational
time can be reduced. The results obtained from
the proposed method show very good
agreement with the conventional method, and
much shorter computational time is observed if
the proportion of the material undergoing
nonlinear behavior is small.
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