Analysis of Cracking Localization Using the Smeared Crack Approach
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Abstract

In consideration of cracking localization,
it is more suitable to have an energy expression
written in terms of discrete irreversible
variables, which will allow the variations of the
energy with respect to the irreversible variables
to be considered easily. This implies that the
discrete crack approach should be more
appropriate for this kind of analysis than the
smeared crack approach. However, the discrete
crack approach may not be the best choice for
problems with many cracks, which are
unavoidable for the analysis of the cracking
localization. To avoid the drawbacks in both
approaches, a special treatment on the smeared
crack approach to allow the consideration of
the cracking localization is developed. To this
end, discrete irreversible variables related to
crack strains are introduced, and the cracking
localization is investigated, based on these

discrete irreversible variables. The results
obtained show promising capability of the
method in analyzing problems with the

cracking localization.

1. Introduction

Cracking localization prior to the failure
plays a very important role in the fracture
behavior of quasi-brittle materials, such as
concrete. In order to capture the real ultimate
capacity of such materials in structures,
consideration of the cracking localization

cannot generally be meglected. However, the
analysis of the cracking localization is very
expensive. Because of this reason, many
researchers avoid the consideration of the
cracking localization. This can be done by
either allowing many cracks to open or grow
without the consideration of the localization [1,
2, 3, 4, 5] or assuming the locations of the
localized cracks [5, 6]. The first approach is not
realistic and can lead to very inaccurate results.
When compared with having one or a few
localized cracks, having many cracks without
localization allows different amounts of energy
to dissipate from the domain. Thus, the
obtained results will be different as well. Only
in some cases where the stress gradients of the
problems are very large and the stress criteria
for crack initiation are used, can the localized
solution possibly be obtained from this
approach [1, 2, 4]. When the stress gradient is
very high, it is numerically possible that major
cracks will finally prevail and the other cracks
will undergo the elastic unloading. The second
approach, which assumes the locations of the
localized cracks prior to the analysis, may also
possibly yield reasonable results in some cases.
These include cases where the assumed
locations of the localized cracks are reasonably
correct, such as bending problems of concrete
beams with long notches [6]. The others are
cases where the required solutions, such as the
ultimate loads, are not sensitive to the locations
of the localized cracks [5]. Nevertheless, this
second approach is not appropriate for general
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cases since the locations of the localized cracks
may not be easily predicted or the required
solution-may be sensitive to the locations of the
cracks. .

- “In *“t¢he - analysis of the cracking
localization,~ consideration of stability and
bifurcation of “equilibrium states is one of the
tasks to be done. ‘Many researchers have
considered the stability.and bifurcation of the
equilibrium states by . investigating the
definiteness of the stiffness matrices (Hessian
Matrices) [7, 8, 9]. When the matrix is
positive-definite, the equilibrium is stable. The
same theory can be applied to the analysis of
the cracking localization. Nevertheless, to
consider the stability and bifurcation of
irreversible processes such as cracking, the
stationary condition of the energy of the system
with respect to irreversible parameters has to
be examined [10, 11, 12]. This requires
expression of the energy in terms of the
irreversible parameters. For crack problems,
the irreversible parameters can be the crack
opening displacement variables in the discrete
crack approach or the crack strain variables in
the smeared crack approach. In the discrete
crack approach, the crack opening
displacement variables are usually discretized
along crack paths and treated as the degrees of
freedom in the analysis. The energy of the
system is expressed in terms of these degrees
of freedom. Computing the first and second
variations of the energy with respect to the
crack opening displacement degrees of freedom
can be done easily. The stability and
bifurcation of the equilibrated solutions can be
considered by employing just the ordinary
calculus [12]. On the contrary, if the smeared
crack approach is employed, the energy of the
system will be expressed in terms of the
irreversible crack strain variables, which are
not discretized variables. These crack strain
variables are functions of position. To compute
the first and second variations of the energy
with respect to these crack strain functions,
complex mathematics involving the calculus of
variations must be employed.

This fact implies that the discrete crack
approach in the finite element method may be
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more suitable for the cracking localization
analysis than the smeared crack approach.
Nevertheless, the discrete crack approach may
not perform best when there are many cracks.
In this aspect, the smeared crack approach is
more appropriate.

To avoid the drawbacks in both methods,
in this study, a special treatment on the
smeared crack finite element analysis is
proposed. The proposed treatment will make it
possible to consider the cracking localization
by using the smeared crack models. In the
proposed  method, discrete irreversible
variables related to the crack strains are
introduced in the smeared crack models. These
discrete variables will allow the consideration
of the stability and bifurcation of the
equilibrated solution to be done by considering
the variations of the energy with respect to the
proposed discrete variables. The proposed
scheme will not be used to obtain the stiffness
equation that is used to obtain the equilibrium
paths. The original smeared crack models will
be still used for that purpose. The proposed
method will be used only for the investigation
of the stability and bifurcation.

2. Cracking Localization

Consider a system of a deformable body
with cracks where the energy is dissipated.
Following Nguyen [10] and Brocca [12], we
define the total energy of the body as

M(u,e,) =11" (u,,)+ 11 (a,) (1)

where 1" (u,,,) is the mechanical potential

energy and I1”(«, ) is the dissipated energy.
The of the
(i=1..,N) and a, (i=1,...,K), represent the
reversible variables and irreversible variables,
respectively. Here, N is the number of the
reversible variables and K is the number of the
irreversible variables.

Applying the stationary conditions to Eq.
(1), we have

arguments functions, u,
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0 =1,...,N, 2
ou, i (2a)
) j=1...K. (2b)
6aj.

From Eq. (2), the equilibrated solution can be
obtained. Employing the obtained solution, we
can express the reversible parameters in terms
of the irreversible parameters, i.e., u, = u,(a;).

Therefore, we can express the total energy in
Eq. (1) as a function of only the irreversible
parameters, i.e.,

I () =T1"(a,)+T1°(«,) )

where ' (a,) =(u(a,)a;) and

H‘M(‘I;) =1 (u,(a, )) .

The signs of the eigenvalues of the
2 *

Hessian Matrix [ } are used to check

da0a,
the stability of the equilibrated solution
obtained from Eq. (2). If all the eigenvalues are
positive, the equilibrated solution is stable and
there is no bifurcation. Otherwise, the solution
is unstable and the bifurcation, which leads to
the localization, occurs.

3. Smeared Crack Finite Element Analysis
for Cracking Localization
The fundamental scheme of the smeared
crack models is the decomposition of the total
strain increment A€ into a strain increment of

the intact solid between the cracks Ae” and the
crack strain increment Ae” |, i.e., [1, 13, 14]

Ae = A€’ + Ae”. (4)
The strain increment vectors in the above
equation are in the global coordinate system. It
will be helpful to consider the strain increments
also in a local coordinate system, which aligns
with the crack. Based on the local coordinate
system, a local crack strain increment vector in
two-dimensional cases is written as

ae” =(age apeY (5)

where AZ; and Ay are the mode I normal

crack strain increment and the mode II shear
crack strain increment, respectively. The
relationship between the global crack strain

increment Ae” and the local crack strain
increment A€ is written as

A€ =TAE" (6)

where T is the transformation matrix between
the global and local coordinate systems defined
as

cos’ @ —sinfcosf
sinfcosé (7)

2sin@cosf cos’O—sin’

Tz sin’ @

where @ is the angle between the normal of the
crack and the global x-axis. In the local
coordinate system, we consider the local
traction increment across the crack, i.e.,

At =(ad7 AR) (8)

where A7 denotes the mode I normal traction

increment and A7 denotes the mode II shear
traction increment. By using the transformation
matrix T, the relationship between the traction

increment At” and the global stress increment
Ao is expressed as

At =T Ao . 9)

The constitutive models for the material
between the cracks and for the smeared cracks
must be specified. For the material between the
cracks, we have

Ao =D’ A€’ (10)
where D’ is the constitutive matrix for the
material between the cracks. For the cracks, we



have the local traction-crack strain relationship,
i.e.,

At = DA (11)
where DY is the crack constitutive matrix
incorporating mixed-mode properties of the
cracks.

By using Egs. (4)-(11), the incremental
stress-strain  relationship for the cracked
material is obtained as

s =(p° -D’T[p” + T'D°T| 'T'D’ Jae . (12)

In order to discuss the cracking
localization, we follow the concept of the
localization explained in the previous section.
To begin with, we consider the total energy
increment for the domain of interest V, 1.e.,

AIT = {i jAe“’AadV - jAu’"Ade
2 ¥ ¥

- IAuTAtdS} (13)
hY

+ [i IA@"’TAE”dV}
2 ¥

where the first and second pairs of the brackets
represent the mechanical potential energy
increment and the dissipated energy increment,
respectively [10, 12]. Here, At and Af denote
the surface traction increment vector and the
body force increment vector, respectively. In
addition, Au denotes the total displacement
increment vector.

From Egs. (4), (10), (11), and (13) and
the inverse relationship of Eq. (6), i.e.,

AE” =TA€” (14)

where

cos’@  —2sinfcosh
T=| sin’@ 2sinfcosf | ,
sinfcos® cos’6—sin’@

(15)

we obtain

All = B I(AE - Ae”) D’ (Ae —Ae") dV
V

~ [Au”Afdv - IAuTAtdS} (16)
v 5
ks [l JAG"’TD"’AG"dV]
2 v
in which
D” =17D"T. (17)

Here, we introduce a crack displacement
increment vector Au“ defined as

Au = Au’ + Au”

(18)

where the strain increments computed from

Au, Au’ and Au” are A€, A€’ and Ae”,
respectively.

Consider the /" element in the finite
element analysis. The element is assumed to be
a cracked element. Interpolate these three
displacement increments from nodal quantities,
i.e,

Au = NAU, Au° =NAU°,

: : 19
ﬁuc‘r — NA‘UCT, ( )

AU = AU° +A'U”

in which AU, AU® and A'U” are the nodal
quantities of Au, Au’ and Au“, respectively.
Here, N is the shape function matrix. Note that
the superscript i for the i element is used in
the equations because the nodal crack
displacement increments of the same node for
different elements can be different. This is
natural because, in the smeared crack approach,
cracking in each element is completely



independent of each other. Therefore, the
continuity of the crack displacement increment
between elements is not required and must not
be enforced. On the contrary, the total
displacement increment Au must be
continuous across elements. Therefore, the
superscript i representing the element number
is not actually necessary for the nodal values of
the total displacement increment. Similar to the
crack displacement increment, the
displacement increment related to the strain
increment of the uncracked solid A'u® is not
continuous across elements’ boundaries;
therefore, the superscript i is required.

Computing strains from Eq. (18), we
obtain Eq. (4), i.e.,

Ne = Ne® +A'e” (20)

where

Ae=BAU, (21a)
Ae’ =BAU’, (21b)
Ae” =BAU”. (21¢)

Substituting Eq. (21) into Eq. (16) for the
i"™ element gives

ATl = %AUT jBTD"BdVAU
Vv

Laur IBTD"BdVA"U"

2 ¥
—%A‘U”T jBTD"BdVAU
v (22)

+%A"U"’T jBTD"BdVA"U“
V

+ %A: Uch IBTDchdVAr' Ucr
v

—AUT _[N TAfdV — AU jNdeS.
Vv 5

Next, we apply the stationary condition
5(AIT) =0, and assume that both D° and D

are symmetric. Since §(AU”) and §(A'U”")

are arbitrary, we obtain the element stiffness
equation for the /" element, i.c.,

_[BTD"Ba'V - jB’"D"BdV

N J‘B'*'n“BdV j’ BTD‘“B:dV+ IBTD" :
V ¥ ¥

{INTMdV+ INTAtdS}
=9 s .
0

After assembjig s ts and
applying prescribeg d ? ents/and forces,
we arrange the gl tififess/egdation as

{Kli KIZ lalll }
(24)
KZI K22 AR2

The static condensation is used to remove
the nodal total displacement increment from
the obtained global matrix equation. Therefore,
the equation can be written in the following
form, i.e.,

K“AU” = AR”. (25)

It must be noted that Eq. (25) is a

singular equation because AU contains the
rigid-body crack displacement increments, i.e.,
for two-dimensional cases, two rigid
translations and one rigid rotation. These three
rigid-body crack displacement increments can
be found in all cracked elements. To avoid
them, constraints to remove them from all
elements must be applied to the equation. In
this study, the following constraints are
employed at the center of each element without
loss of generality, i.e.,

Au"(E=0,n=0)=0

Av'(E=0,n=0)=0 (26)
&E=0n=0)_,
Ox
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Fig. 1 Uniaxial problem using two 1-D bar elements

where the global'iuy and natural & -7
coordinate systems are used in the equation.
Here, Au” and Av” are the incremental crack

displacements in x- and y-directions,
respectively.

Eq. (25), after applying the constraints,
can be expressed as

K AU = AR . (27)

The stability condition i1s obtained by

checking the eigenvalues of K . If all the
eigenvalues are positive, it means that the
equilibrium path is stable with respect to the
current crack pattern and there is no
bifurcation. On the contrary, if some of the
eigenvalues are negative, the equilibrium path
is not stable with respect to the current crack
pattern and a stable crack pattern must be
found.

4. Results and Discussion

In order to illustrate the advantage of the
method in the analysis of the cracking
localization, a simple one-dimensional uniaxial
problem shown in Fig. 1 1is considered.
Application of the proposed method to
problems in two- and three-dimensional
domains is just straightforward. Nevertheless,
two- and three-dimensional problems are not
used here because illustrative analytical results

cannot be easily obtained from them. As shown
in Fig. 1, the bar has one fixed support at one
end. At the other end, controlled displacement
u is applied. The length of the bar is 2L and
the area is A. The material is assumed to be
elastic with Young’s modulus equal to E. The
bar is discretized into two elements, each of
which has the length of L. Each element can
accommodate one crack. The characteristic
length or crack band width of each crack, in
this case, is equal to the length of the element.
The conventional linear shape function is used
for the displacement interpolation.

It is assumed that there is no crack at the
beginning. The controlled displacement is then
increased until the stress of the bar reaches the
tensile strength f,. By the strength criterion,

both elements are cracked. The cracks follow
the constitutive law for cracks. For opening
cracks, a linear relationship between the
transmitted tensile stress and the crack opening

displacement (COD) with the slope
ACOD

equal to H is assumed. For unloading cracks, a
vertical unloading path with a constant COD
equal to the existing COD is applied (see Fig.
1).

Consider an incremental step after the
initiation of the cracks. Assembling all element
stiffness equations given by Eq. (23), we can
write the global stiffness equation. After



applying the prescribed boundary conditions,
we obtain

[2E  E -E -E E (Ay)
E E+H —(E+H 0 0 |Au”
f-E —(E+H) E+H 0 0 RAUTS
-E 0 0 E+H —(E+H)| 8
| E 0 0 —(E+H) E+H ||AU7)

EAu

0

~ ENi

ENG

(28)

where H =HL . Here, AU, represents the
nodal displacement increment of the node i.
Moreover, AU represents the nodal crack

displacement increment of the node j and, at
the same time, of the element ;.

Using the static condensation to remove
AU, , we get

[ E+20  _Ev2 E & ]
2 _ 3. 2 2 (e
_E+20 E+2H  E E &%
= I 2 2. 2 _||AUY
Ll E _E E+2H  E+2H ||A'UY
2 2 2 2_ ||auy
E E  E+2H E+2
2 2 2 2
o
2
EAii
wd) 2
L\ El
2
EAi
2
(29)

The above equation is singular due to the
rigid-body crack displacement increments in
the two elements. For one-dimensional
problems, the crack displacement increment at
the center of each element is set to zero, i.c.,

Au”(E=0)= %(A‘U," +A'US) =0,

i (30)
Au (& =0)= 5(&0;’ +AU) =0,
which leads to
A|2E+2H) 2E AU
Ll 9 2(E +2H) || AUF
(1)

4 -EAu

L |-EAu|’
Note that, in applying the constraints to Eq.
(29), not only the row but also the column
operations must be performed to the stiffness
matrix so as to obtain the symmetric matrix in
Eq. (31). Actually, the constraints may be
directly applied to each element before

assembling the element stiffness equations.
The eigenvalues of the obtained stiffness

44H o AAE+H)

matrix are Both

eigenvalues are positive only when A >0. This
means that the crack pattern having two cracks
opening at the same time is unstable unless
hardening behavior occurs at the cracks.

If we assume that the crack in the
element 2 undergoes the elastic unloading, the
global stiffness equation will contain only one
cracked element. Employing the same process

of applying the prescribed boundary conditions

and using the static condensation for this case,
we obtain

f[zwuﬁﬂ{ﬂur}:%{- EAw} (32)

The eigenvalue of the stiffness matrix is
24E+30) which is positive when H > —g,
Assuming that the crack in the element 1
undergoes the elastic unloading will yield the
same conclusion.
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Fig. 2 Responses of the uniaxial problem using two 1-D bar elements

In summary, immediately after the two
elements are cracked due to the strength
criterion employed, the equilibrium path is
unstable and bifurcation occurs unless both
cracks exhibit hardening behavior, ie, when

H >0. In reality, cracks will exhibit softening
behavior. Therefore, the two cracks cannot

continue to open at the same time. If one of the

cracks undergoes the elastic unloading, the
stable equilibrium path can be observed as long

as §>—§. As shown in Fig. 2, which

summarizes all the possible results, the cases
~ K X
where H <——2— represent the responses with

snapback behavior. Under the displacement

control, the snapback responses are always
unstable.

It can be seen from the results that the
proposed method allows the consideration of
the cracking localization to be done even when
the smeared crack approach is used. As
mentioned before, there is no intention to use
the stiffness equation obtained from the
proposed method in the analysis to obtain the
unknown displacements. For that purpose, the
original smeared crack approach is much more
appropriate and will be used. The proposed

scheme is used only for the investigation of the
stability of the crack patterns.

The reason that the smeared crack
approach is selected for the analysis of the
localization is that the analysis of this kind
involves problems with many cracks. To
permit the investigation of the stability of the
crack patterns with the smeared crack models,
the discrete irreversible variables are
introduced to the models. As it is seen from the
derivation and the results, the introduced
irreversible variables, which are the crack
displacement variables, allow the energy of the
system to be expressed as a function of the
discrete irreversible variables. Therefore, the
stationary condition of the energy with respect
to these discrete irreversible variables can be
done easily. Consequently, we can use the
smeared crack models both for computing the
unknown displacements and for checking the
stability of the crack patterns.

Nevertheless, there are still many more
problems, related to the analysis of the
cracking localization, to be solved. For
complex localization problems, such as the
four-point bending problem, there are chances
that there will be many stable crack patterns
occurring at the same time. Because of the
complicated crack patterns, it is not easy to
single out the correct solutions. The complete



and efficient analysis methods still have to be
developed.
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